
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1612110/publications.pdf Version: 2024-02-01

ΔιιρΙλι

#	Article	IF	CITATIONS
1	Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs—a global perspective on the management of Lindane and its waste isomers. Environmental Science and Pollution Research, 2011, 18, 152-162.	5.3	359
2	Biochemistry of Microbial Degradation of Hexachlorocyclohexane and Prospects for Bioremediation. Microbiology and Molecular Biology Reviews, 2010, 74, 58-80.	6.6	331
3	Cloning and Characterization of lin Genes Responsible for the Degradation of Hexachlorocyclohexane Isomers by Sphingomonas paucimobilis Strain B90. Applied and Environmental Microbiology, 2002, 68, 6021-6028.	3.1	173
4	High Throughput Sequencing: An Overview of Sequencing Chemistry. Indian Journal of Microbiology, 2016, 56, 394-404.	2.7	169
5	Bioactive compounds from marine actinomycetes. Indian Journal of Microbiology, 2008, 48, 410-431.	2.7	151
6	The enzymatic basis for pesticide bioremediation. Indian Journal of Microbiology, 2008, 48, 65-79.	2.7	144
7	Organization of lin Genes and IS 6100 among Different Strains of Hexachlorocyclohexane-Degrading Sphingomonas paucimobilis : Evidence for Horizontal Gene Transfer. Journal of Bacteriology, 2004, 186, 2225-2235.	2.2	138
8	Diversity, distribution and divergence of lin genes in hexachlorocyclohexane-degrading sphingomonads. Trends in Biotechnology, 2006, 24, 121-130.	9.3	129
9	Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian Journal of Microbiology, 2018, 58, 397-414.	2.7	121
10	Gut microbiome contributes to impairment of immunity in pulmonary tuberculosis patients by alteration of butyrate and propionate producers. Environmental Microbiology, 2018, 20, 402-419.	3.8	120
11	Hexachlorocyclohexane-degrading bacterial strains Sphingomonas paucimobilis B90A, U126 and Sp+, having similar lin genes, represent three distinct species, Sphingobium indicum sp. nov., Sphingobium japonicum sp. nov. and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov International Journal of Systematic and	1.7	116
12	The urgent need for microbiology literacy in society. Environmental Microbiology, 2019, 21, 1513-1528.	3.8	99
13	Comparative Metagenomic Analysis of Soil Microbial Communities across Three Hexachlorocyclohexane Contamination Levels. PLoS ONE, 2012, 7, e46219.	2.5	97
14	Enantioselective Transformation of α-Hexachlorocyclohexane by the Dehydrochlorinases LinA1 and LinA2 from the Soil Bacterium Sphingomonas paucimobilis B90A. Applied and Environmental Microbiology, 2005, 71, 8514-8518.	3.1	93
15	Biochemical and Molecular Basis of Pesticide Degradation by Microorganisms. Critical Reviews in Biotechnology, 1999, 19, 197-225.	9.0	91
16	Haloalkane Dehalogenase LinB Is Responsible for β- and β-Hexachlorocyclohexane Transformation in Sphingobium indicum B90A. Applied and Environmental Microbiology, 2006, 72, 5720-5727.	3.1	90
17	Evaluation of hexachlorocyclohexane contamination from the last lindane production plant operating in India. Environmental Science and Pollution Research, 2011, 18, 586-597.	5.3	87
18	Devosia chinhatensis sp. nov., isolated from a hexachlorocyclohexane (HCH) dump site in India. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 861-865.	1.7	82

#	Article	IF	CITATIONS
19	Description of Sphingobium fuliginis sp. nov., a phenanthrene-degrading bacterium from a fly ash dumping site, and reclassification of Sphingomonas cloacae as Sphingobium cloacae comb. nov International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2147-2152.	1.7	75
20	Comparative Genomic Analysis Reveals Habitat-Specific Genes and Regulatory Hubs within the Genus <i>Novosphingobium</i> . MSystems, 2017, 2, .	3.8	75
21	Sphingobium ummariense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium, isolated from HCH-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 162-166.	1.7	73
22	Comparative genomic analysis of nine Sphingobium strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways. BMC Genomics, 2014, 15, 1014.	2.8	73
23	Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A. Biodegradation, 2008, 19, 27-40.	3.0	71
24	Recent Advancements in the Development of Modern Probiotics for Restoring Human Gut Microbiome Dysbiosis. Indian Journal of Microbiology, 2020, 60, 12-25.	2.7	70
25	Enzymes and Operons Mediating Xenobiotic Degradation in Bacteria. Critical Reviews in Microbiology, 2001, 27, 133-166.	6.1	65
26	Reclassification of Amycolatopsis mediterranei DSM 46095 as Amycolatopsis rifamycinica sp. nov International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1145-1149.	1.7	61
27	Accumulation, Metabolism, and Effects of Organophosphorus Insecticides on Microorganisms. Advances in Applied Microbiology, 1982, 28, 149-200.	2.4	60
