List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1611208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate IL-17A Enhances IL-33-Independent Skin Eosinophilia and IgE Response on Subcutaneous Papain Sensitization. Journal of Investigative Dermatology, 2021, 141, 105-113.e14.	0.7	14
2	Epicutaneous challenge with protease allergen requires its protease activity to recall T _H 2 and T _H 17/T _H 22 responses in mice pre-sensitized via distant skin. Journal of Immunotoxicology, 2021, 18, 118-126.	1.7	5
3	Epicutaneous vaccination with protease inhibitor-treated papain prevents papain-induced Th2-mediated airway inflammation without inducing Th17 in mice. Biochemical and Biophysical Research Communications, 2021, 546, 192-199.	2.1	6
4	Allergens in modern society: 2021. Allergology International, 2021, 70, 279-280.	3.3	0
5	Inhibition of Both Cyclooxygenase-1 and -2 Promotes Epicutaneous Th2 and Th17 Sensitization and Allergic Airway Inflammation on Subsequent Airway Exposure to Protease Allergen in Mice. International Archives of Allergy and Immunology, 2021, 182, 788-799.	2.1	3
6	Cyclooxygenase inhibition in mice heightens adaptive―and innateâ€type responses against inhaled protease allergen and <scp>IL</scp> â€33. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2237-2240.	5.7	12
7	Airway inflammation after epicutaneous sensitization of mice requires protease activity of low-dose allergen inhalation. Journal of Allergy and Clinical Immunology, 2018, 141, 2271-2273.e7.	2.9	11
8	Skin Treatment with Detergent Promotes Protease Allergen-Dependent Epicutaneous Sensitization in a Manner Different from Tape Stripping in Mice. Journal of Investigative Dermatology, 2017, 137, 1578-1582.	0.7	11
9	Epicutaneous Allergic Sensitization by Cooperation between Allergen Protease Activity and Mechanical Skin Barrier Damage in Mice. Journal of Investigative Dermatology, 2016, 136, 1408-1417.	0.7	41
10	Subcutaneous Allergic Sensitization to Protease Allergen Is Dependent on Mast Cells but Not IL-33: Distinct Mechanisms between Subcutaneous and Intranasal Routes. Journal of Immunology, 2016, 196, 3559-3569.	0.8	16
11	Innate basophil IL-4 responses against allergens, endotoxin, and cytokines require the Fc receptor Î ³ -chain. Journal of Allergy and Clinical Immunology, 2016, 137, 1613-1615.e2.	2.9	13
12	Presensitization to Ascaris antigens promotes induction of mite-specific lgE upon mite antigen inhalation in mice. Allergology International, 2016, 65, 44-51.	3.3	14
13	Pectate Lyase Pollen Allergens: Sensitization Profiles and Cross-Reactivity Pattern. PLoS ONE, 2015, 10, e0120038.	2.5	41
14	Japanese Society of Allergology task force report on standardization of house dust mite allergen vaccines – Secondary publication. Allergology International, 2015, 64, 181-186.	3.3	24
15	Cysteine protease antigens cleave CD123, the α subunit of murine IL-3 receptor, on basophils and suppress IL-3-mediated basophil expansion. Biochemical and Biophysical Research Communications, 2015, 460, 261-266.	2.1	8
16	Allergens in modern society: Updated catalogs and future prospects. Allergology International, 2015, 64, 293-294.	3.3	1
17	Immunotherapy to Treat Allergies: Recent Advances and Future Prospects. Juntendo Medical Journal, 2015, 61, 597-600.	0.1	0
18	Epicutaneous Administration of Papain Induces IgE and IgG Responses in a Cysteine Protease Activity-Dependent Manner. Allergology International, 2014, 63, 219-226.	3.3	30

#	Article	IF	CITATIONS
19	TSLP Expression Induced via Toll-Like Receptor Pathways in Human Keratinocytes. Methods in Enzymology, 2014, 535, 371-387.	1.0	42
20	Repeated antigen painting and sublingual immunotherapy in mice convert sublingual dendritic cell subsets. Vaccine, 2014, 32, 5669-5676.	3.8	14
21	Human antimicrobial peptide LL-37 modulates proinflammatory responses induced by cytokine milieus and double-stranded RNA in human keratinocytes. Biochemical and Biophysical Research Communications, 2013, 433, 532-537.	2.1	76
22	Immunization of Rabbits with NematodeAscaris lumbricoidesAntigens Induces Antibodies Cross-Reactive to House Dust MiteDermatophagoides farinaeAntigens. Bioscience, Biotechnology and Biochemistry, 2013, 77, 145-150.	1.3	12
