
Geoffrey A Mueller

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1610491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bet v 1 and other birch allergens are more resistant to proteolysis and more abundant than other birch pollen proteins. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 1307-1309.	2.7	0
2	Structure, Immunogenicity, and IgE Cross-Reactivity among Walnut and Peanut Vicilin-Buried Peptides. Journal of Agricultural and Food Chemistry, 2022, 70, 2389-2400.	2.4	9
3	Nanobody Paratope Ensembles in Solution Characterized by MD Simulations and NMR. International Journal of Molecular Sciences, 2022, 23, 5419.	1.8	6
4	Human IgE monoclonal antibody recognition of mite allergen Der p 2 defines structural basis of an epitope for IgE cross-linking and anaphylaxis <i>in vivo</i> . , 2022, 1, .		11
5	Removal and Replacement of Endogenous Ligands from Lipid-Bound Proteins and Allergens. Journal of Visualized Experiments, 2021, , .	0.2	7
6	The mosquito protein AEG12 displays both cytolytic and antiviral properties via a common lipid transfer mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
7	Allergens and their associated small molecule ligands—their dual role in sensitization. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 2367-2382.	2.7	36
8	Response to Letter to the Editor regarding "Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches― Analytical and Bioanalytical Chemistry, 2021, 413, 7627-7629.	1.9	0
9	Abundance and Stability as Common Properties of Allergens. Frontiers in Allergy, 2021, 2, 769728.	1.2	33
10	Editorial: Activation of Innate Immunity by Allergens and Allergenic Sources. Frontiers in Allergy, 2021, 2, 800929.	1.2	0
11	Are allergens more abundant and/or more stable than other proteins in pollens and dust?. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1267-1269.	2.7	7
12	Identification of the aminoâ€ŧerminal fragment of Ara h 1 as a major target of the IgEâ€binding activity in the basic peanut protein fraction. Clinical and Experimental Allergy, 2020, 50, 401-405.	1.4	19
13	Mixture analyses of air-sampled pollen extracts can accurately differentiate pollen taxa. Atmospheric Environment, 2020, 243, 117746.	1.9	7
14	Comparison of phytochemical composition of Ginkgo biloba extracts using a combination of non-targeted and targeted analytical approaches. Analytical and Bioanalytical Chemistry, 2020, 412, 6789-6809.	1.9	14
15	Structural Aspects of the Allergen-Antibody Interaction. Frontiers in Immunology, 2020, 11, 2067.	2.2	29
16	Mapping Human Monoclonal IgE Epitopes on the Major Dust Mite Allergen Der p 2. Journal of Immunology, 2020, 205, 1999-2007.	0.4	21
17	A Human IgE Antibody Binding Site on Der p 2 for the Design of a Recombinant Allergen for Immunotherapy. Journal of Immunology, 2019, 203, 2545-2556.	0.4	19
18	Multiple roles of Bet v 1 ligands in allergen stabilization and modulation of endosomal protease activity. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2382-2393.	2.7	51

#	Article	IF	CITATIONS
19	The NMR structure and IgE Epitopes of Ara h 1 Leader Sequence. Journal of Allergy and Clinical Immunology, 2019, 143, AB240.	1.5	0
20	Mapping human monoclonal IgE epitopes on Der p 2. Journal of Allergy and Clinical Immunology, 2019, 143, AB183.	1.5	1
21	Analysis Of IgE Antigenic Determinants On Der p 2 For Design Of Immunotherapy. Journal of Allergy and Clinical Immunology, 2019, 143, AB185.	1.5	Ο
22	Evaluation of the allergenic activity of the Glutathione Transferase from Blomia tropicalis (Blo t 8) in a mouse model of airway inflammation. Journal of Allergy and Clinical Immunology, 2019, 143, AB187.	1.5	2
