Jyoti Prakash Biswal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1610344/publications.pdf

Version: 2024-02-01

143 papers 3,558 citations

34 h-index 206102 48 g-index

154 all docs

154 docs citations

times ranked

154

6307 citing authors

#	Article	IF	CITATIONS
1	ATLAS b-jet identification performance and efficiency measurement with $f(x)$ events in pp collisions at $f(x)$ events in pp collisions at $f(x)$ at $f(x)$ events in pp	3.9	130
2	Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in $\frac{1}{2}=13$ \$\times \tilde{A}\$\$ pp collisions using the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	124
3	Performance of electron and photon triggers in ATLAS during LHC Run 2. European Physical Journal C, 2020, 80, 1.	3.9	93
4	Muon reconstruction and identification efficiency in ATLAS using the full Run 2 pp collision data set at $\$sqrt\{s\}=13\$$ TeV. European Physical Journal C, 2021, 81, 1.	3.9	82
5	Search for heavy particles decaying into top-quark pairs using lepton-plus-jets events in proton–proton collisions at \$\$sqrt{s} = 13\$\$ s = 13 \$\$ext {TeV}\$\$ TeV with the ATLAS detector. European Physical Journal C, 2018, 78, 565.	3.9	79
6	Electron reconstruction and identification in the ATLAS experiment using the 2015 and 2016 LHC proton–proton collision data at \$\$sqrt{s} = 13\$\$Â\$\$ext {TeV}\$\$. European Physical Journal C, 2019, 79, 1.	3.9	77
7	Search for new resonances in mass distributions of jet pairs using 139 fba 1 of pp collisions at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	68
8	Jet energy scale and resolution measured in proton–proton collisions at \$\$sqrt{s}=13\$\$ÂTeV with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	64
9	Measurement of the Higgs boson mass in the Ha€ a† a€ ZZaZa€ a† a€ 4a, " and Ha€ a† a€ 1313 channels with <mr altimg="si1.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msqrt><mml:mrow><mml:mi></mml:mi></mml:mrow></mml:msqrt><mml:mo>=<td></td><td>ทไฮลท>13</td></mml:mo></mr>		ท ไฮล ท>13
10	Prompt and non-prompt \$\$J/psi \$\$ J / Ï^ and \$\$psi (2mathrm {S})\$\$ Ï^ (2 S) suppression at high transverse momentum in \$\$5.02~mathrm {TeV}\$\$ 5.02 TeV Pb+Pb collisions with the ATLAS experiment. European Physical Journal C, 2018, 78, 762.	3.9	61
11	Search for doubly charged scalar bosons decaying into same-sign W boson pairs with the ATLAS detector. European Physical Journal C, 2019, 79, 58.	3.9	61
12	Search for charged Higgs bosons decaying via $H\hat{A}\pm\hat{a}\uparrow'\hat{l}_{,\hat{A}}\pm\hat{l}_{,\hat{Z}}\hat{l}_{,\hat{a}}$ in the $\hat{l}_{,\hat{a}}\pm\hat{l}_{,\hat{a}}\pm\hat{l}_{,\hat{a}}$ in the $\hat{l}_{,\hat{a}}\pm\hat{l}_{,\hat{a}}$ in the $\hat{l}_{,\hat{a}}\pm\hat{l}_{,\hat{a}}$	oâ^'1 4.7	59
13	Search for charged Higgs bosons decaying into top and bottom quarks at $\$$ sqrt $\{s\}=13$ $\$$ TeV with the ATLAS detector. Journal of High Energy Physics, 2018, 2018, 1.	4.7	56
14	Search for Higgs boson pair production in the \$\$gamma gamma WW^*\$\$ \hat{I}^3 \hat{I}^3 W W \hat{I}^3 — channel using \$\$pp\$\$ pp collision data recorded at \$\$sqrt{s}\$\$ s \$\$=13\$\$ = 13 TeV with the ATLAS detector. European Physical Journal C, 2018, 78, 1007.	3.9	53
15	Measurement of the azimuthal anisotropy of charged particles produced in \$\$sqrt{s_{_ext {NN}}}\$\$ s NN = 5.02ÂTeV Pb+Pb collisions with the ATLAS detector. European Physical Journal C, 2018, 78, 997.	3.9	51
16	Search for heavy neutral leptons in decays of W bosons produced in 13 TeV pp collisions using prompt and displaced signatures with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	50
17	Constraints on mediator-based dark matter and scalar dark energy models using \$\$ sqrt{s} \$\$ = 13 TeV pp collision data collected by the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	49
18	Measurement of the top quark mass in the $\frac{t}{d}$ the $\frac{1}{2}$ ightarrow $t \hat{A}$ at a function Physical Journal C, 2019, 79, 1.	3.9	47

