Roded Sharan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1611421/publications.pdf Version: 2024-02-01

RODED SHADAN

#	Article	IF	CITATIONS
1	Networkâ€based prediction of protein function. Molecular Systems Biology, 2007, 3, 88.	3.2	918
2	Associating Genes and Protein Complexes with Disease via Network Propagation. PLoS Computational Biology, 2010, 6, e1000641.	1.5	758
3	Network propagation: a universal amplifier of genetic associations. Nature Reviews Genetics, 2017, 18, 551-562.	7.7	514
4	Modeling cellular machinery through biological network comparison. Nature Biotechnology, 2006, 24, 427-433.	9.4	492
5	Using deep learning to model the hierarchical structure and function of a cell. Nature Methods, 2018, 15, 290-298.	9.0	292
6	Simultaneous Identification of Multiple Driver Pathways in Cancer. PLoS Computational Biology, 2013, 9, e1003054.	1.5	231
7	Identification of Protein Complexes by Comparative Analysis of Yeast and Bacterial Protein Interaction Data. Journal of Computational Biology, 2005, 12, 835-846.	0.8	161
8	Enhancing the Prioritization of Disease-Causing Genes through Tissue Specific Protein Interaction Networks. PLoS Computational Biology, 2012, 8, e1002690.	1.5	145
9	To Embed or Not: Network Embedding as a Paradigm in Computational Biology. Frontiers in Genetics, 2019, 10, 381.	1.1	123
10	Gene Essentiality Analyzed by <i>In Vivo</i> Transposon Mutagenesis and Machine Learning in a Stable Haploid Isolate of <i>Candida albicans</i> . MBio, 2018, 9, .	1.8	110
11	Few-shot learning creates predictive models of drug response that translate from high-throughput screens to individual patients. Nature Cancer, 2021, 2, 233-244.	5.7	92
12	ANAT: A Tool for Constructing and Analyzing Functional Protein Networks. Science Signaling, 2011, 4, pl1.	1.6	78
13	Human protein interaction networks across tissues and diseases. Frontiers in Genetics, 2015, 6, 257.	1.1	76
14	Elucidation of Signaling Pathways from Large-Scale Phosphoproteomic Data Using Protein Interaction Networks. Cell Systems, 2016, 3, 585-593.e3.	2.9	72
15	Translation of Genotype to Phenotype by a Hierarchy of Cell Subsystems. Cell Systems, 2016, 2, 77-88.	2.9	72
16	Genome architecture and stability in the Saccharomyces cerevisiae knockout collection. Nature, 2019, 573, 416-420.	13.7	72
17	Interactome Mapping Provides a Network of Neurodegenerative Disease Proteins and Uncovers Widespread Protein Aggregation in Affected Brains. Cell Reports, 2020, 32, 108050.	2.9	64
18	Network-Based Integration of Disparate Omic Data To Identify "Silent Players" in Cancer. PLoS Computational Biology, 2015, 11, e1004595.	1.5	60

RODED SHARAN

#	Article	IF	CITATIONS
19	Effect of SARS-CoV-2 proteins on vascular permeability. ELife, 2021, 10, .	2.8	53
20	A network-based analysis of colon cancer splicing changes reveals a tumorigenesis-favoring regulatory pathway emanating from ELK1. Genome Research, 2016, 26, 541-553.	2.4	45
21	An integer programming framework for inferring disease complexes from network data. Bioinformatics, 2016, 32, i271-i277.	1.8	44
22	Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules. Cell Systems, 2019, 8, 456-466.e5.	2.9	43
23	PRINCIPLE: a tool for associating genes with diseases via network propagation. Bioinformatics, 2011, 27, 3325-3326.	1.8	42
24	Regulation of Sec16 levels and dynamics links proliferation and secretion. Journal of Cell Science, 2015, 128, 670-82.	1.2	39
25	A systematic approach to orient the human protein–protein interaction network. Nature Communications, 2019, 10, 3015.	5.8	39
26	BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions. PLoS Computational Biology, 2017, 13, e1005695.	1.5	38
27	Reconstructing Boolean Models of Signaling. Journal of Computational Biology, 2013, 20, 249-257.	0.8	34
28	A minimum-labeling approach for reconstructing protein networks across multiple conditions. Algorithms for Molecular Biology, 2014, 9, 1.	0.3	29
29	Proteomic Analysis of Dynein-Interacting Proteins in Amyotrophic Lateral Sclerosis Synaptosomes Reveals Alterations in the RNA-Binding Protein Staufen1. Molecular and Cellular Proteomics, 2016, 15, 506-522.	2.5	27
30	Complexity and algorithms for copy-number evolution problems. Algorithms for Molecular Biology, 2017, 12, 13.	0.3	27
31	Identification of Essential Genes and Fluconazole Susceptibility Genes in <i>Candida glabrata</i> by Profiling <i>Hermes</i> Transposon Insertions. G3: Genes, Genomes, Genetics, 2020, 10, 3859-3870.	0.8	27
32	Gene architecture directs splicing outcome in separate nuclear spatial regions. Molecular Cell, 2022, 82, 1021-1034.e8.	4.5	26
33	Islands of Tractability for Parsimony Haplotyping. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2006, 3, 303-311.	1.9	24
34	The EXPANDER Integrated Platform for Transcriptome Analysis. Journal of Molecular Biology, 2019, 431, 2398-2406.	2.0	24
35	GLADIATOR: a global approach for elucidating disease modules. Genome Medicine, 2017, 9, 48.	3.6	23
36	Quantitative mass spectrometry analysis reveals a panel of nine proteins as diagnostic markers for colon adenocarcinomas. Oncotarget, 2018, 9, 13530-13544.	0.8	23