28	Comparative Genomic Analysis of Rapidly Evolving SARS-CoV-2 Reveals Mosaic Pattern of Phylogeographical Distribution. MSystems, 2020, 5, .	3.8	60
29	Sphingobium quisquiliarum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 429-433.	1.7	59
30	Degradation of alpha, beta, gamma and delta-hexachlorocyclohexanes by Sphingomonas paucimobilis. Biotechnology Letters, 1998, 20, 885-887.	2.2	57
31	Rhizobium rosettiformans sp. nov., isolated from a hexachlorocyclohexane dump site, and reclassification of Blastobacter aggregatus Hirsch and Müller 1986 as Rhizobium aggregatum comb. nov International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1218-1225.	1.7	57
32	Microbial taxonomy in the era of OMICS: application of DNA sequences, computational tools and techniques. Antonie Van Leeuwenhoek, 2017, 110, 1357-1371.	1.7	54
33	Defining the Environmental Adaptations of Genus Devosia: Insights into its Expansive Short Peptide Transport System and Positively Selected Genes. Scientific Reports, 2020, 10, 1151.	3.3	54
34	Sphingobium chinhatense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 3140-3144.	1.7	53
35	Reconstructing an ancestral genotype of two hexachlorocyclohexane-degrading <i>Sphingobium</i> species using metagenomic sequence data. ISME Journal, 2014, 8, 398-408.	9.8	53
36	Pseudomonas delhiensis sp. nov., from a fly ash dumping site of a thermal power plant. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 527-531.	1.7	52

#	Article	lF	CITATIONS
37	Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus. Annals of Clinical Microbiology and Antimicrobials, 2011, 10, 28.	3.8	52
38	Proposal to reclassify [Sphingomonas] xenophaga Stolz et al. 2000 and [Sphingomonas] taejonensis Lee et al. 2001 as Sphingobium xenophagum comb. nov. and Sphingopyxis taejonensis comb. nov., respectively. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 667-670.	1.7	51
39	Hydroxylated Metabolites of β- and Β-Hexachlorocyclohexane: Bacterial Formation, Stereochemical Configuration, and Occurrence in Groundwater at a Former Production Site. Environmental Science & Technology, 2007, 41, 4292-4298.	10.0	51
40	Acinetobacter indicus sp. nov., isolated from a hexachlorocyclohexane dump site. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2883-2890.	1.7	48
41	From dengue to Zika: the wide spread of mosquito-borne arboviruses. European Journal of Clinical Microbiology and Infectious Diseases, 2019, 38, 3-14.	2.9	48
42	Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Journal of Biotechnology, 2020, 307, 98-106.	3.8	48
43	Devosia albogilva sp. nov. and Devosia crocina sp. nov., isolated from a hexachlorocyclohexane dump site. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 795-799.	1.7	47
44	Arsenic rich Himalayan hot spring metagenomics reveal genetically novel predator–prey genotypes. Environmental Microbiology Reports, 2015, 7, 812-823.	2.4	47
45	Novosphingobium barchaimii sp. nov., isolated from hexachlorocyclohexane-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 667-672.	1.7	46
46	Sphingomonas histidinilytica sp. nov., isolated from a hexachlorocyclohexane dump site. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 1038-1043.	1.7	45
47	Sphingopyxis ummariensis sp. nov., isolated from a hexachlorocyclohexane dump site. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 780-784.	1.7	44
48	Sphingobium lactosutens sp. nov., isolated from a hexachlorocyclohexane dump site and Sphingobium abikonense sp. nov., isolated from oil-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 2291-2296.	1.7	42
49	New Metabolites in the Degradation of α- and γ-Hexachlorocyclohexane (HCH): Pentachlorocyclohexenes Are Hydroxylated to Cyclohexenols and Cyclohexenediols by the Haloalkane Dehalogenase LinB from Sphingobium indicum B90A. Journal of Agricultural and Food Chemistry, 2008, 56, 6594-6603.	5.2	41
50	Novosphingobium lindaniclasticum sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from an HCH dumpsite. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2160-2167.	1.7	41
51	Phylogenetic analyses of phylum Actinobacteria based on whole genome sequences. Research in Microbiology, 2013, 164, 718-728.	2.1	40
52	Pontibacter ramchanderi sp. nov., isolated from hexachlorocyclohexane-contaminated pond sediment. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2829-2834.	1.7	40
53	Pontibacter lucknowensis sp. nov., isolated from a hexachlorocyclohexane dump site. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 309-313.	1.7	40
54	Modification of Rifamycin Polyketide Backbone Leads to Improved Drug Activity against Rifampicin-resistant Mycobacterium tuberculosis. Journal of Biological Chemistry, 2014, 289, 21142-21152.	3.4	40