23	Influence of Hydrophobic Cargo Binding on the Structure, Stability, and Allergenicity of the Cockroach Allergen Bla g 1. Journal of Allergy and Clinical Immunology, 2019, 143, AB213.	1.5	2
24	Structural Analysis of Recent Allergen-Antibody Complexes and Future Directions. Current Allergy and Asthma Reports, 2019, 19, 17.	2.4	6
25	Leucine-rich repeats and calponin homology containing 4 (Lrch4) regulates the innate immune response. Journal of Biological Chemistry, 2019, 294, 1997-2008.	1.6	16
26	Hydrophobic ligands influence the structure, stability, and processing of the major cockroach allergen Bla g 1. Scientific Reports, 2019, 9, 18294.	1.6	14
27	Keeping Allergen Names Clear and Defined. Frontiers in Immunology, 2019, 10, 2600.	2.2	16
28	WHO/IUIS Allergen Nomenclature: Providing a common language. Molecular Immunology, 2018, 100, 3-13.	1.0	162
29	The Draft Genome Assembly of <i>Dermatophagoides pteronyssinus</i> Supports Identification of Novel Allergen Isoforms in <i>Dermatophagoides</i> Species. International Archives of Allergy and Immunology, 2018, 175, 136-146.	0.9	14
30	Context matters: TH2 polarization resulting from pollen composition and not from protein-intrinsic allergenicity. Journal of Allergy and Clinical Immunology, 2018, 142, 984-987.e6.	1.5	33
31	Mechanism of <scp>APTX</scp> nicked <scp>DNA</scp> sensing and pleiotropic inactivation in neurodegenerative disease. EMBO Journal, 2018, 37, .	3.5	13
32	Transitions in DNA polymerase β μs-ms dynamics related to substrate binding and catalysis. Nucleic Acids Research, 2018, 46, 7309-7322.	6.5	3
33	New Insights into Cockroach Allergens. Current Allergy and Asthma Reports, 2017, 17, 25.	2.4	63
34	NIAID, NIEHS, NHLBI, and MCAN Workshop Report: The indoor environment and childhood asthma—implications for home environmental intervention in asthma prevention and management. Journal of Allergy and Clinical Immunology, 2017, 140, 933-949.	1.5	75
35	APE2 Zf-GRF facilitates 3′-5′ resection of DNA damage following oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 304-309.	3.3	50
36	Contributions and Future Directions for Structural Biology in the Study of Allergens. International Archives of Allergy and Immunology, 2017, 174, 57-66.	0.9	19

#	Article	IF	CITATIONS
37	ZATT (ZNF451)–mediated resolution of topoisomerase 2 DNA-protein cross-links. Science, 2017, 357, 1412-1416.	6.0	127
38	Identification of drivers for the metamorphic transition of HIV-1 reverse transcriptase. Biochemical Journal, 2017, 474, 3321-3338.	1.7	7
39	Are dust mite allergens more abundant and/or more stable than other Dermatophagoides pteronyssinus proteins?. Journal of Allergy and Clinical Immunology, 2017, 139, 1030-1032.e1.	1.5	15
40	Proteases of Dermatophagoides pteronyssinus. International Journal of Molecular Sciences, 2017, 18, 1204.	1.8	14
41	Serological, genomic and structural analyses of the major mite allergen Der p 23. Clinical and Experimental Allergy, 2016, 46, 365-376.	1.4	69
42	A metabolomic, geographic, and seasonal analysis of the contribution of pollen-derived adenosine to allergic sensitization. Metabolomics, 2016, 12, 1.	1.4	10
43	Structural, Serological, and Genomic Analyses of the Major Mite Allergen Der p 23. Journal of Allergy and Clinical Immunology, 2016, 137, AB267.	1.5	1
44	Are Dust Mite Allergens More Abundant or More Stable Than Other Dermatophagoides Pteronyssinus Proteins?. Journal of Allergy and Clinical Immunology, 2016, 137, AB268.	1.5	0
45	Enhanced Approaches for Identifying Amadori Products: Application to Peanut Allergens. Journal of Agricultural and Food Chemistry, 2016, 64, 1406-1413.	2.4	11