23	IL-33–Mediated Innate Response and Adaptive Immune Cells Contribute to Maximum Responses of Protease Allergen–Induced Allergic Airway Inflammation. Journal of Immunology, 2013, 190, 4489-4499.	0.8	151
24	Mite Endopeptidase 1. , 2013, , 1957-1963.		1
25	Serine Endopeptidase Allergens from Dermatophagoides Species. , 2013, , 3055-3060.		1
26	TSLP Expression: Cellular Sources, Triggers, and Regulatory Mechanisms. Allergology International, 2012, 61, 3-17.	3.3	212
27	Inhibition of Allergen-Induced Airway Inflammation by Low-Dose Oral Immunotherapy with Transgenic Rice Seeds Independently of Immunoglobulin E Synthesis. International Archives of Allergy and Immunology, 2012, 158, 66-69.	2.1	4
28	Long TSLP transcript expression and release of TSLP induced by TLR ligands and cytokines in human keratinocytes. Journal of Dermatological Science, 2012, 66, 233-237.	1.9	75
29	Viral infection induces Thymic stromal lymphopoietin (TSLP) in human keratinocytes. Journal of Dermatological Science, 2011, 62, 131-134.	1.9	16
30	Barrier Dysfunction Caused by Environmental Proteases in the Pathogenesis of Allergic Diseases. Allergology International, 2011, 60, 25-35.	3.3	126
31	Prevention of allergic asthma by vaccination with transgenic rice seed expressing mite allergen: induction of allergenâ€specific oral tolerance without bystander suppression. Plant Biotechnology Journal, 2011, 9, 982-990.	8.3	77
32	Extracellular Double-Stranded RNA Induces TSLP via an Endosomal Acidification- and NF-κB-Dependent Pathway in Human Keratinocytes. Journal of Investigative Dermatology, 2011, 131, 2205-2212.	0.7	54
33	Flagellin Induces the Expression of Thymic Stromal Lymphopoietin in Human Keratinocytes via Toll-Like Receptor 5. International Archives of Allergy and Immunology, 2011, 155, 31-37.	2.1	53
34	Missions of Protease Allergens in the Epithelium. International Archives of Allergy and Immunology, 2011, 154, 3-5.	2.1	4
35	The Epithelium Takes Center Stage in Allergic Keratoconjunctivitis. Cornea, 2010, 29, S41-S47.	1.7	8
36	Staphylococcus aureus Extracellular Protease Causes Epidermal Barrier Dysfunction. Journal of Investigative Dermatology, 2010, 130, 614-617.	0.7	87

TOSHIRO TAKAI

#	Article	IF	CITATIONS
37	Cedar Allergen Harvest from Tobacco: Plant Biotechnology for Recombinant Allergens. International Archives of Allergy and Immunology, 2010, 153, 431-433.	2.1	0
38	Glucocorticoids Inhibit Double-Stranded RNA-Induced Thymic Stromal Lymphopoietin Release from Keratinocytes in an Atopic Cytokine Milieu More Effectively than Tacrolimus. International Archives of Allergy and Immunology, 2010, 153, 27-34.	2.1	31
39	Staphylococcus aureus membrane and diacylated lipopeptide induce thymic stromal lymphopoietin inÂkeratinocytes through the Toll-like receptor 2–Toll-like receptor 6 pathway. Journal of Allergy and Clinical Immunology, 2010, 126, 985-993.e3.	2.9	147
40	Cupressaceae Pollen Grains Modulate Dendritic Cell Response and Exhibit IgE-Inducing Adjuvant Activity In Vivo. Journal of Immunology, 2009, 183, 6087-6094.	0.8	34
41	Modulation of Allergenicity of Major House Dust Mite Allergens Der f 1 and Der p 1 by Interaction with an Endogenous Ligand. Journal of Immunology, 2009, 183, 7958-7965.	0.8	27
42	Development of Transgenic Rice Expressing Mite Antigen for a New Concept of Immunotherapy. International Archives of Allergy and Immunology, 2009, 149, 21-24.	2.1	13
43	Lipopolysaccharide binding of the mite allergen Der f 2. Genes To Cells, 2009, 14, 1055-1065.	1.2	74
44	Mite serine protease activates proteaseâ€activated receptorâ€2 and induces cytokine release in human keratinocytes. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1366-1374.	5.7	112
45	Inhibition of doubleâ€stranded RNAâ€induced TSLP in human keratinocytes by glucocorticoids. Allergy: European Journal of Allergy and Clinical Immunology, 2009, 64, 1231-1232.	5.7	19
46	SLPI prevents cytokine release in mite protease-exposed conjunctival epithelial cells. Biochemical and Biophysical Research Communications, 2009, 379, 681-685.	2.1	17