#	Article	IF	CITATIONS
55	Interplay of Human Gut Microbiome in Health and Wellness. Indian Journal of Microbiology, 2020, 60, 26-36.	2.7	40
56	Regulation and manipulation of the gene clusters encoding type-I PKSs. Trends in Biotechnology, 2000, 18, 264-274.	9.3	39
57	Dynamics of Multiple lin Gene Expression in Sphingomonas paucimobilis B90A in Response to Different Hexachlorocyclohexane Isomers. Applied and Environmental Microbiology, 2004, 70, 6650-6656.	3.1	39
58	Laboratory and field scale bioremediation of hexachlorocyclohexane (HCH) contaminated soils by means of bioaugmentation and biostimulation. Biodegradation, 2016, 27, 179-193.	3.0	39
59	Genetic manipulations of microorganisms for the degradation of hexachlorocyclohexane. FEMS Microbiology Reviews, 1996, 19, 69-84.	8.6	38
60	Pseudomonas sp. to Sphingobium indicum: a journey of microbial degradation and bioremediation of Hexachlorocyclohexane. Indian Journal of Microbiology, 2008, 48, 3-18.	2.7	38
61	Metabolomics of hexachlorocyclohexane (<scp>HCH</scp>) transformation: ratio of <scp>LinA</scp> to <scp>LinB</scp> determines metabolic fate of <scp>HCH</scp> isomers. Environmental Microbiology, 2013, 15, 1040-1049.	3.8	38
62	Pseudomonas panipatensis sp. nov., isolated from an oil-contaminated site. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1339-1345.	1.7	36
63	Isotope fractionation approach to characterize the reactive transport processes governing the fate of hexachlorocyclohexanes at a contaminated site in India. Environment International, 2019, 132, 105036.	10.0	36
64	Comparative Genomic Analyses Reveal Core-Genome-Wide Genes Under Positive Selection and Major Regulatory Hubs in Outlier Strains of Pseudomonas aeruginosa. Frontiers in Microbiology, 2019, 10, 53.	3.5	36
65	Enzymatic Conversion of ε-Hexachlorocyclohexane and a Heptachlorocyclohexane Isomer, Two Neglected Components of Technical Hexachlorocyclohexane. Environmental Science & Technology, 2012, 46, 4051-4058.	10.0	35
66	Pontibacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 254-259.	1.7	35
67	Sphingobium lucknowense sp. nov., a hexachlorocyclohexane (HCH)-degrading bacterium isolated from HCH-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 618-623.	1.7	33
68	Comparative genomic analysis of novel Acinetobacter symbionts: A combined systems biology and genomics approach. Scientific Reports, 2016, 6, 29043.	3.3	33
69	Engineering Antibiotic Producers to Overcome the Limitations of Classical Strain Improvement Programs. Critical Reviews in Microbiology, 1996, 22, 201-255.	6.1	32
70	Parapedobacter indicus sp. nov., isolated from hexachlorocyclohexane-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 129-134.	1.7	32
71	Chicken Gut Microbiome and Human Health: Past Scenarios, Current Perspectives, and Futuristic Applications. Indian Journal of Microbiology, 2020, 60, 2-11.	2.7	32
72	Draft Genome Sequence of Thermus sp. Strain RL, Isolated from a Hot Water Spring Located atop the Himalayan Ranges at Manikaran, India. Journal of Bacteriology, 2012, 194, 3534-3534.	2.2	31

#	Article	IF	CITATIONS
73	Genome Sequence of Sphingobium indicum B90A, a Hexachlorocyclohexane-Degrading Bacterium. Journal of Bacteriology, 2012, 194, 4471-4472.	2.2	31
74	Development of an Improved Cloning Vector and Transformation System in Amycolatopsis mediterranei (Nocardia mediterranei) Journal of Antibiotics, 1998, 51, 161-169.	2.0	30
75	Bacterial diversity of Drass, cold desert in Western Himalaya, and its comparison with Antarctic and Arctic. Archives of Microbiology, 2015, 197, 851-860.	2.2	30
76	Pseudoxanthomonas indica sp. nov., isolated from a hexachlorocyclohexane dumpsite. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 2107-2111.	1.7	30
77	Isolation of Three Xylanase-Producing Strains of Actinomycetes and Their Identification Using Molecular Methods. Current Microbiology, 2006, 53, 178-182.	2.2	29
78	Sphingobium baderi sp. nov., isolated from a hexachlorocyclohexane dump site. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 673-678.	1.7	29
79	Genetics and Genomics of the Genus Amycolatopsis. Indian Journal of Microbiology, 2016, 56, 233-246.	2.7	28
80	Sphingomonas laterariae sp. nov., isolated from a hexachlorocyclohexane-contaminated dump site. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2891-2896.	1.7	27
81	Bacterial and Archaeal Viruses of Himalayan Hot Springs at Manikaran Modulate Host Genomes. Frontiers in Microbiology, 2018, 9, 3095.	3.5	27
82	Enantiomer and Carbon Isotope Fractionation of α-Hexachlorocyclohexane by <i>Sphingobium indicum</i> Strain B90A and the Corresponding Enzymes. Environmental Science & Technology, 2019, 53, 8715-8724.	10.0	27