46	Unfolding the HIV-1 reverse transcriptase RNase H domain – how to lose a molecular tug-of-war. Nucleic Acids Research, 2016, 44, 1776-1788.	6.5	10
47	Analysis of GST Allergen Cross-Reactivity in a North American Population for Molecular Diagnosis. Journal of Allergy and Clinical Immunology, 2015, 135, AB187.	1.5	1
48	100ÂYears later: Celebrating the contributions of x-ray crystallography to allergy and clinical immunology. Journal of Allergy and Clinical Immunology, 2015, 136, 29-37.e10.	1.5	33
49	Analysis of glutathione S-transferase allergen cross-reactivity in a North American population: RelevanceÂfor molecular diagnosis. Journal of Allergy and Clinical Immunology, 2015, 136, 1369-1377.	1.5	52
50	Asymmetric conformational maturation of HIV-1 reverse transcriptase. ELife, 2015, 4, .	2.8	19
51	Characterization of the Redox Transition of the XRCC1 N-terminal Domain. Structure, 2014, 22, 1754-1763.	1.6	6
52	Primary Identification, Biochemical Characterization, and Immunologic Properties of the Allergenic Pollen Cyclophilin Cat r 1. Journal of Biological Chemistry, 2014, 289, 21374-21385.	1.6	31
53	Selective unfolding of one Ribonuclease H domain of HIV reverse transcriptase is linked to homodimer formation. Nucleic Acids Research, 2014, 42, 5361-5377.	6.5	25
54	Characterization of an anti-Bla g 1 scFv: Epitope mapping and cross-reactivity. Molecular Immunology, 2014, 59, 200-207.	1.0	6

#	Article	IF	CITATIONS
55	The Molecular Basis of Peanut Allergy. Current Allergy and Asthma Reports, 2014, 14, 429.	2.4	58
56	Epitope Mapping Of An Anti-Bla g 1 ScFv Used For Cockroach Allergen Quantitation. Journal of Allergy and Clinical Immunology, 2014, 133, AB100.	1.5	0
57	Antigenic Analysis Of The Major Cockroach Allergen Bla g 5 and Its Dust Mite Homolog Der p 8. Journal of Allergy and Clinical Immunology, 2014, 133, AB100.	1.5	Ο
58	The Cockroach Allergen Bla g 1 Forms Alpha Helical Capsules with an Internal Lipid Binding Cavity: Implications for Allergenicity. Journal of Allergy and Clinical Immunology, 2013, 131, AB16.	1.5	0
59	Protein-Mediated Antagonism between HIV Reverse Transcriptase Ligands Nevirapine and MgATP. Biophysical Journal, 2013, 104, 2695-2705.	0.2	5
60	The novel structure of the cockroach allergen Bla g 1 has implications for allergenicity and exposure assessment. Journal of Allergy and Clinical Immunology, 2013, 132, 1420-1426.e9.	1.5	64
61	Genomic, RNAseq, and Molecular Modeling Evidence Suggests That the Major Allergen Domain in Insects Evolved from a Homodimeric Origin. Genome Biology and Evolution, 2013, 5, 2344-2358.	1.1	18
62	Identification of Maillard reaction products on peanut allergens that influence binding to the receptor for advanced glycation end products. Allergy: European Journal of Allergy and Clinical Immunology, 2013, 68, 1546-1554.	2.7	63
63	Metal and ligand binding to the HIV-RNase H active site are remotely monitored by Ile556. Nucleic Acids Research, 2012, 40, 10543-10553.	6.5	10
64	Metal-induced DNA translocation leads to DNA polymerase conformational activation. Nucleic Acids Research, 2012, 40, 2974-2983.	6.5	30
65	Crystal Structure of Calmodulin Binding Domain of Orai1 in Complex with Ca2+•Calmodulin Displays a Unique Binding Mode. Journal of Biological Chemistry, 2012, 287, 43030-43041.	1.6	58
66	Ara h 2: crystal structure and IgE binding distinguish two subpopulations of peanut allergic patients by epitope diversity. Allergy: European Journal of Allergy and Clinical Immunology, 2011, 66, 878-885.	2.7	86
67	Structural studies of the PARP-1 BRCT domain. BMC Structural Biology, 2011, 11, 37.	2.3	41
