Robert T Dwyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1610691/publications.pdf Version: 2024-02-01

POREDT T DUIVED

#	Article	IF	CITATIONS
1	Tip Fold-over in Cochlear Implantation: Case Series. Otology and Neurotology, 2017, 38, 199-206.	1.3	83
2	Intra- and Postoperative Electrocochleography May Be Predictive of Final Electrode Position and Postoperative Hearing Preservation. Frontiers in Neuroscience, 2017, 11, 291.	2.8	71
3	Localization and interaural time difference (ITD) thresholds for cochlear implant recipients with preserved acoustic hearing in the implanted ear. Hearing Research, 2014, 312, 28-37.	2.0	68
4	The Relationship Between Spectral Modulation Detection and Speech Recognition: Adult Versus Pediatric Cochlear Implant Recipients. Trends in Hearing, 2018, 22, 233121651877117.	1.3	47
5	Speech recognition as a function of the number of channels in perimodiolar electrode recipients. Journal of the Acoustical Society of America, 2019, 145, 1556-1564.	1.1	45
6	Patterns Seen During Electrode Insertion Using Intracochlear Electrocochleography Obtained Directly Through a Cochlear Implant. Otology and Neurotology, 2017, 38, 1415-1420.	1.3	42
7	Intra-Cochlear Electrocochleography During Cochear Implant Electrode Insertion Is Predictive of Final Scalar Location. Otology and Neurotology, 2018, 39, e654-e659.	1.3	41
8	Cochlear Implantation in Ménière's Disease Patients. Otology and Neurotology, 2014, 35, 421-425.	1.3	37
9	Matched Cohort Comparison Indicates Superiority of Precurved Electrode Arrays. Otology and Neurotology, 2019, 40, 1160-1166.	1.3	32
10	Intracochlear Electrocochleography: Influence of Scalar Position of the Cochlear Implant Electrode on Postinsertion Results. Otology and Neurotology, 2019, 40, e503-e510.	1.3	27
11	Hearing Preservation Outcomes Using a Precurved Electrode Array Inserted With an External Sheath. Otology and Neurotology, 2020, 41, 33-38.	1.3	24
12	Bilateral Cochlear Implantation Versus Bimodal Hearing in Patients With Functional Residual Hearing: A Within-subjects Comparison of Audiologic Performance and Quality of Life. Otology and Neurotology, 2018, 39, 422-427.	1.3	22
13	Speech recognition with cochlear implants as a function of the number of channels: Effects of electrode placement. Journal of the Acoustical Society of America, 2020, 147, 3646-3656.	1.1	20
14	Use of intraoperative CT scanning for quality control assessment of cochlear implant electrode array placement*. Acta Oto-Laryngologica, 2020, 140, 206-211.	0.9	18
15	Diurnal Cortisol Levels and Subjective Ratings of Effort and Fatigue in Adult Cochlear Implant Users: A Pilot Study. American Journal of Audiology, 2019, 28, 686-696.	1.2	18
16	Speech recognition as a function of the number of channels for an array with large inter-electrode distances. Journal of the Acoustical Society of America, 2021, 149, 2752-2763.	1.1	10
17	Contralateral Routing of Signal Yields Significant Speech in Noise Benefit for Unilateral Cochlear Implant Recipients. Journal of the American Academy of Audiology, 2018, 30, 235-242.	0.7	9
18	Evaluation of a high-resolution patient-specific model of the electrically stimulated cochlea. Journal of Medical Imaging, 2017, 4, 025003.	1.5	8

Robert T Dwyer

#	Article	IF	CITATIONS
19	Supporting Equity and Inclusion of Deaf and Hard-of-Hearing Individuals in Professional Organizations. Frontiers in Education, 2021, 6, .	2.1	7
20	Musical Sound Quality as a Function of the Number of Channels in Modern Cochlear Implant Recipients. Frontiers in Neuroscience, 2019, 13, 999.	2.8	6
21	Participant-generated Cochlear Implant Programs. Otology and Neurotology, 2016, 37, e209-e216.	1.3	5
22	Validating a Quick Spectral Modulation Detection Task. Ear and Hearing, 2019, 40, 1478-1480.	2.1	5
23	Synchronized Automatic Gain Control in Bilateral Cochlear Implant Recipients Yields Significant Benefit in Static and Dynamic Listening Conditions. Trends in Hearing, 2021, 25, 233121652110141.	1.3	5
24	Effect of Microphone Configuration and Sound Source Location on Speech Recognition for Adult Cochlear Implant Users with Current-Generation Sound Processors. Journal of the American Academy of Audiology, 2020, 31, 578-589.	0.7	5
25	A Graph-Based Method for Optimal Active Electrode Selection in Cochlear Implants. Lecture Notes in Computer Science, 2020, 12263, 34-43.	1.3	3
26	Speech recognition as a function of the number of channels for Mid-Scala electrode array recipients. Journal of the Acoustical Society of America, 2022, 152, 67-79.	1.1	2
27	Changes in Acoustic Absorbance Pre– and Post–Cochlear Implantation. American Journal of Audiology, 2022, , 1-12.	1.2	1
28	Evaluation of a high-resolution patient-specific model of the electrically stimulated cochlea. Proceedings of SPIE, 2017, , .	0.8	0
29	Electrical stimulation overlap visualization for image-guided cochlear implant programming. , 2021, , .		0