83	Residues of organochlorine insecticides in Delhi vegetables. Bulletin of Environmental Contamination and Toxicology, 1989, 42-42, 45-49.	2.7	26
84	Recent trends in rifamycin research. BioEssays, 1994, 16, 211-216.	2.5	26
85	Whole Genome Sequence of the Rifamycin B-Producing Strain Amycolatopsis mediterranei S699. Journal of Bacteriology, 2011, 193, 5562-5563.	2.2	26
86	Draft Genome Sequence of Sphingobium chinhatense Strain IP26 T , Isolated from a Hexachlorocyclohexane Dumpsite. Genome Announcements, 2013, 1, .	0.8	26
87	Visualizing the invisible: class excursions to ignite children's enthusiasm for microbes. Microbial Biotechnology, 2020, 13, 844-887.	4.2	26
88	Flavobacterium ummariense sp. nov., isolated from hexachlorocyclohexane-contaminated soil, and emended description of Flavobacterium ceti Vela et al. 2007. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2674-2679.	1.7	25
89	Sphingopyxis indica sp. nov., isolated from a high dose point hexachlorocyclohexane (HCH)-contaminated dumpsite. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 2186-2191.	1.7	25
90	Rhizobium populi sp. nov., an endophytic bacterium isolated from Populus euphratica. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3215-3221.	1.7	25

#	Article	IF	CITATIONS
91	Pontibacter chinhatensis sp. nov., isolated from pond sediment containing discarded hexachlorocyclohexane isomer waste. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 2248-2254.	1.7	25
92	From bacterial genomics to metagenomics: concept, tools and recent advances. Indian Journal of Microbiology, 2008, 48, 173-194.	2.7	24
93	Microbacterium amylolyticum sp. nov., isolated from soil from an industrial waste site. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2114-2120.	1.7	24
94	Fictibacillus halophilus sp. nov., from a microbial mat of a hot spring atop the Himalayan Range. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 2409-2416.	1.7	24
95	Devosia lucknowensis sp. nov., a bacterium isolated from hexachlorocyclohexane (HCH) contaminated pond soil. Journal of Microbiology, 2013, 51, 689-694.	2.8	23
96	Kinetic Isotope Effects of the Enzymatic Transformation of γ-Hexachlorocyclohexane by the Lindane Dehydrochlorinase Variants LinA1 and LinA2. Environmental Science & Technology, 2019, 53, 2353-2363.	10.0	23
97	Comparative Genomics and Integrated Network Approach Unveiled Undirected Phylogeny Patterns, Co-mutational Hot Spots, Functional Cross Talk, and Regulatory Interactions in SARS-CoV-2. MSystems, 2021, 6, .	3.8	23
98	Sphingopyxis flava sp. nov., isolated from a hexachlorocyclohexane (HCH)-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3720-3726.	1.7	23
99	Tessaracoccus flavus sp. nov., isolated from the drainage system of a lindane-producing factory. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1862-1868.	1.7	23
100	Compound-Specific Isotope Analysis and Enantiomer Fractionation to Characterize the Transformation of Hexachlorocyclohexane Isomers in a Soil–Wheat Pot System. Environmental Science & Technology, 2020, 54, 8690-8698.	10.0	22
101	The Importance of Homologous Recombination in the Generation of Large Deletions in Hybrid Plasmids in Amycolatopsis mediterranei. Plasmid, 2000, 43, 1-11.	1.4	21
102	Microbacterium lindanitolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2010, 60, 2634-2638.	1.7	21
103	Response and resilience of soil microbial communities inhabiting in edible oil stress/contamination from industrial estates. BMC Microbiology, 2016, 16, 50.	3.3	21
104	Survey of (Meta)genomic Approaches for Understanding Microbial Community Dynamics. Indian Journal of Microbiology, 2017, 57, 23-38.	2.7	21
105	The Human Microbiome Project. Indian Journal of Microbiology, 2012, 52, 315-315.	2.7	20
106	Draft Genome Sequence of Sphingobium quisquiliarum Strain P25 T , a Novel Hexachlorocyclohexane (HCH)-Degrading Bacterium Isolated from an HCH Dumpsite. Genome Announcements, 2013, 1, .	0.8	20
107	Draft Genome Sequence of Cellulosimicrobium sp. Strain MM, Isolated from Arsenic-Rich Microbial Mats of a Himalayan Hot Spring. Genome Announcements, 2014, 2, .	0.8	20
108	Hexachlorocyclohexane: persistence, toxicity and decontamination. Reviews on Environmental Health, 2014, 29, 49-52.	2.4	20

#	Article	IF	CITATIONS
109	Thermus parvatiensis RLT sp. nov., Isolated from a Hot Water Spring, Located Atop the Himalayan Ranges at Manikaran, India. Indian Journal of Microbiology, 2015, 55, 357-365.	2.7	20
110	(Meta)genomic insights into the pathogenome of Cellulosimicrobium cellulans. Scientific Reports, 2016, 6, 25527.	3.3	20
111	Assessing Aerobic Biotransformation of Hexachlorocyclohexane Isomers by Compound-Specific Isotope Analysis. Environmental Science & Technology, 2019, 53, 7419-7431.	10.0	20
