## Stéphane Veesler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1610839/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Nucleation in sessile saline microdroplets: induction time measurement <i>via</i><br>deliquescence–recrystallization cycling. Faraday Discussions, 2022, 235, 183-197.                                                                                                        | 1.6 | 9         |
| 2  | Preparation of alginate hydrogel microparticles by gelation introducing cross-linkers using droplet-based microfluidics: a review of methods. Biomaterials Research, 2021, 25, 41.                                                                                            | 3.2 | 24        |
| 3  | A microfluidic method generating monodispersed microparticles with controllable sizes and mechanical properties. Chemical Engineering Science, 2020, 211, 115322.                                                                                                             | 1.9 | 8         |
| 4  | Solubilities and Crystallization of Olanzapine Using a Multi-Well Setup: The Effect of Solvents and Cooling Rates. Journal of Solution Chemistry, 2020, 49, 1170-1185.                                                                                                        | 0.6 | 0         |
| 5  | Microfluidics Platform for Polymorph Screening Directly from Powder. Crystal Growth and Design, 2020, 20, 3882-3887.                                                                                                                                                          | 1.4 | 5         |
| 6  | Multiscale Experimental Study and Modeling of <scp>l</scp> -Glutamic acid Crystallization: Emphasis<br>on a Kinetic Explanation of the Ostwald Rule of Stages. Crystal Growth and Design, 2019, 19, 3329-3337.                                                                | 1.4 | 9         |
| 7  | Advances in the Use of Microfluidics to Study Crystallization Fundamentals. Annual Review of<br>Chemical and Biomolecular Engineering, 2019, 10, 59-83.                                                                                                                       | 3.3 | 14        |
| 8  | Microfluidics Setup Rapidly Measures Solubility Directly from Powder. Organic Process Research and Development, 2018, 22, 1856-1860.                                                                                                                                          | 1.3 | 7         |
| 9  | A parameter to probe microdroplet dynamics and crystal nucleation. AIP Advances, 2018, 8, .                                                                                                                                                                                   | 0.6 | 7         |
| 10 | A Chemical Library to Screen Protein and Protein–Ligand Crystallization Using a Versatile<br>Microfluidic Platform. Crystal Growth and Design, 2018, 18, 5130-5137.                                                                                                           | 1.4 | 18        |
| 11 | Microfluidic platform for optimization of crystallization conditions. Journal of Crystal Growth, 2017, 472, 18-28.                                                                                                                                                            | 0.7 | 31        |
| 12 | In Situ Observation of Polymorphic Transition during Crystallization of Organic Compounds<br>Showing Preferential Enrichment By Means Of Temperature-Controlled Video-Microscopy and<br>Time-Resolved X-ray Powder Diffraction. Crystal Growth and Design, 2017, 17, 671-676. | 1.4 | 11        |
| 13 | Crystallization <i>via</i> tubing microfluidics permits both <i>in situ</i> and <i>ex situ</i> X-ray diffraction. Acta Crystallographica Section F, Structural Biology Communications, 2017, 73, 574-578.                                                                     | 0.4 | 15        |
| 14 | Solvent screening and crystal habit of metformin hydrochloride. Journal of Crystal Growth, 2016,<br>451, 42-51.                                                                                                                                                               | 0.7 | 30        |
| 15 | Localizing and inducing primary nucleation. Faraday Discussions, 2015, 179, 489-501.                                                                                                                                                                                          | 1.6 | 25        |
| 16 | Molecular self-assembly and clustering in nucleation processes: general discussion. Faraday<br>Discussions, 2015, 179, 155-197.                                                                                                                                               | 1.6 | 10        |
