List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1611228/publications.pdf Version: 2024-02-01

DINCLU

#	Article	IF	CITATIONS
1	General Descriptors for CO ₂ -Assisted Selective C–H/C–C Bond Scission in Ethane. Journal of the American Chemical Society, 2022, 144, 4186-4195.	6.6	26
2	Enhanced descriptor identification and mechanism understanding for catalytic activity using a data-driven framework: revealing the importance of interactions between elementary steps. Catalysis Science and Technology, 2022, 12, 3836-3845.	2.1	4
3	Investigating the Elusive Nature of Atomic O from CO ₂ Dissociation on Pd(111): The Role of Surface Hydrogen. Journal of Physical Chemistry C, 2022, 126, 7870-7879.	1.5	1
4	Reaction-driven selective CO ₂ hydrogenation to formic acid on Pd(111). Physical Chemistry Chemical Physics, 2022, 24, 16997-17003.	1.3	5
5	Catalytic Tandem CO ₂ –Ethane Reactions and Hydroformylation for C3 Oxygenate Production. ACS Catalysis, 2022, 12, 8279-8290.	5.5	8
6	Tuning the interfacial electronic structure <i>via</i> Au clusters for boosting photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2021, 9, 1759-1769.	5.2	33
7	Surface characterization and methane activation on SnO _{<i>x</i>} /Cu ₂ O/Cu(111) inverse oxide/metal catalysts. Physical Chemistry Chemical Physics, 2021, 23, 17186-17196.	1.3	10
8	Understanding Methanol Synthesis on Inverse ZnO/CuO _{<i>x</i>/Sub>/Cu Catalysts: Stability of CH₃O Species and Dynamic Nature of the Surface. Journal of Physical Chemistry C, 2021, 125, 6673-6683.}	1.5	21
9	Local and Bulk Probe of Vanadium-Substituted α-Manganese Oxide (α-K <i>_x</i> V <i>_y</i> Mn _{8–<i>y</i>} O ₁₆) Lithium Electrochemistry. Inorganic Chemistry, 2021, 60, 10398-10414.	1.9	3
10	Cesium-Induced Active Sites for C–C Coupling and Ethanol Synthesis from CO ₂ Hydrogenation on Cu/ZnO(0001ì) Surfaces. Journal of the American Chemical Society, 2021, 143, 13103-13112.	6.6	47
11	Rationalization of promoted reverse water gas shift reaction by Pt3Ni alloy: Essential contribution from ensemble effect. Journal of Chemical Physics, 2021, 154, 014702.	1.2	6
12	<i>In Situ</i> Studies of Methanol Decomposition Over Cu(111) and Cu ₂ O/Cu(111): Effects of Reactant Pressure, Surface Morphology, and Hot Spots of Active Sites. Journal of Physical Chemistry C, 2021, 125, 558-571.	1.5	18
13	Selective Methane Oxidation to Methanol on ZnO/Cu ₂ O/Cu(111) Catalysts: Multiple Site-Dependent Behaviors. Journal of the American Chemical Society, 2021, 143, 19018-19032.	6.6	41
14	Discharging Behavior of Hollandite α-MnO ₂ in a Hydrated Zinc-Ion Battery. ACS Applied Materials & Interfaces, 2021, 13, 59937-59949.	4.0	28
15	The formations of C2 species and CH4 over the Co2C catalyst in Fischer-Tropsch synthesis: The effect of surface termination on product selectivity. Computational Materials Science, 2020, 172, 109345.	1.4	2
16	Promoting photocatalytic hydrogen production by a core–shell CdS@MoO _x photocatalyst connected by an S–Mo "bridge― Catalysis Science and Technology, 2020, 10, 1368-1375.	2.1	16
17	(De)lithiation of spinel ferrites Fe ₃ O ₄ , MgFe ₂ O ₄ , and ZnFe ₂ O ₄ : a combined spectroscopic, diffraction and theory study. Physical Chemistry Chemical Physics, 2020, 22, 26200-26215.	1.3	13
18	Nucleation and Initial Stages of Growth during the Atomic Layer Deposition of Titanium Oxide on Mesoporous Silica. Nano Letters, 2020, 20, 6884-6890.	4.5	23

#	Article	IF	CITATIONS
19	The Effects of Vanadium Substitution on One-dimensional Tunnel Structures of Cryptomelane: Combined TEM and DFT Study. Microscopy and Microanalysis, 2020, 26, 3162-3164.	0.2	0
20	Essential Role of Spinel MgFe ₂ O ₄ Surfaces during Discharge. Journal of the Electrochemical Society, 2020, 167, 090506.	1.3	11