112	Luteimonas tolerans sp. nov., isolated from hexachlorocyclohexane-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 1851-1856.	1.7	20
113	Bioaccumulation, metabolism, and effects of DDT, fenitrothion, and chlorpyrifos onSaccharomyces cerevisiae. Archives of Environmental Contamination and Toxicology, 1987, 16, 753-757.	4.1	19
114	Evolution of mercuric reductase (merA) gene: A case of horizontal gene transfer. Microbiology, 2010, 79, 500-508.	1.2	19
115	Sphingomonas indica sp. nov., isolated from hexachlorocyclohexane (HCH)-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2997-3002.	1.7	19
116	Draft Genome Sequence of <i>Sphingobium</i> sp. Strain HDIPO4, an Avid Degrader of Hexachlorocyclohexane. Genome Announcements, 2013, 1, .	0.8	19
117	Pan-genome dynamics of Pseudomonas gene complements enriched across hexachlorocyclohexane dumpsite. BMC Genomics, 2015, 16, 313.	2.8	19
118	Competing S _N 2 and E2 reaction pathways for hexachlorocyclohexane degradation in the gas phase, solution and enzymes. Chemical Communications, 2011, 47, 976-978.	4.1	18
119	Sphingobium czechense sp. nov., isolated from a hexachlorocyclohexane dump site. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 723-728.	1.7	18
120	Codon usage bias in phylum Actinobacteria: relevance to environmental adaptation and host pathogenicity. Research in Microbiology, 2016, 167, 669-677.	2.1	17
121	Genome Organization of Sphingobium indicum B90A: An Archetypal Hexachlorocyclohexane (HCH) Degrading Genotype. Genome Biology and Evolution, 2017, 9, 2191-2197.	2.5	17
122	Comparative genomics of Sphingopyxis spp. unravelled functional attributes. Genomics, 2020, 112, 1956-1969.	2.9	17
123	Pontibacter aurantiacus sp. nov. isolated from hexachlorocyclohexane (HCH) contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1400-1407.	1.7	17
124	Draft Genome Sequence of a Hexachlorocyclohexane-Degrading Bacterium, Sphingobium baderi Strain LL03 ^T . Genome Announcements, 2013, 1, .	0.8	16
125	Complete Genome Analysis of Thermus parvatiensis and Comparative Genomics of Thermus spp. Provide Insights into Genetic Variability and Evolution of Natural Competence as Strategic Survival Attributes. Frontiers in Microbiology, 2017, 8, 1410.	3.5	16
126	Hymenobacter terrestris sp. nov. and Hymenobacter lapidiphilus sp. nov., isolated from regoliths in Antarctica. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 6364-6372.	1.7	16

#	Article	IF	CITATIONS
127	Cloning and partial characterization of the putative rifamycin biosynthetic gene cluster from the actinomycete Amycolatopsis mediterranei DSM 46095. Microbiological Research, 2001, 156, 239-246.	5.3	15
128	Localization of HCH catabolic genes (lin genes) in Sphingobium indicum B90A. Indian Journal of Microbiology, 2007, 47, 271-275.	2.7	15
129	Synthetic Biology in Action: Developing a Drug Against MDR-TB. Indian Journal of Microbiology, 2014, 54, 369-375.	2.7	15
130	Genomic insights into the phylogeny of Bacillus strains and elucidation of their secondary metabolic potential. Genomics, 2020, 112, 3191-3200.	2.9	15
131	Pontibacter mucosus sp. nov., isolated from hexachlorocyclohexane-contaminated pond sediment. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 2234-2240.	1.7	15
132	Corynebacterium pollutisoli sp. nov., isolated from hexachlorocyclohexane-contaminated soil. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3531-3537.	1.7	15
133	Paracoccus sordidisoli sp. nov., isolated from an agricultural field contaminated with hexachlorocyclohexane isomers. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 4365-4371.	1.7	15
134	Draft Genome Sequence of Deinococcus sp. Strain RL Isolated from Sediments of a Hot Water Spring. Genome Announcements, 2014, 2, .	0.8	14
135	Bacterial diversity and realâ€ŧime PCR based assessment of <i>linA</i> and <i>linB</i> gene distribution at hexachlorocyclohexane contaminated sites. Journal of Basic Microbiology, 2015, 55, 363-373.	3.3	14
136	National Agriculturally Important Microbial Culture Collection in the Global Context of Microbial Culture Collection Centres. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 405-418.	1.0	14
137	Kinetic and Sequence-Structure-Function Analysis of Known LinA Variants with Different Hexachlorocyclohexane Isomers. PLoS ONE, 2011, 6, e25128.	2.5	14
138	Factors Influencing Microbe/Insecticide Interactions. CRC Critical Reviews in Microbiology, 1982, 10, 261-295.	4.8	13
139	Development of cloning vectors and transformation methods for Amycolatopsis. Journal of Industrial Microbiology and Biotechnology, 2003, 30, 195-204.	3.0	13
140	Draft Genome Sequence of Sphingobium ummariense Strain RL-3, a Hexachlorocyclohexane-Degrading Bacterium. Genome Announcements, 2013, 1, .	0.8	13