| 17 | Solvent and additive interactions as determinants in the nucleation pathway: general discussion.<br>Faraday Discussions, 2015, 179, 383-420.                                                                                                                                  | 1.6 | 18        |
| 18 | Nucleation in complex multi-component and multi-phase systems: general discussion. Faraday Discussions, 2015, 179, 503-542.                                                                                                                                                   | 1.6 | 6         |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Versatile Microfluidic Approach to Crystallization. Organic Process Research and Development, 2015, 19, 1837-1841.                                                                                                                | 1.3 | 20        |
| 20 | Prediction of sizes and frequencies of nanoliter-sized droplets in cylindrical T-junction microfluidics. Chemical Engineering Science, 2015, 138, 128-139.                                                                        | 1.9 | 25        |
| 21 | Crystallization of Pharmaceutical Crystals. , 2015, , 915-949.                                                                                                                                                                    |     | 6         |
| 22 | Addressing the Stochasticity of Nucleation: Practical Approaches. , 2015, , 95-113.                                                                                                                                               |     | 2         |
| 23 | Transient Calcium Carbonate Hexahydrate (Ikaite) Nucleated and Stabilized in Confined Nano- and<br>Picovolumes. Crystal Growth and Design, 2014, 14, 792-802.                                                                     | 1.4 | 28        |
| 24 | Highly Efficient Chiral Resolution of <scp>dl</scp> â€Arginine by Cocrystal Formation Followed by<br>Recrystallization under Preferentialâ€Enrichment Conditions. Chemistry - A European Journal, 2014, 20,<br>10343-10350.       | 1.7 | 31        |
| 25 | Investigating the dissolution of the metastable triclinic polymorph of carbamazepine using in situ microscopy. CrystEngComm, 2014, 16, 4133-4141.                                                                                 | 1.3 | 14        |
| 26 | Solution cocrystallization, an effective tool to explore the variety of cocrystal systems: caffeine/dicarboxylic acid cocrystals. CrystEngComm, 2014, 16, 9603-9611.                                                              | 1.3 | 32        |
| 27 | Experimental Demonstration of the Carbamazepine Crystallization from Non-photochemical<br>Laser-Induced Nucleation in Acetonitrile and Methanol. Crystal Growth and Design, 2014, 14, 3286-3299.                                  | 1.4 | 42        |
| 28 | Heterogeneous Nucleation in Droplet-Based Nucleation Measurements. Crystal Growth and Design, 2013, 13, 2107-2110.                                                                                                                | 1.4 | 27        |
| 29 | Monitoring Picoliter Sessile Microdroplet Dynamics Shows That Size Does Not Matter. Langmuir, 2013, 29, 12628-12632.                                                                                                              | 1.6 | 14        |
| 30 | Small-volume nucleation. Comptes Rendus Physique, 2013, 14, 192-198.                                                                                                                                                              | 0.3 | 23        |
| 31 | Investigation into the Mechanism of Solution-Mediated Transformation from FI to FIII Carbamazepine:<br>The Role of Dissolution and the Interaction between Polymorph Surfaces. Crystal Growth and Design,<br>2013, 13, 1861-1871. | 1.4 | 41        |
| 32 | Measuring the Solubility of a Quickly Transforming Metastable Polymorph of Carbamazepine. Organic<br>Process Research and Development, 2013, 17, 512-518.                                                                         | 1.3 | 27        |
| 33 | Microcrystals with Enhanced Emission Prepared from Hydrophobic Analogues of the Green<br>Fluorescent Protein Chromophore via Reprecipitation. Langmuir, 2013, 29, 14718-14727.                                                    | 1.6 | 29        |
| 34 | Practical Physics Behind Growing Crystals of Biological Macromolecules. Protein and Peptide Letters, 2012, 19, 714-724.                                                                                                           | 0.4 | 22        |
| 35 | A Cheap, Easy Microfluidic Crystallization Device Ensuring Universal Solvent Compatibility. Organic Process Research and Development, 2012, 16, 556-560.                                                                          | 1.3 | 48        |
