
Stuart K Johnson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1608647/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effect of High Pressure Processing on Textural, Bioactive and Digestibility Properties of Cooked Kimberley Large Kabuli Chickpeas. Frontiers in Nutrition, 2022, 9, 847877.	1.6	5
2	Lupin Kernel Fibre: Nutritional Composition, Processing Methods, Physicochemical Properties, Consumer Acceptability and Health Effects of Its Enriched Products. Nutrients, 2022, 14, 2845.	1.7	6
3	Release of beta-casomorphins during in-vitro gastrointestinal digestion of reconstituted milk after heat treatment. LWT - Food Science and Technology, 2021, 136, 110312.	2.5	6
4	Technological strategies to improve gelation properties of legume proteins with the focus on lupin. Innovative Food Science and Emerging Technologies, 2021, 68, 102634.	2.7	24
5	Multi-response surface optimisation of extrusion cooking to increase soluble dietary fibre and polyphenols in lupin seed coat. LWT - Food Science and Technology, 2021, 140, 110767.	2.5	15
6	Physicochemical characterisation of kafirins extracted from sorghum grain and dried distillers grain with solubles related to their biomaterial functionality. Scientific Reports, 2021, 11, 15204.	1.6	5
7	Replacement of buckwheat by black sorghum flour on sobaâ€type noodles. International Journal of Food Science and Technology, 2021, 56, 5861-5870.	1.3	10
8	Antidiabetic effects and mechanisms of action of γ-conglutin from lupin seeds. Journal of Functional Foods, 2021, 87, 104786.	1.6	6
9	Potential of Sorghum Polyphenols to Prevent and Treat Alzheimer's Disease: A Review Article. Frontiers in Aging Neuroscience, 2021, 13, 729949.	1.7	14
10	Comparison of the phenolic contents, antioxidant activity and volatile compounds of different sorghum varieties during tea processing. Journal of the Science of Food and Agriculture, 2020, 100, 978-985.	1.7	20
11	The effect of regular consumption of lupin-containing foods on glycaemic control and blood pressure in people with type 2 diabetes mellitus. Food and Function, 2020, 11, 741-747.	2.1	12
12	Lupin seed coat as a promising food ingredient: physicochemical, nutritional, antioxidant properties, and effect of genotype and environment. International Journal of Food Science and Technology, 2020, 55, 1816-1824.	1.3	8
13	Comprehensive profiling of phenolic compounds by HPLC-DAD-ESI-QTOF-MS/MS to reveal their location and form of presence in different sorghum grain genotypes. Food Research International, 2020, 137, 109671.	2.9	31
14	HPLC-DAD-ESI-QTOF-MS/MS qualitative analysis data and HPLC-DAD quantification data of phenolic compounds of grains from five Australian sorghum genotypes. Data in Brief, 2020, 33, 106584.	0.5	8
15	Could Fecal Microbiota Be a Useful Indicator of Serum Cholesterol Levels among Men?. Journal of Personalized Medicine, 2020, 10, 175.	1.1	1
16	Concentrations of healthâ€promoting phytochemicals in ripe mango fruit triggered by postharvest application of elicitors. Journal of the Science of Food and Agriculture, 2019, 99, 1126-1134.	1.7	11
17	Harvest maturity stage affects the concentrations of health-promoting compounds: Lupeol, mangiferin and phenolic acids in the pulp and peel of ripe â€̃Kensington Pride' mango fruit. Scientia Horticulturae, 2019, 243, 125-130.	1.7	12
18	Apoptosis Induction Pathway in Human Colorectal Cancer Cell Line SW480 Exposed to Cereal Phenolic Extracts. Molecules, 2019, 24, 2465.	1.7	21

#	Article	IF	CITATIONS
19	Identification and quantification of beta-casomorphin peptides naturally yielded in raw milk by liquid chromatography-tandem mass spectrometry. LWT - Food Science and Technology, 2019, 111, 465-469.	2.5	17
20	Effect of PolyGlycopleX (PGX) Consumption on Blood Lipid Profiles in Healthy, Low CVD Risk Overweight Adults. Nutrients, 2019, 11, 717.	1.7	1
21	Regulation of the levels of health promoting compounds: lupeol, mangiferin and phenolic acids in the pulp and peel of mango fruit: a review. Journal of the Science of Food and Agriculture, 2019, 99, 3740-3751.	1.7	17
