PaweÅ, MierczyÅ, ski

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1609347/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bimetallic Au–Cu, Au–Ni catalysts supported on MWCNTs for oxy-steam reforming of methanol. Applied Catalysis B: Environmental, 2016, 185, 281-294.	10.8	79
2	Biodiesel Production on MgO, CaO, SrO and BaO Oxides Supported on (SrO)(Al2O3) Mixed Oxide. Catalysis Letters, 2015, 145, 1196-1205.	1.4	47
3	Highly selective Pd–Cu/ZnAl2O4 catalyst for hydrogen production. Applied Catalysis A: General, 2014, 479, 26-34.	2.2	40
4	SrAl2O4 spinel phase as active phase of transesterification of rapeseed oil. Applied Catalysis B: Environmental, 2015, 164, 176-183.	10.8	37
5	The effect of gold on modern bimetallic Au–Cu/MWCNT catalysts for the oxy-steam reforming of methanol. Catalysis Science and Technology, 2016, 6, 4168-4183.	2.1	36
6	Bimetallic Au–Cu, Ag–Cu/CrAl3O6 Catalysts for Methanol Synthesis. Catalysis Letters, 2009, 130, 481-488.	1.4	33
7	High Active and Selective Ni/CeO2–Al2O3 and Pd–Ni/CeO2–Al2O3 Catalysts for Oxy-Steam Reforming of Methanol. Catalysts, 2018, 8, 380.	1.6	32
8	Cu/ZnxAlyOz supported catalysts (ZnO: Al2O3=1, 2, 4) for methanol synthesis. Catalysis Today, 2011, 176, 21-27.	2.2	31
9	Magnetic separation technology: Functional group efficiency in the removal of haze-forming proteins from wines. Food Chemistry, 2019, 275, 154-160.	4.2	29
10	The Effect of ZnAl2O4 on the Performance of Cu/ZnxAlyOx+1.5y Supported Catalysts in Steam Reforming of Methanol. Topics in Catalysis, 2013, 56, 1015-1025.	1.3	26
11	The effect of spinel type support FeAlO3, ZnAl2O4, CrAl3O6 on physicochemical properties of Cu, Ag, Au, Ru supported catalysts for methanol synthesis. Kinetics and Catalysis, 2009, 50, 228-234.	0.3	25
12	Cobalt Based Catalysts Supported on Two Kinds of Beta Zeolite for Application in Fischer-Tropsch Synthesis. Catalysts, 2019, 9, 497.	1.6	25
13	Fischer-Tropsch reaction on Co-containing microporous and mesoporous Beta zeolite catalysts: the effect of porous size and acidity. Catalysis Today, 2020, 354, 109-122.	2.2	23
14	Effect of the chemical composition of (MgO)x(Al2O3)y support on the catalytic performance of Ni and Ni–Au catalysts for the partial oxidation of methane. Chemical Engineering Journal, 2009, 154, 142-148.	6.6	22
15	MWCNTs as a catalyst in oxy-steam reforming of methanol. RSC Advances, 2016, 6, 81408-81413.	1.7	21
16	Hydrogen Production on Cu-Ni Catalysts via the Oxy-Steam Reforming of Methanol. Catalysts, 2020, 10, 273.	1.6	21
17	An active phase transformation on surface of Ni-Au/Al2O3 catalyst during partial oxidation of methane to synthesis gas. Kinetics and Catalysis, 2010, 51, 573-578.	0.3	20
18	Copper-supported catalysts in methanol synthesis and water gas shift reaction. Kinetics and Catalysis, 2010, 51, 843-848.	0.3	20

