
Alice Sciortino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1610377/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solvatochromism Unravels the Emission Mechanism of Carbon Nanodots. Journal of Physical Chemistry Letters, 2016, 7, 3419-3423.	2.1	179
2	Carbon Nanodots: A Review—From the Current Understanding of the Fundamental Photophysics to the Full Control of the Optical Response. Journal of Carbon Research, 2018, 4, 67.	1.4	137
3	Characteristic Excitation Wavelength Dependence of Fluorescence Emissions in Carbon "Quantum― Dots. Journal of Physical Chemistry C, 2017, 121, 28180-28186.	1.5	93
4	β-C ₃ N ₄ Nanocrystals: Carbon Dots with Extraordinary Morphological, Structural, and Optical Homogeneity. Chemistry of Materials, 2018, 30, 1695-1700.	3.2	76
5	Highly Homogeneous Biotinylated Carbon Nanodots: Red-Emitting Nanoheaters as Theranostic Agents toward Precision Cancer Medicine. ACS Applied Materials & Interfaces, 2019, 11, 19854-19866.	4.0	61
6	Tailoring the Emission Color of Carbon Dots through Nitrogen-Induced Changes of Their Crystalline Structure. Journal of Physical Chemistry C, 2018, 122, 19897-19903.	1.5	54
7	Fluorescent nitrogen-rich carbon nanodots with an unexpected β-C ₃ N ₄ nanocrystalline structure. Journal of Materials Chemistry C, 2016, 4, 2598-2605.	2.7	53
8	The interaction of photoexcited carbon nanodots with metal ions disclosed down to the femtosecond scale. Nanoscale, 2017, 9, 11902-11911.	2.8	47
9	Different natures of surface electronic transitions of carbon nanoparticles. Physical Chemistry Chemical Physics, 2017, 19, 22670-22677.	1.3	37
10	One-pot synthesis of graphene quantum dots and simultaneous nanostructured self-assembly <i>via</i> a novel microwave-assisted method: impact on triazine removal and efficiency monitoring. RSC Advances, 2018, 8, 29939-29946.	1.7	35
11	Disentangling size effects and spectral inhomogeneity in carbon nanodots by ultrafast dynamical hole-burning. Nanoscale, 2018, 10, 15317-15323.	2.8	33
12	A Comparative Study of Top-Down and Bottom-Up Carbon Nanodots and Their Interaction with Mercury Ions. Nanomaterials, 2021, 11, 1265.	1.9	25
13	Simultaneous Photonic and Excitonic Coupling in Spherical Quantum Dot Supercrystals. ACS Nano, 2020, 14, 13806-13815.	7.3	22
14	Synthesis of multi-color luminescent ZnO nanoparticles by ultra-short pulsed laser ablation. Applied Surface Science, 2020, 506, 144954.	3.1	21
15	UV photobleaching of carbon nanodots investigated by <i>in situ</i> optical methods. Physical Chemistry Chemical Physics, 2020, 22, 13398-13407.	1.3	21
16	Ultrafast spectroscopic investigation on fluorescent carbon nanodots: the role of passivation. Physical Chemistry Chemical Physics, 2019, 21, 16459-16467.	1.3	19
17	Highly Efficient Electron Transfer in a Carbon Dot–Polyoxometalate Nanohybrid. Journal of Physical Chemistry Letters, 2020, 11, 4379-4384.	2.1	16
18	Disclosing the emissive surface traps in green-emitting carbon nanodots. Carbon, 2021, 173, 454-461.	5.4	16

ALICE SCIORTINO

#	ARTICLE	IF	CITATIONS
19	Decagram-Scale Synthesis of Multicolor Carbon Nanodots: Self-Tracking Nanoheaters with Inherent and Selective Anticancer Properties. ACS Applied Materials & Interfaces, 2022, 14, 2551-2563.	4.0	15
20	Photocycle of Excitons in Nitrogen-Rich Carbon Nanodots: Implications for Photocatalysis and Photovoltaics. ACS Applied Nano Materials, 2020, 3, 6925-6934.	2.4	11
21	Dynamic Modification of Fermi Energy in Single-Layer Graphene by Photoinduced Electron Transfer from Carbon Dots. Nanomaterials, 2020, 10, 528.	1.9	9
22	Pressure-Dependent Tuning of Photoluminescence and Size Distribution of Carbon Nanodots for Theranostic Anticancer Applications. Materials, 2020, 13, 4899.	1.3	8
23	Printable Thermo- and Photo-stable Poly(D,L-lactide)/Carbon Nanodots Nanocomposites via Heterophase Melt-Extrusion Transesterification. Chemical Engineering Journal, 2022, 443, 136525.	6.6	8
24	Carbon Dots Dispersed on Graphene/SiO 2 /Si: A Morphological Study. Physica Status Solidi (A) Applications and Materials Science, 2019, 216, 1800559.	0.8	6
25	Photoinduced charge transfer from Carbon Dots to Graphene in solid composite. Thin Solid Films, 2019, 669, 620-624.	0.8	6
26	Ultrafast Interface Charge Separation in Carbon Nanodot–Nanotube Hybrids. ACS Applied Materials & Interfaces, 2021, 13, 49232-49241.	4.0	5
27	Sensing of Transition Metals by Top-Down Carbon Dots. Applied Sciences (Switzerland), 2021, 11, 10360.	1.3	3
28	Effect of Halogen Ions on the Photocycle of Fluorescent Carbon Nanodots. Journal of Carbon Research, 2019, 5, 64.	1.4	1
29	Transient absorption with a femtosecond tunable excitation pump reveals the emission kinetics of color centers in amorphous silica. Optics Letters, 2021, 46, 1736.	1.7	1
30	Fluorescent Carbon Nanodots as Sensors of Toxic Metal Ions and Pesticides. Engineering Proceedings, 2021, 6, .	0.4	1
31	Photo-Activated Phosphorescence of Ultrafine ZnS:Mn Quantum Dots: On the Lattice Strain Contribution. Journal of Physical Chemistry C, 2022, 126, 1531-1541.	1.5	1
32	Electron transfer between carbon dots and tetranuclear Dawson-derived sandwich polyanions. Physical Chemistry Chemical Physics, 2022, 24, 17654-17664.	1.3	1
33	Photoinduced charge separation in functional carbon-silver nanohybrids. Physical Chemistry Chemical Physics, 2022, , .	1.3	0