22	In vitro investigation of bioactivities of solid-state fermented lupin, quinoa and wheat using Lactobacillus spp Food Chemistry, 2019, 275, 50-58.	4.2	59
23	Effect of processing on the phenolic contents, antioxidant activity and volatile compounds of sorghum grain tea. Journal of Cereal Science, 2019, 85, 6-14.	1.8	62
24	Lupin seed hydrolysate promotes G-protein-coupled receptor, intracellular Ca2+ and enhanced glycolytic metabolism-mediated insulin secretion from BRIN-BD11 pancreatic beta cells. Molecular and Cellular Endocrinology, 2019, 480, 83-96.	1.6	14
25	Extrusion cooking increases soluble dietary fibre of lupin seed coat. LWT - Food Science and Technology, 2019, 99, 547-554.	2.5	51
26	Characterization of polyphenols in Australian sweet lupin (Lupinus angustifolius) seed coat by HPLC-DAD-ESI-MS/MS. Food Research International, 2019, 116, 1153-1162.	2.9	22
27	Levels of terpenoids, mangiferin and phenolic acids in the pulp and peel of ripe mango fruit influenced by pre-harvest spray application of FeSO4 (Fe2+), MgSO4 (Mg2+) and MnSO4 (Mn2+). Food Chemistry, 2018, 256, 71-76.	4.2	12
28	Improvement of in vitro and cellular antioxidant properties of Chinese steamed bread through sorghum addition. LWT - Food Science and Technology, 2018, 91, 77-83.	2.5	28
29	Cold storage temperatures and durations affect the concentrations of lupeol, mangiferin, phenolic acids and other health-promoting compounds in the pulp and peel of ripe mango fruit. Postharvest Biology and Technology, 2018, 139, 91-98.	2.9	20
30	Effect of Incorporating Stevia and Moringa in Cookies on Postprandial Glycemia, Appetite, Palatability, and Gastrointestinal Well-Being. Journal of the American College of Nutrition, 2018, 37, 133-139.	1.1	25
31	Lupin seed Î ³ -conglutin: Extraction and purification methods - A review. Trends in Food Science and Technology, 2018, 73, 1-11.	7.8	20
32	Cytotoxicity, antihypertensive, antidiabetic and antioxidant activities of solid-state fermented lupin, quinoa and wheat by Bifidobacterium species: In-vitro investigations. LWT - Food Science and Technology, 2018, 95, 295-302.	2.5	52
33	The potential synergistic behaviour of inter- and intra-genus probiotic combinations in the pattern and rate of short chain fatty acids formation during fibre fermentation. International Journal of Food Sciences and Nutrition, 2018, 69, 144-154.	1.3	20
34	Enhanced vitamin B12 production in an innovative lupin tempeh is due to synergic effects of <i>Rhizopus</i> and <i>Propionibacterium</i> in cofermentation. International Journal of Food Sciences and Nutrition, 2018, 69, 451-457.	1.3	26
35	Mineral availability is modified by tannin and phytate content in sorghum flaked breakfast cereals. Food Research International, 2018, 103, 509-514.	2.9	38
36	The Nutritional and Phytochemical Composition of the Indigenous Australian Pindan Walnut (Terminalia cunninghamii) Kernels. Plant Foods for Human Nutrition, 2018, 73, 40-46.	1.4	19

#	Article	IF	CITATIONS
37	Degradation of β-casomorphins and identification of degradation products during yoghurt processing using liquid chromatography coupled with high resolution mass spectrometry. Food Research International, 2018, 106, 98-104.	2.9	8
38	Comparison of starch films and effect of different rice starchâ€based coating formulations on physical properties of walnut during storage time at accelerated temperature. Journal of Food Process Engineering, 2018, 41, e12607.	1.5	15
39	Dynamics in the concentrations of healthâ€promoting compounds: lupeol, mangiferin and different phenolic acids during postharvest ripening of mango fruit. Journal of the Science of Food and Agriculture, 2018, 98, 1460-1468.	1.7	19
40	Evaluation of a Commercial Sandwich Enzyme-Linked Immunosorbent Assay for the Quantification of Beta-Casomorphin 7 in Yogurt Using Solid-Phase Extraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry as the "Gold Standard―Method. Journal of AOAC INTERNATIONAL, 2018, 101, 515-519.	0.7	3
41	Effect of glycerol on the physicochemical properties of cereal starch films. Czech Journal of Food Sciences, 2018, 36, 403-409.	0.6	13