21	Methanol Synthesis from CO ₂ Hydrogenation over a Potassium-Promoted Cu <i>_x</i> O/Cu(111) (<i>x</i> â‰⊉) Model Surface: Rationalizing the Potential of Potassium in Catalysis. ACS Catalysis, 2020, 10, 5723-5733.	5.5	36
22	Solutionâ€Based, Anionâ€Doping of Li ₄ Ti ₅ O ₁₂ Nanoflowers for Lithiumâ€Ion Battery Applications. Chemistry - A European Journal, 2020, 26, 9389-9402.	1.7	19
23	The effects of vanadium substitution on one-dimensional tunnel structures of cryptomelane: Combined TEM and DFT study. Nano Energy, 2020, 71, 104571.	8.2	11
24	Water-promoted interfacial pathways in methane oxidation to methanol on a CeO ₂ -Cu ₂ O catalyst. Science, 2020, 368, 513-517.	6.0	182
25	Hydroxylation of ZnO/Cu(1 1 1) inverse catalysts under ambient water vapor and the water–gas shift reaction. Journal Physics D: Applied Physics, 2019, 52, 454001.	1.3	8
26	Mo6S8-based single-metal-atom catalysts for direct methane to methanol conversion. Journal of Chemical Physics, 2019, 151, 024304.	1.2	13
27	Exploring Metal–Support Interactions To Immobilize Subnanometer Co Clusters on γ–Mo ₂ N: A Highly Selective and Stable Catalyst for CO ₂ Activation. ACS Catalysis, 2019, 9, 9087-9097.	5.5	50
28	Mapping XANES spectra on structural descriptors of copper oxide clusters using supervised machine learning. Journal of Chemical Physics, 2019, 151, 164201.	1.2	60
29	Rationalization of Diversity in Spinel MgFe ₂ O ₄ Surfaces. Advanced Materials Interfaces, 2019, 6, 1901218.	1.9	14
30	Transition Metal Substitution of Hollandite α-MnO ₂ : Enhanced Potential and Structural Stability on Lithiation from First-Principles Calculation. Journal of Physical Chemistry C, 2019, 123, 25042-25051.	1.5	14
31	Construction of a dual-channel mode for wide spectrum-driven photocatalytic H ₂ production. Journal of Materials Chemistry A, 2019, 7, 1076-1082.	5.2	25
32	Integration of piezoelectric effect into a Au/ZnO photocatalyst for efficient charge separation. Catalysis Science and Technology, 2019, 9, 3771-3778.	2.1	32
33	Exploring the ternary interactions in Cu–ZnO–ZrO2 catalysts for efficient CO2 hydrogenation to methanol. Nature Communications, 2019, 10, 1166.	5.8	258
34	Intermediate product regulation over tandem catalysts for one-pass conversion of syngas to ethanol. Catalysis Science and Technology, 2019, 9, 1581-1594.	2.1	19
35	Spinel Magnesium Ferrite: Rationalization of Diversity in Spinel MgFe ₂ O ₄ Surfaces (Adv. Mater. Interfaces 22/2019). Advanced Materials Interfaces, 2019, 6, 1970141.	1.9	1
36	Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nature Communications, 2019, 10, 5231.	5.8	371

#	Article	IF	CITATIONS
37	Interface-confined triangular FeOx nanoclusters on Pt(111). Journal of Chemical Physics, 2019, 151, 214704.	1.2	3
38	Potassium-Promoted Reduction of Cu ₂ O/Cu(111) by CO. Journal of Physical Chemistry C, 2019, 123, 8057-8066.	1.5	20
39	Designing Nanoplatelet Alloy/Nafion Catalytic Interface for Optimization of PEMFCs: Performance, Durability, and CO Resistance. ACS Catalysis, 2019, 9, 1446-1456.	5.5	29
40	Ag-modified ultrathin Bi ₁₂ O ₁₇ Cl ₂ nanosheets: photo-assisted Ag exfoliation synthesis and enhanced photocatalytic performance. Journal of Materials Chemistry A, 2018, 6, 9200-9208.	5.2	53
41	Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts. Nature Communications, 2018, 9, 1398.	5.8	113
42	Structural and Electrochemical Characteristics of Ca-Doped "Flower-like― Li ₄ Ti ₅ O ₁₂ Motifs as High-Rate Anode Materials for Lithium-Ion Batteries. Chemistry of Materials, 2018, 30, 671-684.	3.2	76
43	Oxygen Reduction Reaction on Ag(111) in Alkaline Solution: A Combined Density Functional Theory and Kinetic Monte Carlo Study. ChemCatChem, 2018, 10, 540-549.	1.8	18
44	Furfural-Mediated Synthesis of Mesoporous Ti0.5Sn0.5O2 Solid-Solution Microspheres for Effective Photocatalytic Removal of As(III). Journal of Physical Chemistry C, 2018, 122, 28045-28054.	1.5	6
