Wenqiang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1612161/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Historical records of heavy metal accumulation in sediments and the relationship with agricultural intensification in the Yangtze–Huaihe region, China. Science of the Total Environment, 2008, 399, 113-120.	8.0	185
2	Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. Journal of Hazardous Materials, 2010, 176, 945-951.	12.4	182
3	Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere. Bioresource Technology, 2017, 238, 352-360.	9.6	117
4	Temporal and spatial variation of nitrogen and phosphorus and eutrophication assessment for a typical arid river — Fuyang River in northern China. Journal of Environmental Sciences, 2017, 55, 41-48.	6.1	95
5	Heavy Metal Contamination in the Surface Sediments of Representative Limnetic Ecosystems in Eastern China. Scientific Reports, 2014, 4, 7152.	3.3	92
6	Heavy metal concentrations and speciation in riverine sediments and the risks posed in three urban belts in the Haihe Basin. Ecotoxicology and Environmental Safety, 2017, 139, 263-271.	6.0	82
7	Heavy metal contamination of overlying waters and bed sediments of Haihe Basin in China. Ecotoxicology and Environmental Safety, 2013, 98, 317-323.	6.0	73
8	Using biochar capping to reduce nitrogen release from sediments in eutrophic lakes. Science of the Total Environment, 2019, 646, 93-104.	8.0	60
9	Concentrations, diffusive fluxes and toxicity of heavy metals in pore water of the Fuyang River, Haihe Basin. Ecotoxicology and Environmental Safety, 2016, 127, 80-86.	6.0	56
10	Comprehensive analysis of nitrogen distributions and ammonia nitrogen release fluxes in the sediments of Baiyangdian Lake, China. Journal of Environmental Sciences, 2019, 76, 319-328.	6.1	52
11	Remediation effectiveness of Phyllostachys pubescens biochar in reducing the bioavailability and bioaccumulation of metals in sediments. Environmental Pollution, 2018, 242, 1768-1776.	7.5	49
12	Evidence for organic phosphorus activation and transformation at the sediment–water interface during plant debris decomposition. Science of the Total Environment, 2017, 583, 458-465.	8.0	48
13	Spatial distribution, fractionation, toxicity and risk assessment of surface sediments from the Baiyangdian Lake in northern China. Ecological Indicators, 2018, 90, 633-642.	6.3	47
14	Accumulation and risk of heavy metals in relation to agricultural intensification in the river sediments of agricultural regions. Environmental Earth Sciences, 2014, 71, 3945-3951.	2.7	41
15	The effects of urbanization and rainfall on the distribution of, and risks from, phenolic environmental estrogens in river sediment. Environmental Pollution, 2019, 250, 1010-1018.	7.5	33
16	Relationship of bioaccessibility and fractionation of cadmium in long-term spiked soils for health risk assessment based on four in vitro gastrointestinal simulation models. Science of the Total Environment, 2018, 631-632, 1582-1589.	8.0	31
17	Assessment of River Habitat Quality in the Hai River Basin, Northern China. International Journal of Environmental Research and Public Health, 2015, 12, 11699-11717.	2.6	30
18	Effects of the pyrolysis temperature on the biotoxicity of Phyllostachys pubescens biochar in the aquatic environment. Journal of Hazardous Materials, 2019, 376, 48-57.	12.4	30

#	Article	IF	CITATIONS
19	Phosphorus transformations at the sediment–water interface in shallow freshwater ecosystems caused by decomposition of plant debris. Chemosphere, 2018, 201, 328-334.	8.2	29
20	Heavy metals in estuarine surface sediments of the Hai River Basin, variation characteristics, chemical speciation and ecological risk. Environmental Science and Pollution Research, 2016, 23, 7869-7879.	5.3	28
21	Heavy metals in surface sediments of the shallow lakes in eastern China: their relations with environmental factors and anthropogenic activities. Environmental Science and Pollution Research, 2016, 23, 25364-25373.	5.3	26