| 36 | Nucleation and polymorphism explored via an easy-to-use microfluidic tool. Journal of Crystal<br>Growth, 2012, 342, 9-12.                                                                                                         | 0.7 | 60        |

| #  | Article                                                                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Sea water desalination by dynamic layer melt crystallization: Parametric study of the freezing and sweating steps. Journal of Crystal Growth, 2012, 342, 110-116.              | 0.7 | 64        |
| 38 | Importance of Solvent Selection for Stoichiometrically Diverse Cocrystal Systems: Caffeine/Maleic Acid 1:1 and 2:1 Cocrystals. Crystal Growth and Design, 2012, 12, 1520-1530. | 1.4 | 69        |
| 39 | Using Microfluidics for Fast, Accurate Measurement of Lysozyme Nucleation Kinetics. Crystal Growth and Design, 2011, 11, 1527-1530.                                            | 1.4 | 54        |
| 40 | Nucleation Control and Rapid Growth of KDP Crystals in Stationary Conditions. Crystal Growth and Design, 2011, 11, 2592-2598.                                                  | 1.4 | 20        |
| 41 | Thermal analysis: A further step in characterizing solid forms obtained by screening crystallization of an API. International Journal of Pharmaceutics, 2011, 403, 29-36.      | 2.6 | 9         |
| 42 | Generating nanoliter to femtoliter microdroplets with ease. Applied Physics Letters, 2011, 98, .                                                                               | 1.5 | 20        |
| 43 | Predictive Nucleation of Crystals in Small Volumes and Its Consequences. Physical Review Letters, 2011, 107, 025504.                                                           | 2.9 | 28        |
| 44 | Ultra-fast crystallization due to confinement. Journal of Crystal Growth, 2010, 312, 487-489.                                                                                  | 0.7 | 23        |
| 45 | Usual and unusual crystallization from solution. Journal of Crystal Growth, 2010, 312, 939-946.                                                                                | 0.7 | 70        |
| 46 | The 2C putative helicase of echovirus 30 adopts a hexameric ring-shaped structure. Acta<br>Crystallographica Section D: Biological Crystallography, 2010, 66, 1116-1120.       | 2.5 | 17        |
| 47 | Freezing desalination of sea water in a static layer crystallizer. Desalination and Water Treatment, 2010, 13, 120-127.                                                        | 1.0 | 41        |
| 48 | New approaches on crystallization under electric fields. Progress in Biophysics and Molecular<br>Biology, 2009, 101, 38-44.                                                    | 1.4 | 59        |
| 49 | Polymorphism in Processes of Crystallization in Solution: A Practical Review. Organic Process Research and Development, 2009, 13, 1241-1253.                                   | 1.3 | 157       |
| 50 | A Rapid Method for Screening Crystallization Conditions and Phases of an Active Pharmaceutical Ingredient. Organic Process Research and Development, 2009, 13, 1338-1342.      | 1.3 | 20        |
| 51 | Spatial and Temporal Control of Nucleation by Localized DC Electric Field. Crystal Growth and Design, 2009, 9, 3346-3347.                                                      | 1.4 | 19        |
| 52 | Measuring Enthalpy of Sublimation for Active Pharmaceutical Ingredients: Validate Crystal Energy and Predict Crystal Habit. Crystal Growth and Design, 2009, 9, 4706-4709.     | 1.4 | 11        |
| 53 | Reaching One Single and Stable Critical Cluster through Finite-Sized Systems. Crystal Growth and Design, 2009, 9, 1917-1922.                                                   | 1.4 | 65        |
| 54 | Crystallization mechanisms of acicular crystals. Journal of Crystal Growth, 2008, 310, 110-115.                                                                                | 0.7 | 42        |

| #  | Article                                                                                                                                                                    | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Using Temperature To Crystallize Proteins: A Mini-Review. Crystal Growth and Design, 2008, 8, 4215-4219.                                                                   | 1.4 | 49        |
| 56 | The Evolution of Crystal Shape During Dissolution: Predictions and Experiments. Crystal Growth and Design, 2008, 8, 1100-1101.                                             | 1.4 | 42        |
| 57 | Protein Crystallization Induced by a Localized Voltage. Crystal Growth and Design, 2007, 7, 1472-1475.                                                                     | 1.4 | 50        |