141	Draft Genome Sequence of the Rifamycin Producer Amycolatopsis rifamycinica DSM 46095. Genome Announcements, 2014, 2, .	0.8	13
142	Functional screening of enzymes and bacteria for the dechlorination of hexachlorocyclohexane by a high-throughput colorimetric assay. Biodegradation, 2014, 25, 179-187.	3.0	13
143	Pseudomonas karstica sp. nov. and Pseudomonas spelaei sp. nov., isolated from calcite moonmilk deposits from caves. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 5131-5140.	1.7	13
144	Soil from a Hexachlorocyclohexane Contaminated Field Site Inoculates Wheat in a Pot Experiment to Facilitate the Microbial Transformation of β-Hexachlorocyclohexane Examined by Compound-Specific Isotope Analysis. Environmental Science & Technology, 2021, 55, 13812-13821.	10.0	13

#	Article	IF	CITATIONS
145	<i>Edaphobacillus lindanitolerans</i> gen. nov., sp. nov., isolated from hexachlorocyclohexane (HCH) contaminated soil. Journal of Basic Microbiology, 2013, 53, 758-765.	3.3	12
146	Microbial and genetic ecology of tropical Vertisols under intensive chemical farming. Environmental Monitoring and Assessment, 2015, 187, 4081.	2.7	12
147	Bedaquiline: Fallible Hope Against Drug Resistant Tuberculosis. Indian Journal of Microbiology, 2017, 57, 371-377.	2.7	12
148	Metagenomic Analysis of a Complex Community Present in Pond Sediment. Journal of Genomics, 2017, 5, 36-47.	0.9	12
149	Comparative metagenomic analyses of a high-altitude Himalayan geothermal spring revealed temperature-constrained habitat-specific microbial community and metabolic dynamics. Archives of Microbiology, 2019, 201, 377-388.	2.2	12
150	Microbiome: A New Lease to Microbiology. Indian Journal of Microbiology, 2020, 60, 1-1.	2.7	12
151	An In Silico Approach for Identification of the Pathogenic Species, Helicobacter pylori and Its Relatives. Indian Journal of Microbiology, 2016, 56, 277-286.	2.7	11
152	Compound-Specific Stable Isotope Analysis: Implications in Hexachlorocyclohexane in-vitro and Field Assessment. Indian Journal of Microbiology, 2017, 57, 11-22.	2.7	11
153	Algoriphagus roseus sp. nov., isolated from a hexachlorocyclohexane-contaminated dumpsite. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 3558-3565.	1.7	11
154	Pontibacter virosus sp. nov., isolated from a hexachlorocyclohexane-contaminated dumpsite. International Journal of Systematic and Evolutionary Microbiology, 2016, 66, 4395-4400.	1.7	11
155	Changes in the bacterial community and lin genes diversity during biostimulation of indigenous bacterial community of hexachlorocyclohexane (HCH) dumpsite soil. Microbiology, 2013, 82, 234-240.	1.2	10
156	Genome Sequence of Novosphingobium lindaniclasticum LE124 ^T , Isolated from a Hexachlorocyclohexane Dumpsite. Genome Announcements, 2013, 1, .	0.8	10
157	Cenome Sequencing Revealed the Biotechnological Potential of an Obligate Thermophile Geobacillus thermoleovorans Strain RL Isolated from Hot Water Spring. Indian Journal of Microbiology, 2019, 59, 351-355.	2.7	10
158	Gut microbiome of endangered Tor putitora (Ham.) as a reservoir of antibiotic resistance genes and pathogens associated with fish health. BMC Microbiology, 2020, 20, 249.	3.3	10
159	Human Gut Microbiota and Mental Health: Advancements and Challenges in Microbe-Based Therapeutic Interventions. Indian Journal of Microbiology, 2020, 60, 405-419.	2.7	10
160	The rising dominance of microbiology: what to expect in the next 15 years?. Microbial Biotechnology, 2022, 15, 110-128.	4.2	10
161	Harnessing taxonomically diverse and metabolically versatile genus <i>Paracoccus</i> for bioplastic synthesis and xenobiotic biodegradation. Journal of Applied Microbiology, 2022, 132, 4208-4224.	3.1	10
162	Highly conserved epitopes of DENV structural and non-structural proteins: Candidates for universal vaccine targets. Gene, 2019, 695, 18-25.	2.2	9

#	Article	IF	CITATIONS
163	Complete genome sequence of Paracoccus sp. strain AK26: Insights into multipartite genome architecture and methylotropy. Genomics, 2020, 112, 2572-2582.	2.9	9
164	Salinicoccus cyprini sp. nov., isolated from the gut of mirror carp, Cyprinus carpio var. specularis. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 4111-4118.	1.7	9
165	Draft Genome Sequence of <i>Agrobacterium</i> sp. Strain UHFBA-218, Isolated from Rhizosphere Soil of Crown Gall-Infected Cherry Rootstock Colt. Genome Announcements, 2013, 1, .	0.8	8
166	Enantioselective Dehydrochlorination of δ-Hexachlorocyclohexane and δ-Pentachlorocyclohexene by LinA1 and LinA2 from Sphingobium indicum B90A. Applied and Environmental Microbiology, 2013, 79, 6180-6183.	3.1	8
167	Draft genome sequence of Lampropedia cohaerens strain CT6T isolated from arsenic rich microbial mats of a Himalayan hot water spring. Standards in Genomic Sciences, 2016, 11, 64.	1.5	8