22	Nitrogen mineralization and geochemical characteristics of amino acids in surface sediments of a typical polluted area in the Haihe River Basin, China. Environmental Science and Pollution Research, 2015, 22, 17975-17986.	5.3	25
23	Assessment of potential bioavailability of heavy metals in the sediments of land-freshwater interfaces by diffusive gradients in thin films. Chemosphere, 2018, 191, 218-225.	8.2	25
24	Identifying sediment-associated toxicity in rivers affected by multiple pollutants from the contaminant bioavailability. Ecotoxicology and Environmental Safety, 2019, 171, 84-91.	6.0	25
25	Heavy Metal Pollution Characteristics of Surface Sediments in Different Aquatic Ecosystems in Eastern China: A Comprehensive Understanding. PLoS ONE, 2014, 9, e108996.	2.5	25
26	Impact of extreme oxygen consumption by pollutants on macroinvertebrate assemblages in plain rivers of the Ziya River Basin, north China. Environmental Science and Pollution Research, 2016, 23, 14147-14156.	5.3	23
27	Vertical records of sedimentary PAHs and their freely dissolved fractions in porewater profiles from the northern bays of Taihu Lake, Eastern China. RSC Advances, 2016, 6, 98835-98844.	3.6	21
28	Determination of Sediment Oxygen Demand in the Ziya River Watershed, China: Based on Laboratory Core Incubation and Microelectrode Measurements. International Journal of Environmental Research and Public Health, 2016, 13, 232.	2.6	20
29	In situ high-resolution measurement of phosphorus, iron and sulfur by diffusive gradients in thin films in sediments of black-odorous rivers in the Pearl River Delta region, South China. Environmental Research, 2020, 189, 109918.	7.5	20
30	Distribution, diffusive fluxes, and toxicity of heavy metals and PAHs in pore water profiles from the northern bays of Taihu Lake. Environmental Science and Pollution Research, 2016, 23, 22072-22083.	5.3	19
31	Distributions, fluxes, and toxicities of heavy metals in sediment pore water from tributaries of the Ziya River system, northern China. Environmental Science and Pollution Research, 2016, 23, 5516-5526.	5.3	19
32	Total, chemical, and biological oxygen consumption of the sediments in the Ziya River watershed, China. Environmental Science and Pollution Research, 2016, 23, 13438-13447.	5.3	18
33	Evaluating the diffusive gradients in thin films technique for the prediction of metal bioaccumulation in plants grown in river sediments. Journal of Hazardous Materials, 2018, 344, 360-368.	12.4	18
34	Heavy Metal Accumulation by Periphyton Is Related to Eutrophication in the Hai River Basin, Northern China. PLoS ONE, 2014, 9, e86458.	2.5	18
35	Effectiveness of vegetation on phosphorus removal from reclaimed water by a subsurface flow wetland in a coastal area. Journal of Environmental Sciences, 2011, 23, 1594-1599.	6.1	16
36	Pollution, toxicity, and ecological risk of heavy metals in surface river sediments of a large basin undergoing rapid economic development. Environmental Toxicology and Chemistry, 2017, 36, 1149-1155.	4.3	16

#	Article	IF	CITATIONS
37	Effects of organic matter on polycyclic aromatic hydrocarbons in riverine sediments affected by human activities. Science of the Total Environment, 2022, 815, 152570.	8.0	16
38	Characteristics of suspended particulate matter in a typical slow-moving river of northern China: Insight into its structure and motion behavior. Chemosphere, 2018, 202, 521-529.	8.2	15
39	Assessment of Preparation Methods for Organic Phosphorus Analysis in Phosphorus-Polluted Fe/Al-Rich Haihe River Sediments Using Solution 31P-NMR. PLoS ONE, 2013, 8, e76525.	2.5	13
40	Phosphorus characteristics, distribution, and relationship with environmental factors in surface sediments of river systems in Eastern China. Environmental Science and Pollution Research, 2016, 23, 19440-19449.	5.3	13
41	Development and preliminary application of a method to assess river ecological status in the Hai River Basin, north China. Journal of Environmental Sciences, 2016, 39, 144-154.	6.1	13
42	Do NH 3 and chemical oxygen demand induce continuous release of phosphorus from sediment in heavily polluted rivers?. Ecological Engineering, 2017, 102, 24-30.	3.6	13