| 58 | Photochemically induced nucleation in supersaturated and undersaturated thaumatin solutions.<br>Journal of Photochemistry and Photobiology A: Chemistry, 2007, 190, 88-93. | 2.0 | 20        |
| 59 | Crystals from Light:  Photochemically Induced Nucleation of Hen Egg-White Lysozyme. Crystal Growth<br>and Design, 2006, 6, 1631-1635.                                      | 1.4 | 43        |
| 60 | Polymorphism of Urate Oxidase in PEG Solutions. Crystal Growth and Design, 2006, 6, 287-292.                                                                               | 1.4 | 22        |
| 61 | Crystallization in the Presence of a Liquidâ^'Liquid Phase Separation. Organic Process Research and Development, 2006, 10, 841-845.                                        | 1.3 | 81        |
| 62 | Exploring Bovine Pancreatic Trypsin Inhibitor Phase Transitions. Journal of Physical Chemistry B, 2006,<br>110, 19664-19670.                                               | 1.2 | 24        |
| 63 | MPCD: a new interactive on-line crystallization data bank for screening strategies. Acta<br>Crystallographica Section D: Biological Crystallography, 2006, 62, 1311-1318.  | 2.5 | 22        |
| 64 | Modeling of the dissolution of a pharmaceutical compound. Journal of Crystal Growth, 2006, 286, 121-125.                                                                   | 0.7 | 23        |
| 65 | Pharmaceutical Compound Crystallization: Growth Mechanism of Needle-Like Crystals. Chemical Engineering and Technology, 2006, 29, 239-246.                                 | 0.9 | 18        |
| 66 | Light-Induced Nucleation of Metastable Hen Egg-White Lysozyme Solutions. Crystal Growth and Design, 2005, 5, 1393-1398.                                                    | 1.4 | 59        |
| 67 | Protein crystallization: Contribution of small angle X-ray scattering (SAXS). European Physical<br>Journal Special Topics, 2004, 118, 3-13.                                | 0.2 | 7         |
| 68 | Study of liquid–liquid demixing from drug solution. Journal of Crystal Growth, 2004, 269, 550-557.                                                                         | 0.7 | 67        |
| 69 | In Situ Monitoring of the Impact of Liquidâ^'Liquid Phase Separation on Drug Crystallization by Seeding.<br>Crystal Growth and Design, 2004, 4, 1175-1180.                 | 1.4 | 52        |
| 70 | Temperature and pH Effect on the Polymorphism of Aprotinin (BPTI) in Sodium Bromide Solutions.<br>Crystal Growth and Design, 2004, 4, 1137-1141.                           | 1.4 | 36        |
| 71 | Polymorphism and Liquid-Liquid Demixing in Supersaturated Drug Solution. Engineering in Life Sciences, 2003, 3, 127-131.                                                   | 2.0 | 18        |
| 72 | The influence of organic additives on the crystallization and agglomeration of gibbsite. Powder Technology, 2003, 130, 345-351.                                            | 2.1 | 34        |

| #  | Article                                                                                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Polymorphic–polytypic transition induced in crystals by interaction of spirals and 2D growth<br>mechanisms. Journal of Crystal Growth, 2003, 247, 541-550.                                                                                                                                                | 0.7 | 11        |
| 74 | Phase Transitions in Supersaturated Drug Solution. Organic Process Research and Development, 2003, 7, 983-989.                                                                                                                                                                                            | 1.3 | 115       |
| 75 | BPTI liquid-liquid phase separation monitored by light and small angle X-ray scattering. Acta<br>Crystallographica Section D: Biological Crystallography, 2002, 58, 1560-1563.                                                                                                                            | 2.5 | 23        |
| 76 | pH-dependent oligomerization of BPTI in undersaturated and supersaturated solutions studied by dynamic light scattering. Journal of Crystal Growth, 2002, 237-239, 289-294.                                                                                                                               | 0.7 | 9         |
| 77 | Investigation of aprotinin (BPTI) solutions during nucleation. Journal of Crystal Growth, 2002, 235, 547-554.                                                                                                                                                                                             | 0.7 | 9         |