42	Seed coats of pulses as a food ingredient: Characterization, processing, and applications. Trends in Food Science and Technology, 2018, 80, 35-42.	7.8	69
43	Characterization of phenolic compounds and antioxidant activity in sorghum grains. Journal of Cereal Science, 2018, 84, 103-111.	1.8	81
44	Active and intelligent packaging in meat industry. Trends in Food Science and Technology, 2017, 61, 60-71.	7.8	423
45	Recent advances in <i>γ</i> â€aminobutyric acid (<scp>GABA</scp>) properties in pulses: an overview. Journal of the Science of Food and Agriculture, 2017, 97, 2681-2689.	1.7	78
46	A Diet Enriched with Red Sorghum Flaked Biscuits, Compared to a Diet Containing White Wheat Flaked Biscuits, Does Not Enhance the Effectiveness of an Energy-Restricted Meal Plan in Overweight and Mildly Obese Adults. Journal of the American College of Nutrition, 2017, 36, 184-192.	1.1	26
47	Phenolic profile and content of sorghum grains under different irrigation managements. Food Research International, 2017, 97, 347-355.	2.9	27
48	Effect of kafirin-based films incorporating citral and quercetin on storage of fresh chicken fillets. Food Control, 2017, 80, 37-44.	2.8	50
49	Identification and Quantification of Dityrosine in Grain Proteins by Isotope Dilution Liquid Chromatography-Tandem Mass Spectrometry. Food Analytical Methods, 2017, 10, 3321-3328.	1.3	3
50	Reverse phase HPLC method for detection and quantification of lupin seed γ-conglutin. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1063, 123-129.	1.2	6
51	Effect of Incorporating Bay Leaves in Cookies on Postprandial Glycemia, Appetite, Palatability, and Gastrointestinal Well-Being. Journal of the American College of Nutrition, 2017, 36, 514-519.	1.1	9
52	Individual polyphenolic profiles and antioxidant activity in sorghum grains are influenced by very low and high solar UV radiation and genotype. Journal of Cereal Science, 2017, 77, 17-23.	1.8	25
53	Changes in whole grain polyphenols and antioxidant activity of six sorghum genotypes under different irrigation treatments. Food Chemistry, 2017, 214, 199-207.	4.2	86
54	Effect of Fibre Supplementation on Body Weight and Composition, Frequency of Eating and Dietary Choice in Overweight Individuals. Nutrients, 2017, 9, 149.	1.7	36

#	Article	IF	CITATIONS
55	Response to Comments by Vuksan V. et al., Nutrients 2017, 9, 398, Regarding an Article by Solah V.A. et al., Nutrients 2017, 9, 149. Nutrients, 2017, 9, 408.	1.7	Ο
56	Lupins: Their Unique Nutritional and Health-Promoting Attributes. , 2017, , 179-221.		8
57	Optimizing Prednisolone Loading into Distiller's Dried Grain Kafirin Microparticles, and In vitro Release for Oral Delivery. Pharmaceutics, 2017, 9, 17.	2.0	5
58	Consumption of the Soluble Dietary Fibre Complex PolyGlycopleX® Reduces Glycaemia and Increases Satiety of a Standard Meal Postprandially. Nutrients, 2016, 8, 268.	1.7	12
59	Flaked sorghum biscuits increase postprandial GLPâ€1 and GIP levels and extend subjective satiety in healthy subjects. Molecular Nutrition and Food Research, 2016, 60, 1118-1128.	1.5	43
60	Growth temperature and genotype both play important roles in sorghum grain phenolic composition. Scientific Reports, 2016, 6, 21835.	1.6	49
61	Effects of a viscous-fibre supplemented evening meal and the following un-supplemented breakfast on post-prandial satiety responses in healthy women. Physiology and Behavior, 2016, 154, 34-39.	1.0	7
62	Oxidation of commercial (α-type) zein with hydrogen peroxide improves its hydration and dramatically increases dough extensibility even below its glass transition temperature. Journal of Cereal Science, 2016, 70, 108-115.	1.8	18
63	Identification and characterization of phenolic compounds in hydromethanolic extracts of sorghum wholegrains by LC-ESI-MSn. Food Chemistry, 2016, 211, 215-226.	4.2	154
64	Effect of Genotype and Growth Temperature on Sorghum Grain Physical Characteristics, Polyphenol Content, and Antioxidant Activity. Cereal Chemistry, 2016, 93, 419-425.	1.1	14
65	Effects of Genotype and Growth Temperature on the Contents of Tannin, Phytate and In Vitro Iron Availability of Sorghum Grains. PLoS ONE, 2016, 11, e0148712.	1.1	30