43	Will heavy metals in the soils of newly submerged areas threaten the water quality of Danjiangkou Reservoir, China?. Ecotoxicology and Environmental Safety, 2017, 144, 380-386.	6.0	13
44	Dissolved oxygen variation in the North China Plain river network region over 2011–2020 and the influencing factors. Chemosphere, 2022, 287, 132354.	8.2	13
45	Sedimentary Phosphorus Form Distribution and Cycling in the Littoral Subzones of a Eutrophic Lake. Clean - Soil, Air, Water, 2008, 36, 78-83.	1.1	12
46	Phosphorus Buildup and Release Risk Associated with Agricultural Intensification in the Estuarine Sediments of Chaohu Lake Valley, Eastern China. Clean - Soil, Air, Water, 2010, 38, 336-343.	1.1	12
47	Phosphorus-31 nuclear magnetic resonance assignments of biogenic phosphorus compounds in sediment of an artificial Fuyangxin River, China. Environmental Science and Pollution Research, 2014, 21, 3803-3812.	5.3	12
48	Characterization of biogenic phosphorus in sediments from the multi-polluted Haihe River, China, using phosphorus fractionation and 31 P-NMR. Ecological Engineering, 2014, 71, 520-526.	3.6	12
49	Accumulation and risk assessment of sedimentary trace metalsÂin response to industrialization fromÂthe tributaries of Fuyang River System. Environmental Earth Sciences, 2015, 73, 1975-1982.	2.7	12
50	Water resources: the prerequisite for ecological restoration of rivers in the Hai River Basin, northern China. Environmental Science and Pollution Research, 2015, 22, 1359-1365.	5.3	12
51	A scheme to scientifically and accurately assess cadmium pollution of river sediments, through consideration of bioavailability when assessing ecological risk. Chemosphere, 2017, 185, 602-609.	8.2	12
52	Assessment of the sediment quality of freshwater ecosystems in eastern China based on spatial and temporal variation of nutrients. Environmental Science and Pollution Research, 2017, 24, 19412-19421.	5.3	12
53	Past atmospheric trace metal deposition in a remote lake (Lake Ngoring) at the headwater areas of Yellow River, Tibetan Plateau. Environmental Earth Sciences, 2014, 72, 399-406.	2.7	11
54	Limitation of spatial distribution of ammonia-oxidizing microorganisms in the Haihe River, China, by heavy metals. Journal of Environmental Sciences, 2014, 26, 502-511.	6.1	11

#	Article	IF	CITATIONS
55	Heavy metal speciation, risk, and bioavailability in the sediments of rivers with different pollution sources and intensity. Environmental Science and Pollution Research, 2016, 23, 23630-23637.	5.3	11
56	Phosphorus distribution and sorption-release characteristics of the soil from newly submerged areas in the Danjiangkou reservoir, China. Ecological Engineering, 2017, 99, 374-380.	3.6	11
57	Determining cadmium bioavailability in sediment profiles using diffusive gradients in thin films. Journal of Environmental Sciences, 2020, 91, 160-167.	6.1	11
58	Using Chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the Haihe River Basin. Scientific Reports, 2017, 7, 1438.	3.3	10
59	Water Quality in Representative Tuojiang River Network in Southwest China. Water (Switzerland), 2018, 10, 864.	2.7	10
60	Risk assessment of heavy metals in suspended particulate matter in a typical urban river. Environmental Science and Pollution Research, 2022, 29, 46649-46664.	5.3	10
61	Historical distribution of DDT residues in pond sediments in an intensive agricultural watershed in the Yangtze-Huaihe region, China. Journal of Soils and Sediments, 2014, 14, 980-990.	3.0	9
62	Variations in Phosphorus Speciation in Pilot Scale Subsurface Flow Wetlands Constructed with Blast Furnace Slag and Gravel. Clean - Soil, Air, Water, 2009, 37, 818-825.	1.1	8
63	Dynamics of heavy metals and phosphorus in the pore water of estuarine sediments following agricultural intensification in Chao Lake Valley. Environmental Science and Pollution Research, 2015, 22, 7948-7953.	5.3	8
64	Heavy metal in sediments of Ziya River in northern China: distribution, potential risks, and source apportionment. Environmental Science and Pollution Research, 2016, 23, 23511-23521.	5.3	8