68	Conformational dependence of 13C shielding and coupling constants for methionine methyl groups. Journal of Biomolecular NMR, 2010, 48, 31-47.	1.6	35
69	Solution structure of the Drosha double-stranded RNA-binding domain. Silence: A Journal of RNA Regulation, 2010, 1, 2.	8.0	26
70	A synergistic approach to protein crystallization: Combination of a fixedâ€arm carrier with surface entropy reduction. Protein Science, 2010, 19, 901-913.	3.1	131
71	Solution structure and function of YndB, an AHSA1 protein from <i>Bacillus subtilis</i> . Proteins: Structure, Function and Bioinformatics, 2010, 78, 3328-3340.	1.5	13
72	Der p 5 Crystal Structure Provides Insight into the Group 5 Dust Mite Allergens. Journal of Biological Chemistry, 2010, 285, 25394-25401.	1.6	52

#	Article	IF	CITATIONS
73	The structure of the dust mite allergen Der p 7 reveals similarities to innate immune proteins. Journal of Allergy and Clinical Immunology, 2010, 125, 909-917.e4.	1.5	99
74	The Der p 7 Crystal Structure Reveals Similarities to Innate Immune Proteins. Journal of Allergy and Clinical Immunology, 2010, 125, AB188.	1.5	1
75	Homodimerization of the p51 Subunit of HIV-1 Reverse Transcriptase. Biochemistry, 2010, 49, 2821-2833.	1.2	19
76	Solution characterization of [methyl-13C]methionine HIV-1 reverse transcriptase by NMR spectroscopy. Antiviral Research, 2009, 84, 205-214.	1.9	19
77	Analytical solution to the coupled evolution of multidimensional NMR data. Journal of Biomolecular NMR, 2009, 44, 13-23.	1.6	12
78	1H, 13C, and 15N NMR assignments for the Bacillus subtilis yndB START domain. Biomolecular NMR Assignments, 2009, 3, 191-194.	0.4	4
79	A comparison of BRCT domains involved in nonhomologous end-joining: Introducing the solution structure of the BRCT domain of polymerase lambda. DNA Repair, 2008, 7, 1340-1351.	1.3	33
80	Dependence of Amino Acid Side Chain ¹³ C Shifts on Dihedral Angle: Application to Conformational Analysis. Journal of the American Chemical Society, 2008, 130, 11097-11105.	6.6	71
81	NMR analysis of [methyl-13C]methionine UvrB from Bacillus caldotenax reveals UvrB–domain 4 heterodimer formation in solution. Journal of Molecular Biology, 2007, 373, 282-295.	2.0	24
82	Solution Structure of Polymerase μ's BRCT Domain Reveals an Element Essential for Its Role in Nonhomologous End Joining. Biochemistry, 2007, 46, 12100-12110.	1.2	25
83	NMR assignment of polymerase β labeled with 2H, 13C, and 15N in complex with substrate DNA. Biomolecular NMR Assignments, 2007, 1, 33-35.	0.4	5
84	NMR Structure of AbhN and Comparison with AbrBN. Journal of Biological Chemistry, 2006, 281, 21399-21409.	1.6	19
85	Nuclear Magnetic Resonance Solution Structure of the Escherichia coli DNA Polymerase III Î, Subunit. Journal of Bacteriology, 2005, 187, 7081-7089.	1.0	19
86	Revised structure of the AbrB N-terminal domain unifies a diverse superfamily of putative DNA-binding proteins. FEBS Letters, 2005, 579, 5669-5674.	1.3	45
87	NvAssign: protein NMR spectral assignment with NMRView. Bioinformatics, 2004, 20, 1201-1203.	1.8	21
88	The Focal Adhesion Targeting Domain of Focal Adhesion Kinase Contains a Hinge Region that Modulates Tyrosine 926 Phosphorylation. Structure, 2004, 12, 881-891.	1.6	37
89	Phage Like It HOT. Structure, 2004, 12, 2221-2231.	1.6	12
90	Dynamic Characterization of a DNA Repair Enzyme:Â NMR Studies of [methyl-13C]Methionine-Labeled DNA Polymerase β. Biochemistry, 2004, 43, 8911-8922.	1.2	53

#	Article	IF	CITATIONS
91	Backbone Dynamics of the RNase H Domain of HIV-1 Reverse Transcriptase. Biochemistry, 2004, 43, 9332-9342.	1.2	24