45	Optimized Pt-Based Catalysts for Oxygen Reduction Reaction in Alkaline Solution: A First Principle Study. Journal of the Electrochemical Society, 2018, 165, J3090-J3094.	1.3	13
46	Investigation of Conductivity and Ionic Transport of VO ₂ (M) and VO ₂ (R) via Electrochemical Study. Chemistry of Materials, 2018, 30, 7535-7544.	3.2	5
47	Essential Role of Spinel ZnFe ₂ O ₄ Surfaces during Lithiation. ACS Applied Materials & Interfaces, 2018, 10, 35623-35630.	4.0	24
48	Dry Reforming of Methane on Single-Site Ni/MgO Catalysts: Importance of Site Confinement. ACS Catalysis, 2018, 8, 9821-9835.	5.5	156
49	Well dispersed MoC quantum dots in ultrathin carbon films as efficient co-catalysts for photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2018, 6, 18979-18986.	5.2	72
50	Active sites for tandem reactions of CO ₂ reduction and ethane dehydrogenation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 8278-8283.	3.3	105
51	Au-Doped Stable L1 ₀ Structured Platinum Cobalt Ordered Intermetallic Nanoparticle Catalysts for Enhanced Electrocatalysis. ACS Applied Energy Materials, 2018, 1, 3771-3777.	2.5	16
52	Imaging the ordering of a weakly adsorbed two-dimensional condensate: ambient-pressure microscopy and spectroscopy of CO ₂ molecules on rutile TiO ₂ (110). Physical Chemistry Chemical Physics, 2018, 20, 13122-13126.	1.3	9
53	Hybrid 0D–2D black phosphorus quantum dots–graphitic carbon nitride nanosheets for efficient hydrogen evolution. Nano Energy, 2018, 50, 552-561.	8.2	148
54	Mechanistic study of dry reforming of ethane by CO ₂ on a bimetallic PtNi(111) model surface. Catalysis Science and Technology, 2018, 8, 3748-3758.	2.1	24

#	Article	IF	CITATIONS
55	Hydrogen Production from Pure Water via Piezoelectricâ€assisted Visibleâ€light Photocatalysis of CdS Nanorod Arrays. ChemCatChem, 2018, 10, 3397-3401.	1.8	86
56	Enhanced oxidation resistance of active nanostructures via dynamic size effect. Nature Communications, 2017, 8, 14459.	5.8	51
57	Investigation of Structural Evolution of Li _{1.1} V ₃ O ₈ by <i>In Situ</i> X-ray Diffraction and Density Functional Theory Calculations. Chemistry of Materials, 2017, 29, 2364-2373.	3.2	40
58	Interfacial and Alloying Effects on Activation of Ethanol from First-Principles. Journal of Physical Chemistry C, 2017, 121, 5603-5611.	1.5	24
59	Surface Proton Transfer Promotes Four-Electron Oxygen Reduction on Gold Nanocrystal Surfaces in Alkaline Solution. Journal of the American Chemical Society, 2017, 139, 7310-7317.	6.6	51
60	Probing the Li Insertion Mechanism of ZnFe ₂ O ₄ in Li-Ion Batteries: A Combined X-Ray Diffraction, Extended X-Ray Absorption Fine Structure, and Density Functional Theory Study. Chemistry of Materials, 2017, 29, 4282-4292.	3.2	62
61	Near-infrared-activated NaYF ₄ :Yb ³⁺ , Er ³⁺ /Au/CdS for H ₂ production via photoreforming of bio-ethanol: plasmonic Au as light nanoantenna, energy relay, electron sink and co-catalyst. Journal of Materials Chemistry A, 2017, 5, 10311-10320.	5.2	65
62	Highly active Au/Î-MoC and Au/β-Mo ₂ C catalysts for the low-temperature water gas shift reaction: effects of the carbide metal/carbon ratio on the catalyst performance. Catalysis Science and Technology, 2017, 7, 5332-5342.	2.1	39
63	Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction. Science, 2017, 357, 389-393.	6.0	534
64	Active sites for CO ₂ hydrogenation to methanol on Cu/ZnO catalysts. Science, 2017, 355, 1296-1299.	6.0	1,180
65	Enhancing CO ₂ Electroreduction with the Metal–Oxide Interface. Journal of the American Chemical Society, 2017, 139, 5652-5655.	6.6	468
66	New insight into binary TiO ₂ @C nanocomposites: the crucial effect of an interfacial microstructure. Physical Chemistry Chemical Physics, 2017, 19, 9519-9527.	1.3	18