#	Article	lF	Citations
19	Measurement of the photon identification efficiencies with the ATLAS detector using LHC Run 2 data collected in 2015 and 2016. European Physical Journal C, 2019, 79, 1.	3.9	46
20	Search for charged Higgs bosons decaying into a top quark and a bottom quark at $\$\$$ sqrt{mathrm{s}} $\$\$ = 13$ TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	46
21	Performance of top-quark and \$\$varvec{W}\$\$ W -boson tagging with ATLAS in Run 2 of the LHC. European Physical Journal C, 2019, 79, 1. Search for Low-Mass Dijet Resonances Using Trigger-Level Jets with the ATLAS Detector in <mml:math< td=""><td>3.9</td><td>42</td></mml:math<>	3.9	42
22	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mi>p</mml:mi> <mml:mi>p</mml:mi> >c/mml:mi>>c/mml:mi>>c/mml:mi>="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><mml:msgrt><m< td=""><td>7.8 nn><mml:i< td=""><td>41 ntext> <</td></mml:i<></td></m<></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt></mml:msgrt>	7.8 nn> <mml:i< td=""><td>41 ntext> <</td></mml:i<>	41 ntext> <
23	Physical Review Letters, $2013, 121, 081801$. Measurement of \$\$\tilde{\Psi} \text{Pm} \frac{2012}{25\$} production cross sections and gauge boson polarisation in pp collisions at \$\$\sqrt{s} = 13\text{TeV}\$\$ with the ATLAS detector. European Physical Journal C, 2019, 79, 1.	3.9	41
24	Higgs boson production cross-section measurements and their EFT interpretation in the $\$\$4ell \$\$$ decay channel at $\$\$qrt\{s\}=\$\$13\ATeV$ with the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	41
25	Measurements of b-jet tagging efficiency with the ATLAS detector using \$\$ toverline{t} \$\$ events at \$\$ sqrt{s}=13 \$\$ TeV. Journal of High Energy Physics, 2018, 2018, 1.	4.7	40
26	Search for heavy resonances decaying into a pair of Z bosons in the \$\$ell ^+ell ^-ell '^+ell '^-\$\$ and \$\$ell ^+ell ^-u {{ar{u }}}\$\$ final states using 139 \$\$mathrm {fb}^{-1}\$\$ of protonâ \in "proton collisions at \$\$sqrt{s} = 13,\$\$TeV with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	40
27	Search for heavy Majorana or Dirac neutrinos and right-handed W gauge bosons in final states with two charged leptons and two jets at $\$$ sqrt $\{s\}=13$ $\$$ TeV with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	39
28	Search for Higgs boson pair production in the \$\$ upgamma upgamma boverline{b} \$\$ final state with 13 TeV pp collision data collected by the ATLAS experiment. Journal of High Energy Physics, 2018, 2018, 1.	4.7	38
29	Measurements of WH and ZH production in the \$\$H ightarrow bar{b}\$\$ decay channel in pp collisions at $$13,ext \{Te\}ext \{V\}$ \$ with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	38
30	Electron and photon energy calibration with the ATLAS detector using 2015–2016 LHC proton-proton collision data. Journal of Instrumentation, 2019, 14, P03017-P03017.	1.2	37
31	Search for squarks and gluinos in final states with jets and missing transverse momentum using 139 fbâ^'1 of $\$$ sqrt{s} $\$$ = 13 TeV pp collision data with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	37
32	Measurement of flow harmonics correlations with mean transverse momentum in leadâ \in "lead and protonâ \in "lead collisions atÂ\$\$sqrt{s_{mathrm{NN}}} = 5.02~hbox {TeV}\$\$ with the ATLAS detector. European Physical Journal C, 2019, 79, 1.	3.9	36
33	Search for pairs of scalar leptoquarks decaying into quarks and electrons or muons in \$\$ sqrt{s} \$\$ = 13 TeV pp collisions with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	36
34	Search for a scalar partner of the top quark in the all-hadronic $f(x)$ plus missing transverse momentum final state at $f(x)$ with the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	36
35	Measurements of top-quark pair differential and double-differential cross-sections in the $\$$ ell $\$$ +jets channel with pp collisions at $\$$ qrt $\{s\}$ =13 $\$$ TeV using the ATLAS detector. European Physical Journal C, 2019, 79, 1.	3.9	34
36	Search for direct production of electroweakinos in final states with one lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in $$pp$ \$ collisions at $$\sqrt{s}=13$ \$ÂTeV with the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	34