PaweÅ, MierczyÅ",ski

#	Article	IF	CITATIONS
19	Cu/Cr2O3·3Al2O3 and Au–Cu/Cr2O3·3Al2O3 catalysts for methanol synthesis and water gas shift reactions. Reaction Kinetics, Mechanisms and Catalysis, 2011, 104, 139-148.	0.8	20
20	Monometallic copper catalysts supported on multi-walled carbon nanotubes for the oxy-steam reforming of methanol. Reaction Kinetics, Mechanisms and Catalysis, 2016, 117, 675-691.	0.8	20
21	Novel Pd–Cu/ZnAl2O4–ZrO2 Catalysts for Methanol Synthesis. Catalysis Letters, 2014, 144, 723-735.	1.4	19
22	Growth of carbon nanotube arrays on various CtxMey alloy films by chemical vapour deposition method. Journal of Materials Science and Technology, 2018, 34, 472-480.	5.6	19
23	Bimetallic Pd-Au/SiO2 Catalysts for Reduction of Furfural in Water. Catalysts, 2020, 10, 444.	1.6	19
24	The catalytic activity of Fe-containing SiBEA zeolites in Fischer–Tropsch synthesis. Catalysis Today, 2015, 257, 117-121.	2.2	18
25	Comparative Studies of Bimetallic Ru–Cu, Rh–Cu, Ag–Cu, Ir–Cu Catalysts Supported on ZnO–Al2O3, ZrO2–Al2O3 Systems. Catalysis Letters, 2016, 146, 1825-1837.	1.4	17
26	Comparative studies of Pd, Ru, Ni, Cu/ZnAl2O4 catalysts for the water gas shift reaction. Open Chemistry, 2013, 11, 912-919.	1.0	16
27	Effect of the support composition on catalytic and physicochemical properties of Ni catalysts in oxy-steam reforming of methane. Catalysis Today, 2021, 364, 46-60.	2.2	16
28	Carbon Nanotubes: Properties, Synthesis, and Application. Fibre Chemistry, 2018, 50, 297-300.	0.0	15
29	The Effect of the Activation Process and Metal Oxide Addition (CaO, MgO, SrO) on the Catalytic and Physicochemical Properties of Natural Zeolite in Transesterification Reaction. Materials, 2021, 14, 2415.	1.3	13
30	Development of Stable and Highly Active Bimetallic Ni–Au Catalysts Supported on Binary Oxides CrAl3O6 for POM Reaction. Catalysis Letters, 2009, 128, 401-404.	1.4	12
31	Oxy-steam reforming of methanolÂon copper catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2019, 127, 857-874.	0.8	12
32	Role of the activation process on catalytic properties of iron supported catalyst in Fischer-Tropsch synthesis. Journal of the Energy Institute, 2020, 93, 565-580.	2.7	12
33	Oxy-Steam Reforming of Natural Gas on Ni Catalysts—A Minireview. Catalysts, 2020, 10, 896.	1.6	12
34	Novel Rh(Pd)-Cu(Ni) supported catalysts for oxy-steam reforming of methanol. Arabian Journal of Chemistry, 2020, 13, 3183-3195.	2.3	11
35	The Catalytic Performance of Ni-Co/Beta Zeolite Catalysts in Fischer-Tropsch Synthesis. Catalysts, 2020, 10, 112.	1.6	11
36	Catalysts for Hydrogen Generation via Oxy–Steam Reforming of Methanol Process. Materials, 2020, 13, 5601.	1.3	10

PaweÅ, MierczyÅ",ski

#	Article	IF	CITATIONS
37	Hydrogen Production via the Oxy-Steam Reforming of LNG or Methane on Ni Catalysts. Catalysts, 2020, 10, 346.	1.6	10
38	Catalytic activity and physicochemical properties of Ni-Au/Al3CrO6 system for partial oxidation of methane to synthesis gas. Kinetics and Catalysis, 2009, 50, 138-144.	0.3	9
39	Influence of the Zn–Al binary oxide composition on the physicochemical and catalytic properties of Ni catalysts in the oxy-steam reforming of methanol. Reaction Kinetics, Mechanisms and Catalysis, 2017, 121, 453-472.	0.8	8
40	Fischer–Tropsch synthesis over various Fe/Al2O3–Cr2O3 catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2018, 124, 545-561.	0.8	8
41	The influence of Pd loading on the physicochemical properties of the Cu–Cr–Al methanol synthesis catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2013, 109, 13-27.	0.8	7
42	Methanol Synthesis Using Copper Catalysts Supported on CeO2â^'Al2O3 Mixed Oxide. Fibre Chemistry, 2016, 48, 271-275.	0.0	7
43	Photocatalytic Degradation of an Azo Dye over Novel Monometallic Copper Catalysts Supported on Fibreglass. Catalysis Letters, 2017, 147, 2448-2461.	1.4	7
44	Comparative Studies of Fischer-Tropsch Synthesis on Iron Catalysts Supported on Al2O3-Cr2O3 (2:1), Multi-Walled Carbon Nanotubes or BEA Zeolite Systems. Catalysts, 2019, 9, 605.	1.6	7
45	Biodiesel Production on Monometallic Pt, Pd, Ru, and Ag Catalysts Supported on Natural Zeolite. Materials, 2021, 14, 48.	1.3	7
46	Promoted ternary CuO-ZrO2-Al2O3 catalysts for methanol synthesis. Open Chemistry, 2014, 12, 206-212.	1.0	6
47	Bimetallic Pd–Cu/ZnO–Al2O3 and Pd–Cu/ZrO2–Al2O3 catalysts for methanol synthesis. Catalysis in Industry, 2017, 9, 99-103.	0.3	6
48	Modern Ni and Pd–Ni Catalysts Supported on Sn–Al Binary Oxide for Oxy‧team Reforming of Methanol. Energy Technology, 2018, 6, 1687-1699.	1.8	6
49	Effect of Ag-Addition on the Catalytic and Physicochemical Properties of Ni/ZrO2 Catalyst in Oxy-Steam Reforming of CH4 and LNG Processes. Catalysts, 2020, 10, 855.	1.6	6
50	The Influence of Si/Al Ratio on the Physicochemical and Catalytic Properties of MgO/ZSM-5 Catalyst in Transesterification Reaction of Rapeseed Oil. Catalysts, 2021, 11, 1260.	1.6	6
51	The effect of palladium and CeO2 on the catalytic and physicochemical properties of copper catalysts in methanol synthesis. Reaction Kinetics, Mechanisms and Catalysis, 2015, 114, 211-228.	0.8	5
52	The influence of compression conditions on the peculiarities of self-propagating exothermal reaction in Al–Ni powder reactive materials. Journal of Thermal Analysis and Calorimetry, 2018, 134, 35-44.	2.0	5
53	Effect of the AACVD based synthesis atmosphere on the structural properties of multi-walled carbon nanotubes. Arabian Journal of Chemistry, 2020, 13, 835-850.	2.3	5
54	The Impact of Reduction Temperature and Nanoparticles Size on the Catalytic Activity of Cobalt-Containing BEA Zeolite in Fischer–Tropsch Synthesis. Catalysts, 2020, 10, 553.	1.6	5