67	Acetylene adsorption on δ-MoC(001), TiC(001) and ZrC(001) surfaces: a comprehensive periodic DFT study. Physical Chemistry Chemical Physics, 2017, 19, 1571-1579.	1.3	13
68	Controlled Growth of Ceria Nanoarrays on Anatase Titania Powder: A Bottom-up Physical Picture. Nano Letters, 2017, 17, 348-354.	4.5	29
69	Grain boundary engineering in organic–inorganic hybrid semiconductor ZnS(en) _{0.5} for visible-light photocatalytic hydrogen production. Journal of Materials Chemistry A, 2017, 5, 1387-1393.	5.2	55
70	Structure and Electronic Properties of Interface-Confined Oxide Nanostructures. ACS Nano, 2017, 11, 11449-11458.	7.3	23
71	Acetylene and Ethylene Adsorption on a β-Mo ₂ C(100) Surface: A Periodic DFT Study on the Role of C- and Mo-Terminations for Bonding and Hydrogenation Reactions. Journal of Physical Chemistry C, 2017, 121, 19786-19795.	1.5	22
72	Response to Comment on "Active sites for CO ₂ hydrogenation to methanol on Cu/ZnO catalysts― Science, 2017, 357, .	6.0	37

#	Article	IF	CITATIONS
73	Electronic Interactions of Size-Selected Oxide Clusters on Metallic and Thin Film Oxide Supports. Journal of Physical Chemistry C, 2017, 121, 22234-22247.	1.5	12
74	A first principles study of spinel ZnFe ₂ O ₄ for electrode materials in lithium-ion batteries. Physical Chemistry Chemical Physics, 2017, 19, 26322-26329.	1.3	45
75	Tuning Selectivity of CO ₂ Hydrogenation Reactions at the Metal/Oxide Interface. Journal of the American Chemical Society, 2017, 139, 9739-9754.	6.6	823
76	Discharge, Relaxation, and Charge Model for the Lithium Trivanadate Electrode: Reactions, Phase Change, and Transport. Journal of the Electrochemical Society, 2016, 163, A2890-A2898.	1.3	17
77	An in situ gold-decorated 3D branched ZnO nanocomposite and its enhanced absorption and photo-oxidation performance for removing arsenic from water. RSC Advances, 2016, 6, 112877-112884.	1.7	7
78	Enhancing performance of PEM fuel cells: Using the Au nanoplatelet/Nafion interface to enable CO oxidation under ambient conditions. Journal of Catalysis, 2016, 339, 31-37.	3.1	14
79	The complex behavior of the Pd ₇ cluster supported on TiO ₂ (110) during CO oxidation: adsorbate-driven promoting effect. Physical Chemistry Chemical Physics, 2016, 18, 30899-30902.	1.3	16
80	Low-Temperature Conversion of Methane to Methanol on CeO _{<i>x</i>} /Cu ₂ O Catalysts: Water Controlled Activation of the C–H Bond. Journal of the American Chemical Society, 2016, 138, 13810-13813.	6.6	125
81	Optimizing Binding Energies of Key Intermediates for CO ₂ Hydrogenation to Methanol over Oxide-Supported Copper. Journal of the American Chemical Society, 2016, 138, 12440-12450.	6.6	565
82	Dual-defective strategy directing in situ assembly for effective interfacial contacts in MoS ₂ cocatalyst/In ₂ S ₃ light harvester layered photocatalysts. Journal of Materials Chemistry A, 2016, 4, 13980-13988.	5.2	55
83	Mechanism of Oxygen Reduction Reaction on Pt(111) in Alkaline Solution: Importance of Chemisorbed Water on Surface. Journal of Physical Chemistry C, 2016, 120, 15288-15298.	1.5	120
84	Bandgap- and Local Field-Dependent Photoactivity of Ag/Black Phosphorus Nanohybrids. ACS Catalysis, 2016, 6, 8009-8020.	5.5	132
85	CO ₂ Hydrogenation over Oxideâ€6upported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity. Angewandte Chemie - International Edition, 2016, 55, 7968-7973.	7.2	261
86	Highly Active Au/δ-MoC and Cu/δ-MoC Catalysts for the Conversion of CO ₂ : The Metal/C Ratio as a Key Factor Defining Activity, Selectivity, and Stability. Journal of the American Chemical Society, 2016, 138, 8269-8278.	6.6	140
87	Inverse Oxide/Metal Catalysts in Fundamental Studies and Practical Applications: A Perspective of Recent Developments. Journal of Physical Chemistry Letters, 2016, 7, 2627-2639.	2.1	120