#	Article	IF	Citations
37	Measurements of the Higgs boson inclusive and differential fiducial cross sections in the 4 \$ell \$\$ decay channel at $$\sqrt{s} = 13$ TeV. European Physical Journal C, 2020, 80, 1.	3.9	32
38	Search for new phenomena in events with same-charge leptons and b-jets in pp collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV with the ATLAS detector. Journal of High Energy Physics, 2018, 2018, 1.	4.7	30
39	Searches for third-generation scalar leptoquarks in $\$\$ $ sqrt $\{\$\}$ $\$\$ = 13$ TeV pp collisions with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	30
40	Evidence for \$\$tar{t}\$tar{t}\$\$ production in the multilepton final state in proton–proton collisions at \$\$sqrt{s}=13\$\$Â\$\$ext {TeV}\$\$ with the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	30
41	Search for dark matter in events with a hadronically decaying vector boson and missing transverse momentum in pp collisions at \s sqrt \s =13 \s TeV with the ATLAS detector. Journal of High Energy Physics, 2018, 2018, 1.	4.7	29
42	Search for heavy diboson resonances in semileptonic final states in pp collisions at $\$$ sqrt $\{s\}=13$ \$ÂTeV with the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	29
43	Search for the Higgs boson produced in association with a vector boson and decaying into two spin-zero particles in the H \hat{a} † aa \hat{a} † 4b channel in pp collisions at \$\$ sqrt{s}=13 \$\$ TeV with the ATLAS detector. Journal of High Energy Physics, 2018, 2018, 1.	4.7	28
44	Search for long-lived neutral particles in pp collisions at $\$\{sqrt\{s\}\} = 13-\{ext\{TeV\}\}\$ that decay into displaced hadronic jets in the ATLAS calorimeter. European Physical Journal C, 2019, 79, 1.	3.9	28
45	In situ calibration of large-radius jet energy and mass in 13ÂTeVÂproton–proton collisions with the ATLAS detector. European Physical Journal C, 2019, 79, 1.	3.9	28
46	Fluctuations of anisotropic flow in Pb+Pb collisions at $\$$ sqrt{{mathrm{s}}_{mathrm{NN}}} $\$$ = 5.02 TeV with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	28
47	Measurement of the transverse momentum distribution of Drellâ \in "Yan lepton pairs in protonâ \in "proton collisions at \$\$sqrt{s}=13,\$\$TeV with the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	28
48	Search for charginoâ€"neutralino pair production in final states with three leptons and missing transverse momentum in \$\$sqrt{s} = 13\$\$ÂTeV pp collisions with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	28
49	Search for single production of vector-like quarks decaying into Wb in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	27
50	Measurement of the top-quark mass in $$$ toverline{t} $$$ + 1-jet events collected with the ATLAS detector in pp collisions at $$$ sqrt{s} $$$ = 8 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	27
51	Search for pair production of third-generation scalar leptoquarks decaying into a top quark and a $\ddot{l}_{,-}$ -lepton in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	27
52	Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the $\$$ ell ell bb\$\$ and \$\$ell ell WW\$\$ final states in pp collisions at $\$$ sqrt{s}=13\$\$Â\$\$ext {TeV}\$\$ with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	26
53	Operation and performance of the ATLAS Tile Calorimeter in RunÂ1. European Physical Journal C, 2018, 78, 987.	3.9	25
54	Measurement of the cross-section and charge asymmetry of W bosons produced in proton–proton collisions at \$\$sqrt{s}=8~ext {TeV}\$\$ with the ATLAS detector. European Physical Journal C, 2019, 79, 1.	3.9	24