PaweÅ, MierczyÅ",ski

#	Article	IF	CITATIONS
55	Synthesis, Spectroscopic, Thermal and Catalytic Properties of Four New Metal (II) Complexes with Selected N- and O-Donor Ligands. Materials, 2020, 13, 3217.	1.3	4
56	The catalytic activity of microporous and mesoporous NiCoBeta zeolite catalysts in Fischer–Tropsch synthesis. Research on Chemical Intermediates, 2021, 47, 397-418.	1.3	4
57	Oxy-Steam Reforming of Liquefied Natural Gas (LNG) on Mono- and Bimetallic (Ag, Pt, Pd or Ru)/Ni Catalysts. Catalysts, 2021, 11, 1401.	1.6	4
58	The effect of the nature of the support on catalytic properties of ruthenium supported catalysts in partial oxidation of methane to syn-gas. Kinetics and Catalysis, 2011, 52, 711-715.	0.3	3
59	The influence of addition of silver and copper on the reducibility of CrAl3O6 system. Kinetics and Catalysis, 2011, 52, 835-842.	0.3	2
60	Synthesis, thermal study and some properties of Zn(II), Cd(II) and Pb(II) compounds with mono-, di- and trichloroacetates. Journal of Thermal Analysis and Calorimetry, 2017, 128, 937-946.	2.0	2
61	Supported Ruâ^'Ni Catalysts for Biogas and Biohydrogen Conversion into Syngas. Kinetics and Catalysis, 2018, 59, 509-513.	0.3	2
62	Carbon Deposits Formed on the Surface of Ru–Ni Catalysts During the Mixed Reforming of Methane Process. Kinetics and Catalysis, 2018, 59, 372-377.	0.3	2
63	The Effect of Modifiers on the Performance of Ni/CeO2 and Ni/La2O3 Catalysts in the Oxy–Steam Reforming of LNG. International Journal of Molecular Sciences, 2021, 22, 9076.	1.8	2
64	Influence of NiO/La2O3 Catalyst Preparation Method on Its Reactivity in the Oxy-Steam Reforming of LNG Process. Catalysts, 2021, 11, 1174.	1.6	2
65	Hydroconversion of parafine LTP56-H over nickel/Na-mordenite catalysts. Open Chemistry, 2013, 11, 304-312.	1.0	1
66	The features of CNT growth on catalyst-content amorphous alloy layer by CVD-method. Proceedings of SPIE, 2016, , .	0.8	0
67	CVD-growth of MWCNT arrays on Me-Ct-N-(O) thin films. Journal of Physics: Conference Series, 2017, 829, 012002.	0.3	Ο
68	Influence of surface oxygen functionalities' presence on the catalytic properties of CNT-supported Cu catalysts in the reforming of methanol. , 2017, , .		0
69	Analytical and thermal investigations of new solid Y(III) and La(III) complexes. Journal of Thermal Analysis and Calorimetry, 2019, 137, 481-490.	2.0	Ο