168	Highlight on Engineering <i>Mycobacterium smegmatis</i> for testosterone production. Microbial Biotechnology, 2017, 10, 73-75.	4.2	8
169	Draft Genome Sequence of Sphingobium lactosutens Strain DS20 ^T , Isolated from a Hexachlorocyclohexane Dumpsite. Genome Announcements, 2013, 1, .	0.8	7
170	Draft Genome Sequence of Hexachlorohexane (HCH)-Degrading Sphingobium lucknowense Strain F2 ^T , Isolated from an HCH Dumpsite. Genome Announcements, 2014, 2, .	0.8	7
171	Saccharothrix tharensis sp. nov., an actinobacterium isolated from the Thar Desert, India. Antonie Van Leeuwenhoek, 2018, 111, 2141-2147.	1.7	7
172	Protocol for in-vitro purification and refolding of hexachlorocyclohexane degrading enzyme haloalkane dehalogenase LinB from inclusion bodies. Enzyme and Microbial Technology, 2021, 146, 109760.	3.2	7
173	Understanding alternative fluxes/effluxes through comparative metabolic pathway analysis of phylum actinobacteria using a simplified approach. Gene, 2013, 531, 306-317.	2.2	6
174	Biofilms: United We Stand, Divided We Fall. Indian Journal of Microbiology, 2014, 54, 246-247.	2.7	6
175	Phylogenetic Relationships and Potential Functional Attributes of the Genus Parapedobacter: A Member of Family Sphingobacteriaceae. Frontiers in Microbiology, 2020, 11, 1725.	3.5	6
176	Prediction of Transcription Factors and Their Involvement in Regulating Rifamycin Production in Amycolatopsis mediterranei S699. Indian Journal of Microbiology, 2020, 60, 310-317.	2.7	6
177	Transformation of ε-HBCD with the Sphingobium Indicum enzymes LinA1, LinA2 and LinATM, a triple mutant of LinA2. Chemosphere, 2021, 267, 129217.	8.2	6
178	Genome-based reclassification of Amycolatopsis eurytherma as a later heterotypic synonym of Amycolatopsis thermoflava. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	6
179	Comparative proteomics unravelled the hexachlorocyclohexane (HCH) isomers specific responses in an archetypical HCH degrading bacterium Sphingobium indicum B90A. Environmental Science and Pollution Research, 2021, 28, 41380-41395.	5.3	6
180	Differential mass spectrometry-based proteome analyses unveil major regulatory hubs in rifamycin B production in Amycolatopsis mediterranei. Journal of Proteomics, 2021, 239, 104168.	2.4	6

#	Article	IF	CITATIONS
181	Pedobacter fastidiosus sp. nov., isolated from glacial habitats of maritime Antarctica. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	1.7	6
182	Microbial Ecology of Sulfur Biogeochemical Cycling at a Mesothermal Hot Spring Atop Northern Himalayas, India. Frontiers in Microbiology, 2022, 13, 848010.	3.5	6
183	Human Body: A virtual zoo of bacteria. Indian Journal of Microbiology, 2011, 51, 1-1.	2.7	5
184	The New Science of Metagenomics: Fourth Domain of Life. Indian Journal of Microbiology, 2011, 51, 245-246.	2.7	5
185	Cupriavidus metallidurans: A Modern Alchemist. Indian Journal of Microbiology, 2013, 53, 114-115.	2.7	5
186	Protocol for Isolation and Identification of Agrobacterium Isolates from Stone Fruit Plants and Sensitivity of Native A. tumefaciens Isolates against Agrocin Produced by A. radiobacter Strain K84. The National Academy of Sciences, India, 2013, 36, 79-84.	1.3	5
187	Bacterial Populations in Subgingival Plaque Under Healthy and Diseased Conditions: Genomic Insights into Oral Adaptation Strategies by Lactobacillus sp. Strain DISK7. Indian Journal of Microbiology, 2020, 60, 78-86.	2.7	5
188	Genome analyses of 174 strains of Mycobacterium tuberculosis provide insight into the evolution of drug resistance and reveal potential drug targets. Microbial Genomics, 2021, 7, .	2.0	5
189	Genome based reclassification of Deinococcus swuensis as a heterotypic synonym of Deinococcus radiopugnans. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	1.7	5
190	Wrong Sequences in Databases: Whose Fault??. Indian Journal of Microbiology, 2011, 51, 413-413.	2.7	4
191	Draft Genome Sequence of Rifamycin Derivatives Producing Amycolatopsis mediterranei Strain DSM 46096/S955. Genome Announcements, 2014, 2, .	0.8	4
192	Genome Mining and Predictive Functional Profiling of Acidophilic Rhizobacterium Pseudomonas fluorescens Pt14. Indian Journal of Microbiology, 2017, 57, 155-161.	2.7	4
193	Bioremediation of Hexachlorocyclohexane (HCH) Pollution at HCH Dump Sites. Environmental Science and Engineering, 2013, , 387-404.	0.2	4
194	Kinetic and Sequence-Structure-Function Analysis of LinB Enzyme Variants with β- and δ-Hexachlorocyclohexane. PLoS ONE, 2014, 9, e103632.	2.5	4
195	The AlphabetÂof the Elementary Microbiology: Revisited. Indian Journal of Microbiology, 2021, 61, 397-400.	2.7	4
196	Evaluation of TiO2 Nanoparticles Physicochemical Parameters Associated with their Antimicrobial Applications. Indian Journal of Microbiology, 2022, 62, 338-350.	2.7	4