| 78 | Dissolution and phase transition of pharmaceutical compounds. Journal of Crystal Growth, 2002, 237-239, 2233-2239.                                                                                                                                                                                        | 0.7 | 25        |
| 79 | Crystallization of a recombinant form of the complete sequence of human Î <sup>3</sup> -interferon:<br>characterization by small-angle X-ray scattering, mass spectrometry and preliminary X-ray diffraction<br>studies. Acta Crystallographica Section D: Biological Crystallography, 2001, 57, 900-905. | 2.5 | 1         |
| 80 | α-amylase crystal growth investigated by in situ atomic force microscopy. Journal of Crystal Growth,<br>2001, 226, 294-302.                                                                                                                                                                               | 0.7 | 28        |
| 81 | The Crystallization of BPTI at acidic pH: a Decamer Story. Acta Crystallographica Section A:<br>Foundations and Advances, 2000, 56, s114-s114.                                                                                                                                                            | 0.3 | 0         |
| 82 | Modelling gibbsite agglomeration in a constant supersaturation crystallizer. Chemical Engineering Science, 2000, 55, 5565-5578.                                                                                                                                                                           | 1.9 | 29        |
| 83 | Comparison of solubility and interactions of aprotinin (BPTI) solutions in H2O and D2O. Journal of Crystal Growth, 2000, 217, 311-319.                                                                                                                                                                    | 0.7 | 20        |
| 84 | The BPTI decamer observed in acidic pH crystal forms pre-exists as a stable species in solution. Journal of Molecular Biology, 2000, 297, 697-712.                                                                                                                                                        | 2.0 | 61        |
| 85 | Biophysical Characterization of Lithostathine. Journal of Biological Chemistry, 1999, 274, 22266-22274.                                                                                                                                                                                                   | 1.6 | 42        |
| 86 | Relation between Young's Modulus of set plaster and complete wetting of grain boundaries by water.<br>Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156, 373-379.                                                                                                               | 2.3 | 21        |
| 87 | The decameric structure of bovine pancreatic trypsin inhibitor (BPTI) crystallized from thiocyanate at<br>2.7â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 1999, 55, 103-113.                                                                                             | 2.5 | 25        |
| 88 | Nucleation of calcium oxalate crystals by albumin: Involvement in the prevention of stone formation.<br>Kidney International, 1999, 55, 1776-1786.                                                                                                                                                        | 2.6 | 65        |
| 89 | The influence of additives on the crystal habit of gibbsite. Journal of Crystal Growth, 1999, 196, 174-180.                                                                                                                                                                                               | 0.7 | 47        |
| 90 | Characterization and crystallization of the Endoglucanase A from Clostridium Cellulolyticum in solution. Journal of Crystal Growth, 1999, 196, 297-304.                                                                                                                                                   | 0.7 | 13        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Crystallization and dissolution of pharmaceutical compounds. Journal of Crystal Growth, 1999, 198-199, 1360-1364.                                                                                                                  | 0.7 | 37        |
| 92  | Crystallization of gypsum from hemihydrate in presence of additives. Journal of Crystal Growth, 1999, 198-199, 704-709.                                                                                                            | 0.7 | 119       |
| 93  | Agglomeration of gibbsite Al(OH)3 crystals in Bayer liquors. Influence of the process parameters.<br>Chemical Engineering Science, 1998, 53, 2177-2185.                                                                            | 1.9 | 56        |