#	Article	IF	Citations
55	Measurement of fiducial and differential $\$W^+W^-$ - $\$$ production cross-sections at $\$$ sqrt $\{s\}$ =13 $\$$ ÂTeV with the ATLAS detector. European Physical Journal C, 2019, 79, 1.	3.9	24
56	Search for new non-resonant phenomena in high-mass dilepton final states with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	24
57	Search for doubly and singly charged Higgs bosons decaying into vector bosons in multi-lepton final states with the ATLAS detector using proton-proton collisions at \$\$ sqrt{mathrm{s}} \$\$ = 13 TeV. Journal of High Energy Physics, 2021, 2021, 1.	4.7	23
58	AtlFast3: The Next Generation of Fast Simulation in ATLAS. Computing and Software for Big Science, 2022, 6, 1.	2.9	23
59	Search for pair production of heavy vector-like quarks decaying into high-pT W bosons and top quarks in the lepton-plus-jets final state in pp collisions at $\$$ sqrt $\{s\}=13$ $\$$ TeV with the ATLAS detector. Journal of High Energy Physics, 2018, 2018, 1.	4.7	22
60	Measurements of top-quark pair spin correlations in the $\$$ channel at $\$$ channel at $\$$ crubble using pp collisions in the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	22
61	Search for new phenomena in events with two opposite-charge leptons, jets and missing transverse momentum in pp collisions at $\$ sqrt{mathrm{s}} \$\$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	22
62	Search for Higgs boson pair production in the $WW(*)WW(*)$ decay channel using ATLAS data recorded at \$\$ $qt=0$ at \$\$ qt	4.7	21
63	Identification of boosted Higgs bosons decaying into b-quark pairs with the ATLAS detector at 13Â\$\$ext {TeV}\$\$. European Physical Journal C, 2019, 79, .	3.9	21
64	Search for light long-lived neutral particles produced in pp collisions at $\$$ sqrt $\{s\} = 13$ -mathrm $\{TeV\}$ \$\$ and decaying into collimated leptons or light hadrons with the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	21
65	Search for diboson resonances in hadronic final states in 139 fba $^{\circ}$ 1 of pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	20
66	Prompt and non-prompt $\$J/psi \$J/\tilde{\Gamma}$ elliptic flow in Pb+Pb collisions at $\$sqrt\{s_{ext} \{NN\}\}\} = 5.02\$\$$ s NN = 5.02 Tev with the ATLAS detector \hat{A} . European Physical Journal C, 2018, 78, 784.	3.9	19
67	Search for top-quark decays t → Hq with 36 fbâr'l of pp collision data at \$\$ sqrt{s} \$\$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	19
68	Search for squarks and gluinos in final states with same-sign leptons and jets using 139 fba $^{\circ}$ 1 of data collected with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	19
69	Measurement of light-by-light scattering and search for axion-like particles with 2.2 nbâ^1 of Pb+Pb data with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	19
70	Search for dark matter in association with an energetic photon in pp collisions at $\$\$ $ sqrt $\$\$ = 13$ TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	18
71	Search for pair production of scalar leptoquarks decaying into first- or second-generation leptons and top quarks in proton–proton collisions at \$\$sqrt{s}\$\$ = 13ÂTeV with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	18
72	Search for new phenomena in final states with b-jets and missing transverse momentum in $\$\$$ sqrt{mathrm{s}} $\$\$ = 13$ TeV pp collisions with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	18