47	NADPH oxidase activity in allergenic pollen grains of different plant species. Biochemical and Biophysical Research Communications, 2009, 387, 430-434.	2.1	42
48	Cytokine milieu modulates release of thymic stromal lymphopoietin from human keratinocytes stimulated with double-stranded RNA. Journal of Allergy and Clinical Immunology, 2009, 123, 179-186.	2.9	110
49	Enzyme-Linked Immunosorbent Assays with High Sensitivity for Antigen-Specific and Total Murine IgE: A Useful Tool for the Study of Allergies in Mouse Models. Allergology International, 2009, 58, 225-235.	3.3	6
50	Characterization of Proteases, Proteins, and Eicosanoid-Like Substances in Soluble Extracts from Allergenic Pollen Grains. International Archives of Allergy and Immunology, 2008, 147, 276-288.	2.1	43
51	Upregulation of the Release of Granulocyte-Macrophage Colony-Stimulating Factor from Keratinocytes Stimulated with Cysteine Protease Activity of Recombinant Major Mite Allergens, Der f 1 and Der p 1. International Archives of Allergy and Immunology, 2008, 146, 27-35.	2.1	37
52	Protease Activity of Allergenic Pollen of Cedar, Cypress, Juniper, Birch and Ragweed. Allergology International, 2008, 57, 83-91.	3.3	68
53	Reduction of Skin Barrier Function by Proteolytic Activity of a Recombinant House Dust Mite Major Allergen Der f 1. Journal of Investigative Dermatology, 2006, 126, 2719-2723.	0.7	83
54	Crucial Commitment of Proteolytic Activity of a Purified Recombinant Major House Dust Mite Allergen Der p1 to Sensitization toward IgE and IgG Responses. Journal of Immunology, 2006, 177, 1609-1617.	0.8	109

#	Article	IF	CITATIONS
55	Glycosylation of Recombinant Proforms of Major House Dust Mite Allergens Der p 1 and Der f 1 Decelerates the Speed of Maturation. International Archives of Allergy and Immunology, 2006, 139, 181-187.	2.1	27
56	Application of Immunoreaction Enhancer Solutions to an Enzyme-Linked Immunosorbent Assay for Antigen-Specific IgE in Mice Immunized with Recombinant Major Mite Allergens or Ovalbumin. International Archives of Allergy and Immunology, 2006, 141, 322-330.	2.1	17
57	NMR Study on the Major Mite Allergen Der f 2: Its Refined Tertiary Structure, Epitopes for Monoclonal Antibodies and Characteristics Shared by ML Protein Group Members. Journal of Biochemistry, 2005, 137, 255-263.	1.7	61
58	Dilution Method to Refold Bacterially Expressed Recombinant Der f 2 and Der p 2 to Exhibit the Secondary Structure and Histamine-Releasing Activity of Natural Allergens. International Archives of Allergy and Immunology, 2005, 137, 1-8.	2.1	11
59	Recombinant Der p 1 and Der f 1 with in vitro Enzymatic Activity to Cleave Human CD23, CD25 and α ₁ -Antitrypsin, and in vivo IgE-Eliciting Activity in Mice. International Archives of Allergy and Immunology, 2005, 137, 194-200.	2.1	55
60	Recombinant Der p 1 and Der f 1 exhibit cysteine protease activity but no serine protease activity. Biochemical and Biophysical Research Communications, 2005, 328, 944-952.	2.1	66
61	Multipleâ€mutation at a potential ligandâ€binding region decreased allergenicity of a mite allergen Der f 2 without disrupting global structure. FEBS Letters, 2005, 579, 1988-1994.	2.8	18
62	Analysis of the structure and allergenicity of recombinant pro- and mature Der p 1 and Der f 1: Major conformational IgE epitopes blocked by prodomains. Journal of Allergy and Clinical Immunology, 2005, 115, 555-563.	2.9	77
63	Cystatin A inhibits IL-8 production by keratinocytes stimulated with Der p 1 and Der f 1: Biochemical skin barrier against mite cysteine proteases. Journal of Allergy and Clinical Immunology, 2005, 116, 169-176.	2.9	101
64	The Squamous Cell Carcinoma Antigen 2 Inhibits the Cysteine Proteinase Activity of a Major Mite Allergen, Der p 1. Journal of Biological Chemistry, 2004, 279, 5081-5087.	3.4	57
65	Characterization of novel squamous cell carcinoma antigen-related molecules in mice. Biochemical and Biophysical Research Communications, 2004, 324, 1340-1345.	2.1	11
66	Crystallization and preliminary X-ray analysis of Der f 2, a potent allergen derived from the house dust mite (Dermatophagoides farinae). Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1046-1048.	2.5	4