88	Systematic Theoretical Study of Ethylene Adsorption on δ-MoC(001), TiC(001), and ZrC(001) Surfaces. Journal of Physical Chemistry C, 2016, 120, 13531-13540.	1.5	19
89	CO 2 Hydrogenation over Oxideâ€6upported PtCo Catalysts: The Role of the Oxide Support in Determining the Product Selectivity. Angewandte Chemie, 2016, 128, 8100-8105.	1.6	41
90	How to stabilize highly active Cu+ cations in a mixed-oxide catalyst. Catalysis Today, 2016, 263, 4-10.	2.2	11

#	Article	IF	CITATIONS
91	CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support. Journal of Catalysis, 2016, 343, 115-126.	3.1	250
92	Organic Pollutant Photodecomposition by Ag/KNbO ₃ Nanocomposites: A Combined Experimental and Theoretical Study. Journal of Physical Chemistry C, 2016, 120, 2777-2786.	1.5	50
93	The conversion of CO ₂ to methanol on orthorhombic β-Mo ₂ C and Cu/β-Mo ₂ C catalysts: mechanism for admetal induced change in the selectivity and activity. Catalysis Science and Technology, 2016, 6, 6766-6777.	2.1	101
94	Frontispiece: Direct Epoxidation of Propylene over Stabilized Cu+Surface Sites on Titanium-Modified Cu2O. Angewandte Chemie - International Edition, 2015, 54, n/a-n/a.	7.2	1
95	Direct Epoxidation of Propylene over Stabilized Cu ⁺ Surface Sites on Titaniumâ€Modified Cu ₂ O. Angewandte Chemie - International Edition, 2015, 54, 11946-11951.	7.2	62
96	Frontispiz: Direct Epoxidation of Propylene over Stabilized Cu+Surface Sites on Titanium-Modified Cu2O. Angewandte Chemie, 2015, 127, n/a-n/a.	1.6	0
97	Identifying Different Types of Catalysts for CO ₂ Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation. Angewandte Chemie - International Edition, 2015, 54, 15501-15505.	7.2	99
98	Identifying Different Types of Catalysts for CO 2 Reduction by Ethane through Dry Reforming and Oxidative Dehydrogenation. Angewandte Chemie, 2015, 127, 15721-15725.	1.6	7
99	Potassiumâ€Induced Effect on the Structure and Chemical Activity of the Cu _{<i>x</i>} O/Cu(1 1 1) (<i>x</i> â‰⊉) Surface: A Combined Scanning Tunneling Microsc Density Functional Theory Study. ChemCatChem, 2015, 7, 3865-3872.	op y.a nd	38
100	Surface-Structure Sensitivity of CeO ₂ Nanocrystals in Photocatalysis and Enhancing the Reactivity with Nanogold. ACS Catalysis, 2015, 5, 4385-4393.	5.5	158
101	Defect Engineering and Phase Junction Architecture of Wide-Bandgap ZnS for Conflicting Visible Light Activity in Photocatalytic H ₂ Evolution. ACS Applied Materials & Interfaces, 2015, 7, 13915-13924.	4.0	193
102	Mechanistic Study of Methanol Synthesis from CO ₂ and H ₂ on a Modified Model Mo ₆ S ₈ Cluster. ACS Catalysis, 2015, 5, 1004-1012.	5.5	75
103	Low Pressure CO ₂ Hydrogenation to Methanol over Gold Nanoparticles Activated on a CeO _{<i>x</i>} /TiO ₂ Interface. Journal of the American Chemical Society, 2015, 137, 10104-10107.	6.6	200
104	Influence of Cluster–Support Interactions on Reactivity of Size-Selected Nb _{<i>x</i>} O _{<i>y</i>} Clusters. Journal of Physical Chemistry C, 2015, 119, 14756-14768.	1.5	29
105	CO Oxidation on Gold-Supported Iron Oxides: New Insights into Strong Oxide–Metal Interactions. Journal of Physical Chemistry C, 2015, 119, 16614-16622.	1.5	62
106	Enhancement of the oxygen reduction on nitride stabilized pt-M (M=Fe, Co, and Ni) core–shell nanoparticle electrocatalysts. Nano Energy, 2015, 13, 442-449.	8.2	104
107	Insights into the structure–photoreactivity relationships in well-defined perovskite ferroelectric KNbO ₃ nanowires. Chemical Science, 2015, 6, 4118-4123.	3.7	66
108	Hydrogenation of CO ₂ to Methanol: Importance of Metal–Oxide and Metal–Carbide Interfaces in the Activation of CO ₂ . ACS Catalysis, 2015, 5, 6696-6706.	5.5	374

#	Article	IF	CITATIONS
109	Rationalization of Au Concentration and Distribution in AuNi@Pt Core–Shell Nanoparticles for Oxygen Reduction Reaction. ACS Catalysis, 2015, 5, 6328-6336.	5.5	49