#	Article	IF	Citations
73	Measurements of W and Z boson production in pp collisions at $\$$ sqrt $\{s\}=5.02$ \$ s = 5.02 ÂTeV with the ATLAS detector. European Physical Journal C, 2019, 79, 1.	3.9	17
74	Measurement of $\$W^pm \$$ boson production in Pb+Pb collisions at $\$\$qrt{s_{mathrm{NN}}} = 5.02-ext {Te}ext {V}$$ with the ATLAS detector. European Physical Journal C, 2019, 79, 1.$	3.9	17
75	Performance of the missing transverse momentum triggers for the ATLAS detector during Run-2 data taking. Journal of High Energy Physics, 2020, 2020, 1.	4.7	17
76	Search for the HH \hat{a}^* \$\$ boverline{b}boverline{b} \$\$ process via vector-boson fusion production using proton-proton collisions at \$\$ sqrt{s} \$\$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	17
77	Search for type-III seesaw heavy leptons in dilepton final states in pp collisions at $\$\$ $ sqrt $\$$ = 13, $\$$ with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	17
78	Search for scalar resonances decaying into $1\frac{1}{4}+1\frac{1}{4}a^{-3}$ in events with and without b-tagged jets produced in proton-proton collisions at \$\$ sqrt{s}=13 \$\$ TeV with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	15
79	Optimisation of large-radius jet reconstruction for the ATLAS detector in 13ÂTeV proton–proton collisions. European Physical Journal C, 2021, 81, 1.	3.9	15
80	Measurement of VH, $\$$ mathrm{H}o mathrm{b}overline{mathrm{b}} $\$$ production as a function of the vector-boson transverse momentum in 13 TeV pp collisions with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	14
81	Measurements of inclusive and differential fiducial cross-sections of $\frac{1}{2}$ amma $\frac{1}{2}$ production in leptonic final states at $\frac{1}{2}$ at $\frac{1}{2}$ ext $\frac{1}{2}$ in ATLAS. European Physical Journal C, 2019, 79, 1.	3.9	14
82	Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum. Journal of High Energy Physics, 2019, 2019, 1.	4.7	14
83	Search for new phenomena with top quark pairs in final states with one lepton, jets, and missing transverse momentum in pp collisions at $$$ sqrt ${s}$ $$$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	14
84	Measurements of Higgs bosons decaying to bottom quarks from vector boson fusion production with the ATLAS experiment at $\$\$qrt\{s\}=13$,ext $TeV\}$. European Physical Journal C, 2021, 81, 1.	3.9	14
85	Measurements of top-quark pair single- and double-differential cross-sections in the all-hadronic channel in pp collisions at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV using the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	14
86	Search for $\$\$$ toverline $\{t\}$ $\$\$$ resonances in fully hadronic final states in pp collisions at $\$\$$ sqrt $\{s\}$ $\$\$$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	14
87	Measurement of the c-jet mistagging efficiency in \$\$tar{t}\$\$Âevents using pp collision data at \$\$\$qrt{s}=13\$\$Â\$\$ext {TeV}\$\$ collected with the ATLAS detector. European Physical Journal C, 2022, 82, .	3.9	14
88	Measurement of jet-substructure observables in top quark, W boson and light jet production in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	13
89	Search for squarks and gluinos in final states with one isolated lepton, jets, and missing transverse momentum at \$\$sqrt{s}=13\$\$ TeV with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	13
90	Observation of the associated production of a top quark and a Z boson in pp collisions at \$\$ sqrt{s} \$\$= 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	12

#	Article	IF	Citations
91	Search for new phenomena in final states with large jet multiplicities and missing transverse momentum using $\$$ sqrt $\{s\}$ $\$$ = 13 TeV proton-proton collisions recorded by ATLAS in Run 2 of the LHC. Journal of High Energy Physics, 2020, 2020, 1.	4.7	12
92	Transverse momentum and process dependent azimuthal anisotropies in $\$$ sqrt $\{s_{mathrm} \{NN\}\} = 8.16\$$ ÂTeV p+Pb collisions with the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	12
93	Differential cross-section measurements for the electroweak production of dijets in association with a Z boson in proton–proton collisions at ATLAS. European Physical Journal C, 2021, 81, 1.	3.9	12
94	Search for supersymmetry in events with four or more charged leptons in 139 fbâ^1 of \$\$ sqrt{s} \$\$ = 13 TeV pp collisions with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	12
95	Measurements of the inclusive and differential production cross sections of a top-quark–antiquark pair in association with a ZÂboson at \$\$sqrt{s} = 13\$\$ÂTeV with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	12
96	Search for dark matter in events with missing transverse momentum and a Higgs boson decaying into two photons in pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	12
97	Alignment of the ATLAS Inner Detector in Run 2. European Physical Journal C, 2020, 80, 1.	3.9	12
98	Determination of the parton distribution functions of the proton using diverse ATLAS data from pp collisions at $\$$ sqrt $\{s\}$ = 7 \$\$, 8 and 13 ÂTeV. European Physical Journal C, 2022, 82, 1.	3.9	12
99	Measurements of the production cross-section for a Z boson in association with b-jets in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	11
100	Measurement of the \$\$ Zgamma o u overline{u}gamma \$\$ production cross section in pp collisions at \$\$ sqrt{s}=13 \$\$ TeV with the ATLAS detector and limits on anomalous triple gauge-boson couplings. Journal of High Energy Physics, 2018, 2018, 1.	4.7	10
101	Determination of the parton distribution functions of the proton from ATLAS measurements of differential W± and Z boson production in association with jets. Journal of High Energy Physics, 2021, 2021, 1.	4.7	10
102	Measurement of J/ Γ production in association with a W± boson with pp data at 8 TeV. Journal of High Energy Physics, 2020, 2020, 1.	4.7	10
103	Measurement of the t\$\$ overline{t} \$\$\$\$ overline{t} \$\$ production cross section in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	10
104	Search for Higgs bosons decaying into new spin-0 or spin-1 particles in four-lepton final states with the ATLAS detector with 139 fb \hat{a}^{3} 1 of pp collision data at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2022, 2022, 1.	4.7	10
105	Search for dark matter produced in association with a Standard Model Higgs boson decaying into b-quarks using the full Run 2 dataset from the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	10
106	Measurement of the inclusive cross-section for the production of jets in association with a Z boson in proton–proton collisions at 8ÂTeV using the ATLAS detector. European Physical Journal C, 2019, 79, 1.	3.9	9
107	Measurement of the Z(\hat{a}^{\dagger} , \hat{a}^{\dagger} , \hat{a}^{\dagger} , \hat{a}^{\dagger}) production cross-section in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	e _{4.7}	9
108	Search for dark matter produced in association with a single top quark in $\$$ sqrt $\{s\}=13$ \$ÂTeV $\$$ pp $\$$ collisions with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	9