67	Maturation of the activities of recombinant mite allergens Der p 1 and Der f 1, and its implication in the blockade of proteolytic activity. FEBS Letters, 2002, 531, 265-272.	2.8	44
68	Effects of Double Mutation at Two Distant IgE-binding Sites in the Three-dimensional Structure of the Major House Dust Mite Allergen Der f 2 on IgE-binding and Histamine-releasing Activity. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1601-1609.	1.3	10
69	Expression of Humanized Fab Fragments That Recognize the IgE-Binding Domain of Human FcÂRIÂ in COS and CHO Cells. Journal of Biochemistry, 2001, 129, 5-12.	1.7	4
70	Biologically active recombinant forms of a major house dust mite group 1 allergen Der f 1 with full activities of both cysteine protease and IgE binding. Clinical and Experimental Allergy, 2001, 31, 116-124.	2.9	45
71	Effects of Site-Directed Mutagenesis in the Cysteine Residues and the N-Clycosylation Motif in Recombinant Der f 1 on Secretion and Protease Activity. International Archives of Allergy and Immunology, 2001, 124, 454-460.	2.1	18
72	Reactivities of Mutants of a Major House Dust Mite Allergen Der f 2 to Mouse Anti-Der f 2 Monoclonal Antibodies Analyzed by Immunoblotting. Bioscience, Biotechnology and Biochemistry, 2001, 65, 694-697.	1.3	4

#	Article	IF	CITATIONS
73	Cloning and Expression of cDNA Encoding the Complete Prepro-Form of an Isoform of Der f 1, the Major Group 1 Allergen from House Dust Mite Dermatophagoides farinae. Bioscience, Biotechnology and Biochemistry, 2001, 65, 563-569.	1.3	17
74	Direct Expression of the Extracellular Portion of Human FcεRIα Chain as Inclusion Bodies in Escherichia coli. Bioscience, Biotechnology and Biochemistry, 2001, 65, 79-85.	1.3	4
75	Production of Humanized Antibody against Human High-affinity IgE Receptor in a Serum-free Culture of CHO Cells, and Purification of the Fab Fragments. Bioscience, Biotechnology and Biochemistry, 2001, 65, 1082-1089.	1.3	4
76	Effects of proline mutations in the major house dust mite allergen Der f 2 on IgEâ€binding and histamineâ€releasing activity. FEBS Journal, 2000, 267, 6650-6656.	0.2	23
77	Inhibition of IgE-Dependent Histamine Release from Human Peripheral Blood Basophils by Humanized Fab Fragments That Recognize the Membrane Proximal Domain of the Human FcεRI α-Chain. International Archives of Allergy and Immunology, 2000, 123, 308-318.	2.1	13
78	Unlocking the allergenic structure of the major house dust mite allergen Der f 2 by elimination of key intramolecular interactions. FEBS Letters, 2000, 484, 102-107.	2.8	24
79	Production of Enzymatically and Immunologically Active Der f 1 in <i>Escherichia coli</i> . International Archives of Allergy and Immunology, 2000, 122, 108-114.	2.1	27
80	Production of Humanized Fab Fragment against Human High Affinity IgE Receptor inPichia pastoris. Bioscience, Biotechnology and Biochemistry, 2000, 64, 2138-2144.	1.3	21
81	Epitope Analysis and Primary Structures of Variable Regions of Anti-human FcεRI Monoclonal Antibodies, and Expression of the Chimeric Antibodies Fused with Human Constant Regions. Bioscience, Biotechnology and Biochemistry, 2000, 64, 1856-1867.	1.3	14
82	Non-anaphylactic combination of partially deleted fragments of the major house dust mite allergen Der f 2 for allergen-specific immunotherapy. Molecular Immunology, 1999, 36, 1055-1065.	2.2	42
83	Hyposensitization to allergic reaction in rDer f 2-sensitized mice by the intranasal administration of a mutant of rDer f 2, C8/119S. Clinical and Experimental Immunology, 1998, 113, 1-9.	2.6	28
84	Determination of the N- and C-terminal sequences required to bind human IgE of the major house dust mite allergen Der f 2 and epitope mapping for monoclonal antibodies. Molecular Immunology, 1997, 34, 255-261.	2.2	44
85	Engineering of the major house dust mite allergen Der f 2 for allergen-specific immunotherapy. Nature Biotechnology, 1997, 15, 754-758.	17.5	166
86	Determination of Three Disulfide Bonds in a Major House Dust Mite Allergen, <i>Der f</i> ll. International Archives of Allergy and Immunology, 1993, 101, 159-166.	2.1	43