110	In Situ Probing of the Active Site Geometry of Ultrathin Nanowires for the Oxygen Reduction Reaction. Journal of the American Chemical Society, 2015, 137, 12597-12609.	6.6	46
111	Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells. Journal of Chemical Physics, 2015, 142, 194710.	1.2	11
112	Elucidating Hydrogen Oxidation/Evolution Kinetics in Base and Acid by Enhanced Activities at the Optimized Pt Shell Thickness on the Ru Core. ACS Catalysis, 2015, 5, 6764-6772.	5.5	197
113	Mechanistic Study of CO Titration on Cu _{<i>x</i>} O/Cu(1 1 1) (<i>x</i> â‰⊉) Surfaces. ChemCatChem, 2014, 6, 2364-2372.	1.8	31
114	Charge Polarization at a Au–TiC Interface and the Generation of Highly Active and Selective Catalysts for the Lowâ€Temperature Water–Gas Shift Reaction. Angewandte Chemie - International Edition, 2014, 53, 11270-11274.	7.2	67
115	Rationalization of the Hubbard <i>U</i> parameter in CeOx from first principles: Unveiling the role of local structure in screening. Journal of Chemical Physics, 2014, 140, 084101.	1.2	36
116	Gold-plasmon enhanced solar-to-hydrogen conversion on the {001} facets of anatase TiO2 nanosheets. Energy and Environmental Science, 2014, 7, 973.	15.6	159
117	Stability of Pt near surface alloys under electrochemical conditions: a model study. Physical Chemistry Chemical Physics, 2014, 16, 16615-16622.	1.3	20
118	Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO ₂ . Science, 2014, 345, 546-550.	6.0	1,114
119	Synergistic Effect in Polyaniline-Hybrid Defective ZnO with Enhanced Photocatalytic Activity and Stability. Journal of Physical Chemistry C, 2014, 118, 9570-9577.	1.5	111
120	Ethanol Synthesis from Syngas on Transition Metal-Doped Rh(111) Surfaces: A Density Functional Kinetic Monte Carlo Study. Topics in Catalysis, 2014, 57, 125-134.	1.3	30
121	Surface Dipoles and Electron Transfer at the Metal Oxide–Metal Interface: A 2PPE Study of Size-Selected Metal Oxide Clusters Supported on Cu(111). Journal of Physical Chemistry C, 2014, 118, 13697-13706.	1.5	30
122	Stabilization of Catalytically Active Cu ⁺ Surface Sites on Titanium–Copper Mixedâ€Oxide Films. Angewandte Chemie - International Edition, 2014, 53, 5336-5340.	7.2	51
123	Assisted deprotonation of formic acid on Cu(111) and self-assembly of 1D chains. Physical Chemistry Chemical Physics, 2013, 15, 12291.	1.3	34
124	Importance of the Metal–Oxide Interface in Catalysis: In Situ Studies of the Water–Gas Shift Reaction by Ambientâ€Pressure Xâ€ray Photoelectron Spectroscopy. Angewandte Chemie - International Edition, 2013, 52, 5101-5105.	7.2	280
125	Size and Shape Effects of Pd@Pt Core–Shell Nanoparticles: Unique Role of Surface Contraction and Local Structural Flexibility. Journal of Physical Chemistry C, 2013, 117, 16144-16149.	1.5	62
126	Probing adsorption sites for CO on ceria. Physical Chemistry Chemical Physics, 2013, 15, 15856.	1.3	30

#	Article	IF	CITATIONS
127	Tuning the Catalytic Selectivity of Copper Using TiO ₂ : Waterâ€Gas Shift versus CO Oxidation. ChemCatChem, 2013, 5, 3673-3679.	1.8	14
128	Fundamental Studies of Well-Defined Surfaces of Mixed-Metal Oxides: Special Properties of MO _x /TiO ₂ (110) {M = V, Ru, Ce, or W}. Chemical Reviews, 2013, 113, 4373-4390.	23.0	77
129	Theoretical perspective of alcohol decomposition and synthesis from CO2 hydrogenation. Surface Science Reports, 2013, 68, 233-272.	3.8	36
130	Theoretical Studies of the Adsorption of CO and C on Ni(111) and Ni/CeO ₂ (111): Evidence of a Strong Metal–Support Interaction. Journal of Physical Chemistry C, 2013, 117, 8241-8250.	1.5	100
131	A New Type of Strong Metal–Support Interaction and the Production of H ₂ through the Transformation of Water on Pt/CeO ₂ (111) and Pt/CeO _{<i>x</i>} /TiO ₂ (110) Catalysts. Journal of the American Chemical Society, 2012. 134. 8968-8974.	6.6	682