#	Article	IF	Citations
109	Search for large missing transverse momentum in association with one top-quark in proton-proton collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	8
110	Measurement of $\$W^{pm}\$ -boson and Z-boson production cross-sections in pp collisions at $\$sqrt^{s}=2.76\$$ ATeV with the ATLAS detector. European Physical Journal C, 2019, 79, 1.	3.9	8
111	Measurement of differential cross sections for single diffractive dissociation in \$\$ sqrt{s} \$\$ = 8 TeV pp collisions using the ATLAS ALFA spectrometer. Journal of High Energy Physics, 2020, 2020, 1.	4.7	8
112	Measurements of W+Wâ^+ â%¥ 1 jet production cross-sections in pp collisions at \$\$ $q^+ = 13 \text{ TeV}$ with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	8
113	Measurements of differential cross-sections in four-lepton events in 13 TeV proton-proton collisions with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	8
114	Reconstruction and identification of boosted di-Ï,, systems in a search for Higgs boson pairs using 13 TeV proton-proton collision data in ATLAS. Journal of High Energy Physics, 2020, 2020, 1.	4.7	8
115	Observation of electroweak production of two jets in association with an isolated photon and missing transverse momentum, and search for a Higgs boson decaying into invisible particles at $13 \hat{A}$ for a Higgs boson decaying into invisible particles at $13 \hat{A}$ for all C, 2022, 82, 1.	3.9	8
116	Search for dijet resonances in events with an isolated charged lepton using \$\$ sqrt{s} \$\$ = 13 TeV proton-proton collision data collected by the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	7
117	Search for R-parity-violating supersymmetry in a final state containing leptons and many jets with the ATLAS experiment using \$\$sqrt{s} = 13hbox { TeV}\$\$ protonâ€"proton collision data. European Physical Journal C, 2021, 81, 1.	3.9	7
118	Configuration and performance of the ATLAS b-jet triggers in Run 2. European Physical Journal C, 2021, 81, 1.	3.9	7
119	Search for flavour-changing neutral-current interactions of a top quark and a gluon in pp collisions at $\$$ qrt $\{s\}=13$ \$\$ÂTeV with the ATLAS detector. European Physical Journal C, 2022, 82, .	3.9	7
120	Measurement of the ratio of cross sections for inclusive isolated-photon production in pp collisions at $\$$ sqrt $\{s\}$ $\$$ = 13 and 8 TeV with the ATLAS detector. Journal of High Energy Physics, 2019, 2019, 1.	4.7	6
121	Measurement of ZZ production in the \hat{a} , " \hat{a} ," \hat{i} /2 \hat{i} /2 final state with the ATLAS detector in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV. Journal of High Energy Physics, 2019, 2019, 1.	4.7	6
122	Search for Higgs boson production in association with a high-energy photon via vector-boson fusion with decay into bottom quark pairs at $$$ sqrt ${s}$ $$$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	6
123	Performance of the ATLAS Level-1 topological trigger in RunÂ2. European Physical Journal C, 2022, 82, 1.	3.9	6
124	Measurement of long-range two-particle azimuthal correlations in Z-boson tagged pp collisions at \$\$sqrt{s}=8\$\$ and 13ÂTeV. European Physical Journal C, 2020, 80, 1.	3.9	5
125	A search for the decays of stopped long-lived particles at $\$$ sqrt{mathrm{s}} $\$$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	5
126	Search for phenomena beyond the Standard Model in events with large b-jet multiplicity using the ATLAS detector at the LHC. European Physical Journal C, 2021, 81, 1.	3.9	5