66	Effect of Training on the Reliability of Satiety Evaluation and Use of Trained Panellists to Determine the Satiety Effect of Dietary Fibre: A Randomised Controlled Trial. PLoS ONE, 2015, 10, e0126202.	1.1	10
67	Preparation and <i>In Vitro</i> Release of Drug-Loaded Microparticles for Oral Delivery Using Wholegrain Sorghum Kafirin Protein. International Journal of Polymer Science, 2015, 2015, 1-8.	1.2	9
68	Sorghum: An Underutilized Cereal Whole Grain with the Potential to Assist in the Prevention of Chronic Disease. Food Reviews International, 2015, 31, 401-437.	4.3	118
69	Optimization of formulation and process of Australian sweet lupin (ASL)-wheat bread. LWT - Food Science and Technology, 2015, 61, 359-367.	2.5	17
70	Formulation and Characterization of Drug-Loaded Microparticles Using Distillers Dried Grain Kafirin. Cereal Chemistry, 2015, 92, 246-252.	1.1	11
71	Acute effect of sorghum flour-containing pasta on plasma total polyphenols, antioxidant capacity and oxidative stress markers in healthy subjects: A randomised controlled trial. Clinical Nutrition, 2015, 34, 415-421.	2.3	62
72	Maximizing slowly digested starch in an expanded sorghumâ€maize extruded food using response surface methodology. Starch/Staerke, 2015, 67, 285-293.	1.1	4

#	Article	IF	CITATIONS
73	Identification and quantification of native beta-casomorphins in Australian milk by LC–MS/MS and LC–HRMS. Journal of Food Composition and Analysis, 2015, 44, 102-110.	1.9	17
74	The effects of lupin (Lupinus angustifolius) addition to wheat bread on its nutritional, phytochemical and bioactive composition and protein quality. Food Research International, 2015, 76, 58-65.	2.9	51
75	Separation and purification of amygdalin from thinned bayberry kernels by macroporous adsorption resins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2015, 975, 52-58.	1.2	24
76	Physicochemical and antimicrobial properties of citral and quercetin incorporated kafirin-based bioactive films. Food Chemistry, 2015, 168, 341-347.	4.2	90
77	The effects of breadâ€making process factors on Australian sweet lupinâ€wheat bread quality characteristics. International Journal of Food Science and Technology, 2014, 49, 2373-2381.	1.3	31
78	lsotope dilution liquid chromatography–tandem mass spectrometry for simultaneous identification and quantification of beta-casomorphin 5 and beta-casomorphin 7 in yoghurt. Food Chemistry, 2014, 146, 345-352.	4.2	19
79	Effect of Sorghum Flour Addition on <i>In Vitro</i> Starch Digestibility, Cooking Quality, and Consumer Acceptability of Durum Wheat Pasta. Journal of Food Science, 2014, 79, S1560-7.	1.5	41
80	Determination of formulation and processing factors affecting slowly digestible starch, protein digestibility and antioxidant capacity of extruded sorghum–maize composite flour. International Journal of Food Science and Technology, 2014, 49, 1408-1419.	1.3	36
81	Kafirin adsorption on ion-exchange resins: Isotherm and kinetic studies. Journal of Chromatography A, 2014, 1356, 105-116.	1.8	18
82	Fatty acid profile, oxidative stability and toxicological safety of bayberry kernel oil. Food and Chemical Toxicology, 2013, 60, 92-97.	1.8	5
83	Vegetables containing phytochemicals with potential anti-obesity properties: A review. Food Research International, 2013, 52, 323-333.	2.9	130
84	Modelling and numerical simulation of liquid–solid circulating fluidized bed system for protein purification. Chemical Engineering Research and Design, 2013, 91, 1660-1673.	2.7	6
85	Effect of sorghum flour addition on resistant starch content, phenolic profile and antioxidant capacity of durum wheat pasta. Food Research International, 2013, 54, 578-586.	2.9	128
86	Isolation and foaming functionality of acidâ€soluble protein from lupin (<i>Lupinus angustifolius</i>) kernels. Journal of the Science of Food and Agriculture, 2013, 93, 3755-3762.	1.7	21
87	Encapsulation of Hydrocortisone and Mesalazine in Zein Microparticles. Pharmaceutics, 2013, 5, 277-293.	2.0	50