132	Vacancy-Driven Surface Segregation in Ni x Mg1â	1.4	11
133	Special Chemical Properties of RuO _{<i>x</i>} Nanowires in RuO _{<i>x</i>} /TiO ₂ (110): Dissociation of Water and Hydrogen Production. Journal of Physical Chemistry C, 2012, 116, 4767-4773.	1.5	25
134	Highly stable Pt monolayer on PdAu nanoparticle electrocatalysts for the oxygen reduction reaction. Nature Communications, 2012, 3, 1115.	5.8	377
135	Theoretical Study of Methanol Synthesis from CO ₂ Hydrogenation on Metal-Doped Cu(111) Surfaces. Journal of Physical Chemistry C, 2012, 116, 248-256.	1.5	257
136	CO ₂ Activation and Methanol Synthesis on Novel Au/TiC and Cu/TiC Catalysts. Journal of Physical Chemistry Letters, 2012, 3, 2275-2280.	2.1	129
137	Platinum Monolayer Electrocatalysts for Anodic Oxidation of Alcohols. Journal of Physical Chemistry Letters, 2012, 3, 3480-3485.	2.1	132
138	Bimetallic IrNi core platinum monolayer shell electrocatalysts for the oxygen reduction reaction. Energy and Environmental Science, 2012, 5, 5297-5304.	15.6	156
139	Understanding the Behavior of TiO ₂ (110)-Supported Pd ₇ Cluster: A Density Functional Study. Journal of Physical Chemistry C, 2012, 116, 25337-25343.	1.5	20
140	Size Effects in Monolayer Catalysis—Model Study: Pt Submonolayers on Au(111). Electrocatalysis, 2012, 3, 203-210.	1.5	38
141	CO Oxidation on Inverse CeO _{<i>x</i>} /Cu(111) Catalysts: High Catalytic Activity and Ceria-Promoted Dissociation of O ₂ . Journal of the American Chemical Society, 2011, 133, 3444-3451.	6.6	241
142	Identification of 5–7 Defects in a Copper Oxide Surface. Journal of the American Chemical Society, 2011, 133, 11474-11477.	6.6	80
143	Theoretical Study of the Interaction of CO on TiC(001) and Au Nanoparticles Supported on TiC(001): Probing the Nature of the Au/TiC Interface. Journal of Physical Chemistry C, 2011, 115, 22495-22504.	1.5	17
144	CeO ₂ ↔ CuO _{<i>x</i>} Interactions and the Controlled Assembly of CeO ₂ (111) and CeO ₂ (100) Nanoparticles on an Oxidized Cu(111) Substrate. Journal of Physical Chemistry C, 2011, 115, 23062-23066.	1.5	44

#	Article	IF	CITATIONS
145	Determining the Behavior of RuO _{<i>x</i>} Nanoparticles in Mixedâ€Metal Oxides: Structural and Catalytic Properties of RuO ₂ /TiO ₂ (110) Surfaces. Angewandte Chemie - International Edition, 2011, 50, 10198-10202.	7.2	48
146	Understanding of ethanol decomposition on Rh(111) from density functional theory and kinetic Monte Carlo simulations. Catalysis Today, 2011, 165, 64-70.	2.2	82
147	Hydrogenation Reactions on Au/TiC(001): Effects of AuC Interactions on the Dissociation of H ₂ . ChemCatChem, 2010, 2, 1219-1222.	1.8	39
148	Desulfurization Reactions on Surfaces of Metal Carbides: Photoemission and Density–Functional Studies. Topics in Catalysis, 2010, 53, 393-402.	1.3	27
149	Gold, Copper, and Platinum Nanoparticles Dispersed on CeO _{<i>x</i>} /TiO ₂ (110) Surfaces: High Water-Gas Shift Activity and the Nature of the Mixed-Metal Oxide at the Nanometer Level. Journal of the American Chemical Society, 2010, 132, 356-363.	6.6	247
150	Fundamental studies of methanol synthesis from CO2 hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001ì"). Physical Chemistry Chemical Physics, 2010, 12, 9909.	1.3	442
151	Autocatalytic Reduction of a Cu ₂ O/Cu(111) Surface by CO: STM, XPS, and DFT Studies. Journal of Physical Chemistry C, 2010, 114, 17042-17050.	1.5	84
152	Methanol Synthesis from H ₂ and CO ₂ on a Mo ₆ S ₈ Cluster: A Density Functional Study. Journal of Physical Chemistry A, 2010, 114, 3888-3895.	1.1	83
153	Water-gas shift reaction on oxide/Cu(111): Rational catalyst screening from density functional theory. Journal of Chemical Physics, 2010, 133, 204705.	1.2	34
154	High catalytic activity of Au/CeO _x /TiO ₂ (110) controlled by the nature of the mixed-metal oxide at the nanometer level. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4975-4980.	3.3	257