65	Comprehensive analysis of mercury pollution in the surface riverine sediments in the Haihe Basin, China. Environmental Science and Pollution Research, 2017, 24, 20794-20802.	5.3	8
66	Analysis of Bacterial Communities in Partial Nitritation and Conventional Nitrification Systems for Nitrogen Removal. Scientific Reports, 2018, 8, 12930.	3.3	8
67	Distribution of nitrogen and phosphorus and estimation of nutrient fluxes in the water and sediments of Liangzi Lake, China. Environmental Science and Pollution Research, 2020, 27, 7096-7104.	5.3	8
68	Characteristics and Distribution of Phosphorus in Surface Sediments of Limnetic Ecosystem in Eastern China. PLoS ONE, 2016, 11, e0156488.	2.5	8
69	Composition of phosphorus in wetland soils determined by SMT and solution 31P-NMR analyses. Environmental Science and Pollution Research, 2016, 23, 9046-9053.	5.3	7
70	Overestimation of orthophosphate monoesters in lake sediment by solution 31P-NMR analysis. Environmental Science and Pollution Research, 2017, 24, 25469-25474.	5.3	7
71	Using sedimentary phosphorus/nitrogen as indicators of shallow lake eutrophication: concentrations or accumulation fluxes. Environmental Earth Sciences, 2015, 74, 3935-3944.	2.7	6
72	Recovery in Dissolved Oxygen Levels in Chinese Freshwater Ecosystems in the Past Three Decades. ACS ES&T Water, 0, , .	4.6	6

#	ARTICLE	IF	CITATIONS
73	Evaluating the biotoxicity of surface water in a grassy lake in North China. Journal of Environmental Sciences, 2021, 102, 316-325.	6.1	5
74	Application of fish index of biological integrity (FIBI) in the Sanmenxia Wetland with water quality implications. Journal of Environmental Sciences, 2014, 26, 1597-1603.	6.1	4
75	Budget and Fate of Phosphorus and Trace Metals in a Heavily Loaded Shallow Reservoir (<scp>S</scp> hahe, Beijing City). Clean - Soil, Air, Water, 2015, 43, 210-216.	1.1	4
76	Oxygen microprofile in the prepared sediments and its implication for the sediment oxygen consuming process in a heavily polluted river of China. Environmental Science and Pollution Research, 2016, 23, 8634-8643.	5.3	4
77	The effect of anthropogenic activities on the phosphorus-buffering intensity of the two contrasting rivers in northern China. Environmental Science and Pollution Research, 2018, 25, 23195-23204.	5.3	4
78	Contribution of particulate matter in storm runoff to organic phosphorus loads in urban rivers. Environmental Science and Pollution Research, 2018, 25, 23342-23348.	5.3	4
79	Complex responses of suspended particulate matter in eutrophic river and its indicative function in river recovery process. Ecological Indicators, 2020, 115, 106397.	6.3	4
80	Evidence of improvements in the water quality of coastal areas around China. Science of the Total Environment, 2022, 832, 155147.	8.0	4
81	Effects of Nitrogen Pollution on Periphyton Distribution, Elemental Composition and Assemblage Shifts in River Ecosystems. Clean - Soil, Air, Water, 2015, 43, 1375-1380.	1.1	3
82	Aeolian input of phosphorus to a remote lake induced increase of primary production at the Tibetan Plateau. RSC Advances, 2016, 6, 96853-96860.	3.6	3
83	Organic matter and pH affect the analysis efficiency of 31 P-NMR. Journal of Environmental Sciences, 2016, 43, 244-249.	6.1	3
84	Spatial and temporal variations of nutrition in representative river networks in Southwest China. Environmental Monitoring and Assessment, 2018, 190, 707.	2.7	3
85	Mercury pollution of riverine sediments in a typical irrigation area in the Beijing–Tianjin–Hebei region. Environmental Science and Pollution Research, 2020, 27, 8732-8739.	5.3	3
86	Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China. International Journal of Environmental Research and Public Health, 2016, 13, 234.	2.6	1
87	Phosphorus speciation of sediments from lakes of different tropic status in Eastern China. Environmental Science and Pollution Research, 2016, 23, 6767-6773.	5.3	1
88	High salinisation risks in a typical semi-arid river network in northern China. Chemistry and Ecology, 2019, 35, 256-269.	1.6	0
89	A new solution 31P NMR sample extraction scheme for freshwater ecosystem sediments. Environmental Science and Pollution Research, 2021, , 1.	5.3	0