Yong Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1610419/publications.pdf Version: 2024-02-01

YONG YANG

#	Article	IF	CITATIONS
1	Insight into methanol synthesis from CO2 hydrogenation on Cu(111): Complex reaction network and the effects of H2O. Journal of Catalysis, 2011, 281, 199-211.	6.2	347
2	Rationally designed indium oxide catalysts for CO ₂ hydrogenation to methanol with high activity and selectivity. Science Advances, 2020, 6, eaaz2060.	10.3	211
3	Understanding of binding energy calibration in XPS of lanthanum oxide by <i>in situ</i> treatment. Physical Chemistry Chemical Physics, 2019, 21, 22351-22358.	2.8	152
4	Bimetallic monolayer catalyst breaks the activity–selectivity trade-off on metal particle size for efficient chemoselective hydrogenations. Nature Catalysis, 2021, 4, 840-849.	34.4	102
5	Online Kinetics Study of Oxidative Coupling of Methane over La ₂ O ₃ for Methane Activation: What Is Behind the Distinguished Light-off Temperatures?. ACS Catalysis, 2018, 8, 11761-11772.	11.2	60
6	Understanding lanthanum oxide surface structure by DFT simulation of oxygen 1s calibrated binding energy in XPS after in situ treatment. Applied Surface Science, 2021, 548, 149214.	6.1	42
7	Nickel nanoparticles with interfacial confinement mimic noble metal catalyst in methane dry reforming. Applied Catalysis B: Environmental, 2021, 285, 119837.	20.2	36
8	Tuning the activities of cuprous oxide nanostructures via the oxide-metal interaction. Nature Communications, 2020, 11, 2312.	12.8	31
9	Active oxygen center in oxidative coupling of methane on La2O3 catalyst. Journal of Energy Chemistry, 2021, 60, 649-659.	12.9	28
10	Direct aerobic oxidation of monoalcohol and diols to acetals using tandem Ru@MOF catalysts. Nano Research, 2021, 14, 479-485.	10.4	27
11	Engineering plasticization resistant gas separation membranes using metal–organic nanocapsules. Chemical Science, 2020, 11, 4687-4694.	7.4	22
12	Direct conversion of CO2 to a jet fuel over CoFe alloy catalysts. Innovation(China), 2021, 2, 100170.	9.1	21
13	How CO2 poisons La2O3 in an OCM catalytic reaction: A study by in situ XRD-MS and DFT. Journal of Catalysis, 2021, 396, 202-214.	6.2	14
14	Investigation of CO oxidation over Au/TiO2 catalyst through detailed temperature programmed desorption study under low temperature and Operando conditions. Catalysis Today, 2018, 307, 84-92.	4.4	13
15	Decomposition of Supported Pd Hydride Nanoparticles for the Synthesis of Highly Dispersed Metallic Catalyst. Chemistry of Materials, 2018, 30, 8116-8120.	6.7	7
16	Exploring the formation of carbonates on La ₂ O ₃ catalysts with OCM activity. Catalysis Science and Technology, 2021, 11, 6516-6528.	4.1	7
17	An In Situ Temperature-Dependent Study of La2O3 Reactivation Process. Frontiers in Chemistry, 2021, 9, 694559.	3.6	5