197	Draft Genome Sequence of Amycolatopsis mediterranei DSM 40773, a Tangible Antibiotic Producer. Genome Announcements, 2014, 2, .	0.8	3
198	Exploring bacterial diversity from contaminated soil samples from river Yamuna. Microbiology, 2014, 83, 585-588.	1.2	3

#	Article	IF	CITATIONS
199	Draft Genome Sequence of Deinococcus sp. Strain S9, Isolated from Microbial Mat Deposits of Hot Springs Located atop the Himalayan Ranges at Manikaran, India. Microbiology Resource Announcements, 2019, 8, .	0.6	3
200	Taxonomically CharacterizedÂand Validated Bacterial Species Based on 16S rRNA Gene Sequences from India During the Last Decade. Indian Journal of Microbiology, 2020, 60, 54-61.	2.7	3
201	Phylogenomic Framework for Taxonomic Delineation of Paracoccus spp. and Exploration of Core-Pan Genome. Indian Journal of Microbiology, 2021, 61, 180-194.	2.7	3
202	Microbial Journey: Mount Everest to Mars. Indian Journal of Microbiology, 2022, 62, 323-337.	2.7	3
203	Swine flu virus H1N1: a threat to human health. Indian Journal of Microbiology, 2009, 49, 201-201.	2.7	2
204	Cold drink cans contaminated with rat urine can kill. Indian Journal of Microbiology, 2009, 49, 294-294.	2.7	2
205	Discovering Metabolic Products of Cryptic Biosynthetic Pathways. Indian Journal of Microbiology, 2011, 51, 414-414.	2.7	2
206	Indian Journal of Microbiology: The Journey from 2007 to 2012. Indian Journal of Microbiology, 2013, 53, 1-2.	2.7	2
207	Identification of genus Campylobacter up to species level using internal features of 16S rRNA gene sequences. Molecular Genetics, Microbiology and Virology, 2016, 31, 187-196.	0.3	2
208	Inhibition of Filamentous Thermosensitive Mutant-Z Protein in Bacillus subtilis by Cyanobacterial Bioactive Compounds. Molecules, 2022, 27, 1907.	3.8	2
209	Filamentous Thermosensitive Mutant Z: An Appealing Target for Emerging Pathogens and a Trek on Its Natural Inhibitors. Biology, 2022, 11, 624.	2.8	2
210	A new life in a bacterium through synthetic genome: a successful venture by craig venter. Indian Journal of Microbiology, 2010, 50, 125-131.	2.7	1
211	Gut-Brain Communication is Influenced by Gut Microbes. Indian Journal of Microbiology, 2011, 51, 239-239.	2.7	1
212	Individual Genome Assembly from Metagenome: Resolving the Unknown Genotypic Microdiversity at the Sharpened Focus. Indian Journal of Microbiology, 2012, 52, 1-2.	2.7	1
213	State of Microbiology in India. Indian Journal of Microbiology, 2012, 52, 113-113.	2.7	1
214	Draft Genome Sequence of <i>Pseudomonas</i> sp. Strain JMM, a Sediment-Hosted Environmental Isolate. Genome Announcements, 2014, 2, .	0.8	1
215	Human Microbiome: Implications on Health and Disease. , 2017, , 153-168.		1
216	Genetic manipulations of microorganisms for the degradation of hexachlorocyclohexane. FEMS Microbiology Reviews, 1996, 19, 69-84.	8.6	1

#	Article	IF	CITATIONS
217	51st Association of Microbiologists of India (AMI) Conference. Indian Journal of Microbiology, 2010, 50, 361-361.	2.7	0
218	First Impact Factor of Indian Journal of Microbiology. Indian Journal of Microbiology, 2011, 51, 415-415.	2.7	0
219	The Rise of Open Access. Indian Journal of Microbiology, 2011, 51, 416-417.	2.7	0
220	Titan Cells: Barriers to Phagocytosis. Indian Journal of Microbiology, 2012, 52, 516-516.	2.7	0
221	Skin Commensals Regulate Skin Immunity. Indian Journal of Microbiology, 2012, 52, 517-518.	2.7	0
222	India's Latent Foe: Multi Drug Resistant Tuberculosis. Indian Journal of Microbiology, 2012, 52, 521-521.	2.7	0
223	India Losing Battle Against Multi Drug Resistant Tuberculosis. Indian Journal of Microbiology, 2012, 52, 713-713.	2.7	0
224	Recruiting Environmental Genomes from Metagenomes. Indian Journal of Microbiology, 2012, 52, 109-110.	2.7	0
225	Message from Editor in Chief (Indian Journal of Microbiology). Indian Journal of Microbiology, 2013, 53, 116-116.	2.7	0
226	Know Your AMI President (2013). Indian Journal of Microbiology, 2013, 53, 124-125.	2.7	0
227	President of AMI-2013. Indian Journal of Microbiology, 2014, 54, 242-243.	2.7	0
228	Metagenomics: Assigning Functional Status to Community Gene Content. , 2015, , 2.4.4-1-2.4.4-7.		0
229	Microbial World: Recent Developments in Health, Agriculture and Environmental Sciences. Indian Journal of Microbiology, 2021, 61, 111-115.	2.7	0
230	Improvisation and Evaluation of Laterosporulin Coated Titanium Surfaces for dental Applications: An In Vitro Investigation. Indian Journal of Microbiology, 2021, 61, 203-211.	2.7	0
231	The assessment of microbial ecology: a special emphasis on the Indian scenario. Environmental Microbiology Reports, 2022, , .	2.4	0
232	Microbiology in India: Status, Challenges, and Scope. Environmental Microbiology, 2022, , .	3.8	0