#	Article	IF	Citations
127	Measurement of the inclusive isolated-photon cross section in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV using 36 fbâ^1 of ATLAS data. Journal of High Energy Physics, 2019, 2019, 1.	4.7	5
128	The ATLAS inner detector trigger performance in pp collisions at 13\^A TeV during LHC Run 2. European Physical Journal C, 2022, 82, 1.	3.9	5
129	Search for excited electrons singly produced in proton–proton collisions at \$\$sqrt{s} ~=~13~ext {Te}ext {V}\$\$ with the ATLAS experiment at the LHC. European Physical Journal C, 2019, 79, .	3.9	4
130	Search for direct production of electroweakinos in final states with missing transverse momentum and a Higgs boson decaying into photons in pp collisions at $$$ sqrt ${s}$ $$$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	4
131	Measurement of hadronic event shapes in high-pT multijet final states at $\$$ sqrt $\{s\}$ $\$$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	4
132	Search for top squarks in events with a Higgs or Z boson using $139 \text{\^{A}} \text{fb} $ of pp collision data at \$\$sqrt{s}=13\$\$ $\text{\^{A}} \text{TeV}$ with the ATLAS detector. European Physical Journal C, 2020, 80, 1.	3.9	4
133	Measurement of SK_S^0 and $SLambda^0$ production in $Star\{t\}$ dileptonic events in pp collisions at $Sart\{s\} = Sart\{s\}$ and $SLambda^0$ detector. European Physical Journal C, 2019, 79, 1.	3.9	4
134	Measurement of the energy response of the ATLASÂcalorimeter to chargedÂpions from $\W^{pm} $ ightarrow au $^{pm} $ (ightarrow pi $^{pm} $ $_{au} $)u $_{au} $ events in RunÂ2 data. European Physical Journal C, 2022, 82, 1.	3.9	4
135	Measurement of the production cross section of pairs of isolated photons in pp collisions at 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	4
136	Search for exotic decays of the Higgs boson into long-lived particles in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV using displaced vertices in the ATLAS inner detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	4
137	Measurement of distributions sensitive to the underlying event in inclusive Z boson production in pp collisions at $\$$ sqrt $\{s\}$ \$\$ = 13 TeV with the ATLAS detector. European Physical Journal C, 2019, 79, 1.	3.9	3
138	Measurements of inclusive and differential cross-sections of combined $\$\$$ toverline $\{t\}$ gamma $\$\$$ and $tW^{\hat{j}3}$ production in the $e^{\hat{l}}$ 4 channel at 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	3
139	Measurement of isolated-photon plus two-jet production in pp collisions at $\$\$ $ sqrt $\{s\}$ $\$\$ = 13$ TeV with the ATLAS detector. Journal of High Energy Physics, 2020, 2020, 1.	4.7	3
140	Measurement of single top-quark production in association with a W boson in the single-lepton channel at $s=0$, with the ATLAS detector. European Physical Journal C, 2021, 81, 1.	3.9	3
141	Measurement of b-quark fragmentation properties in jets using the decay $B\hat{A}\pm\hat{a}\uparrow'J/\hat{\Gamma}K\hat{A}\pm\hat{a}\pm\hat{a}$ in pp collisions at \$\$ sqrt{s} \$\$ = 13 TeV with the ATLAS detector. Journal of High Energy Physics, 2021, 2021, 1.	4.7	3
142	Search for exotic decays of the Higgs boson into b\$\$ overline{b} \$\$ and missing transverse momentum in pp collisions at \$\$ $f=13 \text{TeV}$ with the ATLAS detector. Journal of High Energy Physics, 2022, 2022, 1.	4.7	2
143	Measurement of the energy asymmetry in $f(x)$ production at $f(x)$ production at $f(x)$ with the ATLAS experiment and interpretation in the SMEFT framework. European Physical Journal C, 2022, 82, .	3.9	2