155	Waterâ€Gas Shift Reaction on a Highly Active Inverse CeO _{<i>x</i>} /Cu(111) Catalyst: Unique Role of Ceria Nanoparticles. Angewandte Chemie - International Edition, 2009, 48, 8047-8050.	7.2	262
156	High Waterâ^'Gas Shift Activity in TiO ₂ (110) Supported Cu and Au Nanoparticles: Role of the Oxide and Metal Particle Size. Journal of Physical Chemistry C, 2009, 113, 7364-7370.	1.5	223
157	Mechanism of Ethanol Synthesis from Syngas on Rh(111). Journal of the American Chemical Society, 2009, 131, 13054-13061.	6.6	312
158	Characterization and Reactivity of the Mo ₄ S ₆ ⁺ Cluster Deposited on Au(111). Journal of Physical Chemistry C, 2008, 112, 11495-11506.	1.5	28
159	Adsorbate-Driven Morphological Changes of a Gold Surface at Low Temperatures. Journal of the American Chemical Society, 2008, 130, 17272-17273.	6.6	72
160	Hydrogen Oxidation Reaction on Pt in Acidic Media:  Adsorption Isotherm and Activation Free Energies. Journal of Physical Chemistry C, 2007, 111, 12425-12433.	1.5	56
161	Electrodeposition of Pt onto RuO ₂ (110) Single-Crystal Surface. Journal of Physical Chemistry C, 2007, 111, 15306-15311.	1.5	13
162	Effects of Hydrogen on the Reactivity of O ₂ toward Gold Nanoparticles and Surfaces. Journal of Physical Chemistry C, 2007, 111, 19001-19008.	1.5	75

#	Article	IF	CITATIONS
163	Water-gas-shift reaction on metal nanoparticles and surfaces. Journal of Chemical Physics, 2007, 126, 164705.	1.2	216
164	Water-Gas-Shift Reaction on Molybdenum Carbide Surfaces:  Essential Role of the Oxycarbide. Journal of Physical Chemistry B, 2006, 110, 19418-19425.	1.2	202
165	Gas-phase Interaction of Thiophene with the Ti8C12+and Ti8C12Met-Car Clusters. Journal of Physical Chemistry B, 2006, 110, 7449-7455.	1.2	23
166	Gas-Phase Reactivity of the Ti8C12+Met-car with Triatomic Sulfur-Containing Molecules:Â CS2, SCO, and SO2. Journal of Physical Chemistry A, 2006, 110, 3505-3513.	1.1	15
167	Adsorption of platinum on the stoichiometric RuO2(110) surface. Journal of Chemical Physics, 2006, 124, 141101.	1.2	10
168	Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface:Â The Importance of Ensemble Effect. Journal of the American Chemical Society, 2005, 127, 14871-14878.	6.6	1,029
169	Desulfurization Reactions on Ni2P(001) and α-Mo2C(001) Surfaces: Complex Role of P and C Sites. Journal of Physical Chemistry B, 2005, 109, 4575-4583.	1.2	290
170	The chemical activity of metal compound nanoparticles: Importance of electronic and steric effects in M8C12 (M=Ti, V, Mo) metcars. Journal of Chemical Physics, 2004, 121, 10321-10324.	1.2	22
171	The Ti8C12Metcar:Â A New Model Catalyst for Hydrodesulfurization. Journal of Physical Chemistry B, 2004, 108, 18796-18798.	1.2	28
172	Effects of carbon on the stability and chemical performance of transition metal carbides:â€,A density functional study. Journal of Chemical Physics, 2004, 120, 5414-5423.	1.2	102
173	Desulfurization of SO2and Thiophene on Surfaces and Nanoparticles of Molybdenum Carbide:Â Unexpected Ligand and Steric Effects. Journal of Physical Chemistry B, 2004, 108, 15662-15670.	1.2	72
174	Catalytic Properties of Molybdenum Carbide, Nitride and Phosphide: A Theoretical Study. Catalysis Letters, 2003, 91, 247-252.	1.4	129
175	Computational Study of the Geometry and Properties of the Metcars Ti8C12and Mo8C12. Journal of Physical Chemistry A, 2003, 107, 9344-9356.	1.1	29
176	Chemical reactivity of metcar Ti8C12, nanocrystal Ti14C13 and a bulk TiC(001) surface: A density functional study. Journal of Chemical Physics, 2003, 118, 7737-7740.	1.2	53
177	Interaction of sulfur dioxide with titanium–carbide nanoparticles and surfaces: A density functional study. Journal of Chemical Physics, 2003, 119, 10895-10903.	1.2	30