RODED SHARAN

#	Article	IF	CITATIONS
37	Hidden Markov models lead to higher resolution maps of mutation signature activity in cancer. Genome Medicine, 2019, 11, 49.	3.6	22
38	The first enhancer in an enhancer chain safeguards subsequent enhancer-promoter contacts from a distance. Genome Biology, 2019, 20, 197.	3.8	21
39	Network-based approaches elucidate differences within APOBEC and clock-like signatures in breast cancer. Genome Medicine, 2020, 12, 52.	3.6	20
40	Systematic identification and correction of annotation errors in the genetic interaction map of <i>Saccharomyces cerevisiae</i> . Nucleic Acids Research, 2016, 44, e50-e50.	6.5	19
41	Mutational Signatures: From Methods to Mechanisms. Annual Review of Biomedical Data Science, 2021, 4, 189-206.	2.8	19
42	Network-Based Interpretation of Genomic Variation Data. Journal of Molecular Biology, 2013, 425, 3964-3969.	2.0	18
43	A Method for Predicting Protein-Protein Interaction Types. PLoS ONE, 2014, 9, e90904.	1.1	18
44	Comparative Analysis of Normalization Methods for Network Propagation. Frontiers in Genetics, 2019, 10, 4.	1.1	17
45	Modeling clinical and molecular covariates of mutational process activity in cancer. Bioinformatics, 2019, 35, i492-i500.	1.8	15
46	Modelling the Yeast Interactome. Scientific Reports, 2014, 4, 4273.	1.6	14
47	Quantifying deleterious effects of regulatory variants. Nucleic Acids Research, 2016, 45, gkw1263.	6.5	14
48	A motif-based framework for recognizing sequence families. Bioinformatics, 2005, 21, i387-i393.	1.8	13
49	Comparing the utility of in vivo transposon mutagenesis approaches in yeast species to infer gene essentiality. Current Genetics, 2020, 66, 1117-1134.	0.8	13
50	ANAT 2.0: reconstructing functional protein subnetworks. BMC Bioinformatics, 2017, 18, 495.	1.2	12
51	Network-Free Inference of Knockout Effects in Yeast. PLoS Computational Biology, 2010, 6, e1000635.	1.5	11
52	Experimental design schemes for learning Boolean network models. Bioinformatics, 2014, 30, i445-i452.	1.8	10
53	A network diffusion approach to inferring sample-specific function reveals functional changes associated with breast cancer. PLoS Computational Biology, 2017, 13, e1005793.	1.5	10
54	Multiplexing Schemes for Generic SNP Genotyping Assays. Journal of Computational Biology, 2005, 12, 514-533.	0.8	8

RODED SHARAN

#	Article	IF	CITATIONS
55	INFERENCE OF PERSONALIZED DRUG TARGETS VIA NETWORK PROPAGATION. , 2016, , .		8
56	Long reads capture simultaneous enhancer–promoter methylation status for cell-type deconvolution. Bioinformatics, 2021, 37, i327-i333.	1.8	8
57	A mixture model for signature discovery from sparse mutation data. Genome Medicine, 2021, 13, 173.	3.6	8
58	WebPropagate: A Web Server for Network Propagation. Journal of Molecular Biology, 2018, 430, 2231-2236.	2.0	7
59	A Sticky Multinomial Mixture Model of Strand-Coordinated Mutational Processes in Cancer. IScience, 2020, 23, 100900.	1.9	5
60	Prediction of cancer dependencies from expression data using deep learning. Molecular Omics, 2021, 17, 66-71.	1.4	5
61	Islands of tractability for parsimony haplotyping. , 2005, , 65-72.		4
62	Utilizing yeast chemogenomic profiles for the prediction of pharmacogenomic associations in humans. Scientific Reports, 2016, 6, 23703.	1.6	4
63	A Robustness Analysis of Dynamic Boolean Models of Cellular Circuits. Journal of Computational Biology, 2020, 27, 133-143.	0.8	4
64	Functional Alignment of Metabolic Networks. Journal of Computational Biology, 2016, 23, 390-399.	0.8	3
65	G2G: A web-server for the prediction of human synthetic lethal interactions. Computational and Structural Biotechnology Journal, 2020, 18, 1028-1031.	1.9	3
66	Toward a role model. EMBO Reports, 2013, 14, 948-948.	2.0	2
67	An optimization framework for network annotation. Bioinformatics, 2018, 34, i502-i508.	1.8	1
68	A data-driven approach for constructing mutation categories for mutational signature analysis. PLoS Computational Biology, 2021, 17, e1009542.	1.5	1
69	DNA Repair Footprint Uncovers Contribution of DNA Repair Mechanism to Mutational Signatures. , 2019, , .		1
70	<scp>ScalpelSig</scp> Designs Targeted Genomic Panels from Data to Detect Activity of Mutational Signatures. Journal of Computational Biology, 2022, 29, 56-73.	0.8	1
71	Deep Unfolding for Non-Negative Matrix Factorization with Application to Mutational Signature Analysis. Journal of Computational Biology, 2022, 29, 45-55.	0.8	1

72 Invited: From protein networks to disease mechanisms. , 2012, , .

0

#	Article	IF	CITATIONS
73	Session Introduction: Mutational Signatures: Etiology, Properties, and Role in Cancer. , 2019, , .		0