Haiyang Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1609762/publications.pdf

Version: 2024-02-01

27	526	14	22
papers	citations	h-index	g-index
30	30	30	395
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	How humic acid and Tween80 improve the phenanthrene biodegradation efficiency: Insight from cellular characteristics and quantitative proteomics. Journal of Hazardous Materials, 2022, 421, 126685.	12.4	16
2	An integrative approach enables high bioresource utilization and bioethanol production from whole stillage. Bioresource Technology, 2022, 343, 126153.	9.6	2
3	Using Molecular Simulation to Guide Protein Engineering for Biocatalysis in Organic Solvents. Methods in Molecular Biology, 2022, 2397, 179-202.	0.9	3
4	Recombination of Compatible Substitutions by 2GenReP and InSiReP. Methods in Molecular Biology, 2022, 2397, 71-81.	0.9	6
5	Polar Substitutions on the Surface of a Lipase Substantially Improve Tolerance in Organic Solvents. ChemSusChem, 2022, 15, .	6.8	17
6	Optimized Hemolysin Type 1 Secretion System in Escherichia coli by Directed Evolution of the Hly Enhancer Fragment and Including a Terminator Region. ChemBioChem, 2022, , .	2.6	3
7	A novel α-L-Rhamnosidase renders efficient and clean production of icaritin. Journal of Cleaner Production, 2022, 341, 130903.	9.3	15
8	How Does Surface Charge Engineering of <i>Bacillus subtilis</i> Lipase A Improve Ionic Liquid Resistance? Lessons Learned from Molecular Dynamics Simulations. ACS Sustainable Chemistry and Engineering, 2022, 10, 2689-2698.	6.7	15
9	CompassR Yields Highly Organicâ€Solventâ€Tolerant Enzymes through Recombination of Compatible Substitutions. Chemistry - A European Journal, 2021, 27, 2789-2797.	3 . 3	28
10	Efficient enzyme-catalyzed production of diosgenin: inspired by the biotransformation mechanisms of steroid saponins in <i>Talaromyces stollii</i> CLY-6. Green Chemistry, 2021, 23, 5896-5910.	9.0	17
11	CompassR-guided recombination unlocks design principles to stabilize lipases in ILs with minimal experimental efforts. Green Chemistry, 2021, 23, 3474-3486.	9.0	26
12	Fe(iii)-complex mediated bacterial cell surface immobilization of eGFP and enzymes. Chemical Communications, 2021, 57, 4460-4463.	4.1	4
13	Rapid and Oriented Immobilization of Laccases on Electrodes via a Methionine-Rich Peptide. ACS Catalysis, 2021, 11, 2445-2453.	11.2	31
14	Using Low Molecular Weight Organic Acids to Enhance Microbial Degradation of Polycyclic Aromatic Hydrocarbons: Current Understanding and Future Perspectives. Water (Switzerland), 2021, 13, 446.	2.7	2
15	Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angewandte Chemie, 2021, 133, 11549-11557.	2.0	6
16	Less Unfavorable Salt Bridges on the Enzyme Surface Result in More Organic Cosolvent Resistance. Angewandte Chemie - International Edition, 2021, 60, 11448-11456.	13.8	45
17	Chemogenetic Evolution of a Peroxidase-like Artificial Metalloenzyme. ACS Catalysis, 2021, 11, 5079-5087.	11.2	21
18	Computerâ€Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns. Chemistry - A European Journal, 2020, 26, 643-649.	3.3	57

#	Article	lF	CITATION
19	Enzyme Hydration Determines Resistance in Organic Cosolvents. ACS Catalysis, 2020, 10, 14847-14856.	11.2	53
20	Efficient production of the anti-aging drug Cycloastragenol: insight from two Glycosidases by enzyme mining. Applied Microbiology and Biotechnology, 2020, 104, 9991-10004.	3 . 6	3
21	Engineering of Laccase CueO for Improved Electron Transfer in Bioelectrocatalysis by Semiâ€Rational Design. Chemistry - A European Journal, 2020, 26, 4974-4979.	3.3	11
22	Engineering of Laccase CueO for Improved Electron Transfer in Bioelectrocatalysis by Semiâ€Rational Design. Chemistry - A European Journal, 2020, 26, 4884-4884.	3.3	0
23	Loop engineering of aryl sulfotransferase B for improving catalytic performance in regioselective sulfation. Catalysis Science and Technology, 2020, 10, 2369-2377.	4.1	6
24	How to Engineer Organic Solvent Resistant Enzymes: Insights from Combined Molecular Dynamics and Directed Evolution Study. ChemCatChem, 2020, 12, 4073-4083.	3.7	45
25	Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angewandte Chemie - International Edition, 2019, 58, 4562-4565.	13.8	57
26	Directed Evolution of a Bacterial Laccase (CueO) for Enzymatic Biofuel Cells. Angewandte Chemie, 2019, 131, 4610-4613.	2.0	7
27	Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1. Applied Biochemistry and Biotechnology, 2017, 182, 67-81.	2.9	27