88	Preparation and <i>in vitro</i> release of zein microparticles loaded with prednisolone for oral delivery. Journal of Microencapsulation, 2012, 29, 706-712.	1.2	16
89	Influence of sorghum flour addition on flat bread in vitro starch digestibility, antioxidant capacity and consumer acceptability. Food Chemistry, 2012, 134, 880-887.	4.2	105
90	Liking of health-functional foods containing lupin kernel fibre following repeated consumption in a dietary intervention setting. Appetite, 2010, 55, 232-237.	1.8	14

#	Article	IF	CITATIONS
91	Comparison of <i>in vitro</i> starch digestibility methods for predicting the glycaemic index of grain foods. Journal of the Science of Food and Agriculture, 2008, 88, 652-658.	1.7	63
92	Lupin kernel fiber consumption modifies fecal microbiota in healthy men as determined by rRNA gene fluorescent in situ hybridization. European Journal of Nutrition, 2006, 45, 335-341.	1.8	69
93	Lupin kernel fibre foods improve bowel function and beneficially modify some putative faecal risk factors for colon cancer in men. British Journal of Nutrition, 2006, 95, 372-378.	1.2	70
94	Lupin <i>(Lupinus albus)</i> Protein Isolate (L-ISO) Has Adequate Nutritional Value and Reduces Large Intestinal Weight in Rats after Restricted and ad libitum Feeding. Annals of Nutrition and Metabolism, 2006, 50, 528-537.	1.0	18
95	Palatability and glucose, insulin and satiety responses of chickpea flour and extruded chickpea flour bread eaten as part of a breakfast. European Journal of Clinical Nutrition, 2005, 59, 169-176.	1.3	62
96	Lupin kernel fibre-enriched foods beneficially modify serum lipids in men. European Journal of Clinical Nutrition, 2005, 59, 325-333.	1.3	71
97	Water-binding capacity and viscosity of Australian sweet lupin kernel fibre underin vitroconditions simulating the human upper gastrointestinal tract. International Journal of Food Sciences and Nutrition, 2005, 56, 87-94.	1.3	41
98	<i>In vitro</i> carbohydrate digestibility of whole-chickpea and chickpea bread products. International Journal of Food Sciences and Nutrition, 2005, 56, 147-155.	1.3	25
99	Phytoestrogens: End of a tale?. Annals of Medicine, 2005, 37, 423-438.	1.5	154
100	Soy Proteins, Cholesterolemia, and Atherosclerosis. Nutrition and Disease Prevention, 2005, , 17-41.	0.1	1
101	Australian sweet lupin flour addition reduces the glycaemic index of a white bread breakfast without affecting palatability in healthy human volunteers. Asia Pacific Journal of Clinical Nutrition, 2005, 14, 91-7.	0.3	68
102	Effect of fat replacement by inulin or lupin-kernel fibre on sausage patty acceptability, post-meal perceptions of satiety and food intake in men. British Journal of Nutrition, 2004, 91, 591-599.	1.2	164
103	Sensory acceptability of white bread with added Australian sweet lupin (Lupinus angustifolius) kernel fibre and its glycaemic and insulinaemic responses when eaten as a breakfast. Journal of the Science of Food and Agriculture, 2003, 83, 1366-1372.	1.7	33
104	Protein quality and physico-functionality of Australian sweet lupin (Lupinus angustifolius cv.) Tj ETQq0 0 0 rgBT Chemistry, 2003, 83, 575-583.	- /Overlock 4.2	10 Tf 50 227 61
105	Sensory Acceptability of Foods with Added Lupin (Lupinus angustifolius) Kernel Fiber Using Pre-set Criteria. Journal of Food Science, 2002, 67, 356-362.	1.5	58
106	Consequences of selection for growth and heat resistance on growth, feed conversion efficiency, commercial carcass traits and meat quality of Zebu crossbred cattle. Australian Journal of Agricultural Research, 1991, 42, 1373.	1.5	15
107	The determination of hydroxyproline in meat using gas chromatography-mass spectrometry. Meat Science, 1988, 22, 221-227.	2.7	11
108	Actin-bound 3-methylhistidine as an index of myofibrillar protein in food. Meat Science, 1988, 22, 303-311.	2.7	5

#	Article	IF	CITATIONS
109	Observations on the 3-methylhistidine content of bovine, ovine and porcine muscles. Meat Science, 1986, 18, 235-239.	2.7	10
110	CHAPTER 16. Sorghum Non-extractable Polyphenols: Chemistry, Extraction and Bioactivity. Food Chemistry, Function and Analysis, 0, , 326-344.	0.1	1