| 94  | Study of Gypsum Dehydration by Controlled Transformation Rate Thermal Analysis (CRTA). Journal of<br>Solid State Chemistry, 1998, 139, 37-44.                                                                                      | 1.4 | 46        |
| 95  | Protein crystals orientation in a magnetic field. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 703-706.                                                                                                 | 2.5 | 37        |
| 96  | Different Tools to Study Interaction Potentials in γ-Crystallin Solutions: Relevance to Crystal<br>Growth. Acta Crystallographica Section D: Biological Crystallography, 1997, 53, 438-447.                                        | 2.5 | 23        |
| 97  | Comparison of solubilities and molecular interactions of BPTI molecules giving different polymorphs.<br>Journal of Crystal Growth, 1997, 173, 132-140.                                                                             | 0.7 | 61        |
| 98  | Calcium Carbonate Crystals Promote Calcium Oxalate Crystallization by Heterogeneous or Epitaxial<br>Nucleation: Possible Involvement in the Control of Urinary Lithogenesis. Calcified Tissue<br>International, 1996, 59, 322-322. | 1.5 | 0         |
| 99  | Calcium carbonate crystals promote calcium oxalate crystallization by heterogeneous or epitaxial nucleation: Possible involvement in the control of urinary lithogenesis. Calcified Tissue International, 1996, 59, 33-37.         | 1.5 | 23        |
| 100 | A non-immersed induction conductivity system for controlling supersaturation in corrosive media:<br>the case of gibbsite crystals agglomeration in Bayer liquors. Journal of Crystal Growth, 1996, 169,<br>124-128.                | 0.7 | 15        |
| 101 | Prenucleation, crystal growth and polymorphism of some proteins. Journal of Crystal Growth, 1996, 168, 124-129.                                                                                                                    | 0.7 | 30        |
| 102 | Pure Paracetamol for direct compression Part I. Development of sintered-like crystals of Paracetamol.<br>Powder Technology, 1995, 82, 123-128.                                                                                     | 2.1 | 43        |
| 103 | Pure Paracetamol for direct compression Part II. Study of the physicochemical and mechanical properties of sintered-like crystals of Paracetamol. Powder Technology, 1995, 82, 129-133.                                            | 2.1 | 18        |
| 104 | Solubility and prenucleation of aprotinin (BPTI) molecules in sodium chloride solutions. Journal of<br>Crystal Growth, 1994, 143, 249-255.                                                                                         | 0.7 | 39        |
| 105 | General concepts of hydrargillite Al(OH)3, agglomeration. Journal of Crystal Growth, 1994, 135, 505-512.                                                                                                                           | 0.7 | 23        |
| 106 | Growth kinetics of hydrargillite Al(OH)3 from caustic soda solutions. Journal of Crystal Growth, 1994, 142, 177-183.                                                                                                               | 0.7 | 35        |
| 107 | Influence of polydispersity on protein crystallization: a quasi-elastic light-scattering study applied to<br>α-amylase. Acta Crystallographica Section D: Biological Crystallography, 1994, 50, 355-360.                           | 2.5 | 25        |
| 108 | About supersaturation and growth rates of hydrargillite Al(OH)3 in alumina caustic solutions.<br>Journal of Crystal Growth, 1993, 130, 411-415.                                                                                    | 0.7 | 38        |

| #   | Article                                                                                                                                                 | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Attrition of hydrargillite (A1(OH)3): Mechanism and quantification of particle fragility by a new attrition index. Powder Technology, 1993, 75, 49-57.  | 2.1 | 12        |
| 110 | Influence of structure and size of crystalline aggregates on their compression ability. Drug<br>Development and Industrial Pharmacy, 1992, 18, 539-560. | 0.9 | 5         |
| 111 | Identification of anhydrosucrose derivatives formed by Mitsunobu chlorination of sucrose.<br>Carbohydrate Research, 1989, 190, 309-312.                 | 1.1 | 7         |
| 112 | Controlling polymorphism: general discussion. Faraday Discussions, 0, 235, 508-535.                                                                     | 1.6 | 2         |
| 113 | Understanding crystal nucleation mechanisms: where do we stand? General discussion. Faraday Discussions, 0, 235, 219-272.                               | 1.6 | 13        |