92	The N-Terminal Domain of the Drosophila Histone mRNA Binding Protein, SLBP, Is Intrinsically Disordered with Nascent Helical Structure,. Biochemistry, 2004, 43, 9390-9400.	1.2	18
93	NMR assignment of protein side chains using residue-correlated labeling and NOE spectra. Journal of Magnetic Resonance, 2003, 165, 237-247.	1.2	2
94	NMR Studies of the Interaction of a Type II Dihydrofolate Reductase with Pyridine Nucleotides Reveal Unexpected Phosphatase and Reductase Activityâ€. Biochemistry, 2003, 42, 11150-11160.	1.2	22
95	Solution Structure of the RNase H Domain of the HIV-1 Reverse Transcriptase in the Presence of Magnesiumâ€. Biochemistry, 2003, 42, 639-650.	1.2	53
96	Solution Structure of the Lyase Domain of Human DNA Polymerase λ. Biochemistry, 2003, 42, 9564-9574.	1.2	27
97	The Crystal Structure of a Major Dust Mite Allergen Der p 2, and its Biological Implications. Journal of Molecular Biology, 2002, 318, 189-197.	2.0	137
98	The Nuclease A Inhibitor Represents a New Variation of the Rare PR-1 Fold. Journal of Molecular Biology, 2002, 320, 771-782.	2.0	20
99	Comparison of a Neural Net-Based QSAR Algorithm (PCANN) with Hologram- and Multiple Linear Regression-Based QSAR Approaches:  Application to 1,4-Dihydropyridine-Based Calcium Channel Antagonists. Journal of Chemical Information and Computer Sciences, 2001, 41, 505-511.	2.8	43
100	Direct structure refinement of high molecular weight proteins against residual dipolar couplings and carbonyl chemical shift changes upon alignment: an application to maltose binding protein. Journal of Biomolecular NMR, 2001, 21, 31-40.	1.6	50
101	Hydrogen Exchange Nuclear Magnetic Resonance Spectroscopy Mapping of Antibody Epitopes on the House Dust Mite Allergen Der p 2. Journal of Biological Chemistry, 2001, 276, 9359-9365.	1.6	54
102	A method for incorporating dipolar couplings into structure calculations in cases of (near) axial symmetry of alignment. Journal of Biomolecular NMR, 2000, 18, 183-188.	1.6	15
103	Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with β-cyclodextrin. Journal of Molecular Biology, 2000, 295, 1265-1273.	2.0	197
104	Clobal folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. Journal of Molecular Biology, 2000, 300, 197-212.	2.0	165
105	Title is missing!. Journal of Biomolecular NMR, 1999, 14, 333-343.	1.6	122
106	A robust and cost-effective method for the production of Val, Leu, Ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. Journal of Biomolecular NMR, 1999, 13, 369-374.	1.6	461
107	Tertiary Structure of the Major House Dust Mite Allergen Der p 2:  Sequential and Structural Homologies [,] . Biochemistry, 1998, 37, 12707-12714.	1.2	84
108	Future directions for allergen immunotherapy. Journal of Allergy and Clinical Immunology, 1998, 102, 335-343.	1.5	51

#	Article	IF	CITATIONS
109	Complementation of Der p 2–induced histamine release from human basophils sensitized with monoclonal IgE: Not only by IgE, but also by IgG antibodies directed to a nonoverlapping epitope of Der p 2â~†â~†â~tâ~â~a~ Journal of Allergy and Clinical Immunology, 1998, 101, 404-409.	1.5	18
110	Expression and Secondary Structure Determination by NMR Methods of the Major House Dust Mite Allergen Der p 2. Journal of Biological Chemistry, 1997, 272, 26893-26898.	1.6	49
111	Antigenic and Molecular Structure of the Mite Allergen Der p 2. International Archives of Allergy and Immunology, 1997, 113, 99-101.	0.9	5
112	Mouse/human chimeric IgGl and IgG4 antibodies directed to the house dust mite allergen Der p 2: use in quantification of allergen specific IgG. Clinical and Experimental Allergy, 1997, 27, 1095-1102.	1.4	20