Theodore Cohen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1608055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Estimation of Excess Deaths Associated With the COVID-19 Pandemic in the United States, March to May 2020. JAMA Internal Medicine, 2020, 180, 1336.	5.1	374
2	Origin and Proliferation of Multiple-Drug Resistance in Bacterial Pathogens. Microbiology and Molecular Biology Reviews, 2015, 79, 101-116.	6.6	183
3	The transmission of Mycobacterium tuberculosis in high burden settings. Lancet Infectious Diseases, The, 2016, 16, 227-238.	9.1	149
4	Feasibility of achieving the 2025 WHO global tuberculosis targets in South Africa, China, and India: a combined analysis of 11 mathematical models. The Lancet Global Health, 2016, 4, e806-e815.	6.3	138
5	Genomic diversity in autopsy samples reveals within-host dissemination of HIV-associated Mycobacterium tuberculosis. Nature Medicine, 2016, 22, 1470-1474.	30.7	133
6	Drivers of Tuberculosis Transmission. Journal of Infectious Diseases, 2017, 216, S644-S653.	4.0	123
7	Beyond the SNP Threshold: Identifying Outbreak Clusters Using Inferred Transmissions. Molecular Biology and Evolution, 2019, 36, 587-603.	8.9	121
8	Data for action: collection and use of local data to end tuberculosis. Lancet, The, 2015, 386, 2324-2333.	13.7	89
9	Internal migration and transmission dynamics of tuberculosis in Shanghai, China: an epidemiological, spatial, genomic analysis. Lancet Infectious Diseases, The, 2018, 18, 788-795.	9.1	85
10	Progression from latent infection to active disease in dynamic tuberculosis transmission models: a systematic review of the validity of modelling assumptions. Lancet Infectious Diseases, The, 2018, 18, e228-e238.	9.1	79
11	Rapid Drug Susceptibility Testing of Drug-Resistant Mycobacterium tuberculosis Isolates Directly from Clinical Samples by Use of Amplicon Sequencing: a Proof-of-Concept Study. Journal of Clinical Microbiology, 2016, 54, 2058-2067.	3.9	76
12	Lifetime burden of disease due to incident tuberculosis: a global reappraisal including post-tuberculosis sequelae. The Lancet Global Health, 2021, 9, e1679-e1687.	6.3	74
13	Cost-effectiveness and resource implications of aggressive action on tuberculosis in China, India, and South Africa: a combined analysis of nine models. The Lancet Global Health, 2016, 4, e816-e826.	6.3	69
14	Classic reaction kinetics can explain complex patterns of antibiotic action. Science Translational Medicine, 2015, 7, 287ra73.	12.4	67
15	Identifying Hotspots of Multidrug-Resistant Tuberculosis Transmission Using Spatial and Molecular Genetic Data. Journal of Infectious Diseases, 2016, 213, 287-294.	4.0	62
16	Prospects for Tuberculosis Elimination in the United States: Results of a Transmission Dynamic Model. American Journal of Epidemiology, 2018, 187, 2011-2020.	3.4	58
17	Smear positivity in paediatric and adult tuberculosis: systematic review and meta-analysis. BMC Infectious Diseases, 2016, 16, 282.	2.9	57
18	Evaluating strategies for control of tuberculosis in prisons and prevention of spillover into communities: An observational and modeling study from Brazil. PLoS Medicine, 2019, 16, e1002737.	8.4	55

#	Article	IF	CITATIONS
19	Incidence and prevalence of tuberculosis in incarcerated populations: a systematic review and meta-analysis. Lancet Public Health, The, 2021, 6, e300-e308.	10.0	54
20	Post-tuberculosis mortality and morbidity: valuing the hidden epidemic. Lancet Respiratory Medicine,the, 2020, 8, 332-333.	10.7	50
21	Within-Host Heterogeneity of <i>Mycobacterium tuberculosis</i> Infection Is Associated With Poor Early Treatment Response: A Prospective Cohort Study. Journal of Infectious Diseases, 2016, 213, 1796-1799.	4.0	45
22	Catastrophic costs potentially averted by tuberculosis control in India and South Africa: a modelling study. The Lancet Global Health, 2017, 5, e1123-e1132.	6.3	41
23	Spatially targeted screening to reduce tuberculosis transmission in high-incidence settings. Lancet Infectious Diseases, The, 2019, 19, e89-e95.	9.1	41
24	Transmissibility and potential for disease progression of drug resistant <i>Mycobacterium tuberculosis</i> : prospective cohort study. BMJ: British Medical Journal, 2019, 367, I5894.	2.3	38
25	The escalating tuberculosis crisis in central and South American prisons. Lancet, The, 2021, 397, 1591-1596.	13.7	38
26	Comparison of Estimated Effectiveness of Case-Based and Population-Based Interventions on COVID-19 Containment in Taiwan. JAMA Internal Medicine, 2021, 181, 913-921.	5.1	37
27	The potential impact of coinfection on antimicrobial chemotherapy and drug resistance. Trends in Microbiology, 2015, 23, 537-544.	7.7	36
28	Tuberculosis control interventions targeted to previously treated people in a high-incidence setting: a modelling study. The Lancet Global Health, 2018, 6, e426-e435.	6.3	34
29	Disparities in access to diagnosis and care in Blantyre, Malawi, identified through enhanced tuberculosis surveillance and spatial analysis. BMC Medicine, 2019, 17, 21.	5.5	34
30	High burden of prevalent tuberculosis among previously treated people in Southern Africa suggests potential for targeted control interventions. European Respiratory Journal, 2016, 48, 1227-1230.	6.7	33
31	Multidrug-resistant tuberculosis treatment failure detection depends on monitoring interval and microbiological method. European Respiratory Journal, 2016, 48, 1160-1170.	6.7	27
32	Yield, Efficiency, and Costs of Mass Screening Algorithms for Tuberculosis in Brazilian Prisons. Clinical Infectious Diseases, 2021, 72, 771-777.	5.8	27
33	Fitness Costs of Drug Resistance Mutations in Multidrug-Resistant <i>Mycobacterium tuberculosis</i> : A Household-Based Case-Control Study. Journal of Infectious Diseases, 2016, 213, 149-155.	4.0	25
34	Genomic variant-identification methods may alter Mycobacterium tuberculosis transmission inferences. Microbial Genomics, 2020, 6, .	2.0	24
35	Global estimates of paediatric tuberculosis incidence in 2013–19: a mathematical modelling analysis. The Lancet Global Health, 2022, 10, e207-e215.	6.3	23
36	Racial/Ethnic Segregation and Access to COVID-19 Testing: Spatial Distribution of COVID-19 Testing Sites in the Four Largest Highly Segregated Cities in the United States. American Journal of Public Health. 2022. 112. 518-526.	2.7	23

#	Article	IF	CITATIONS
37	Priority-Setting for Novel Drug Regimens to Treat Tuberculosis: An Epidemiologic Model. PLoS Medicine, 2017, 14, e1002202.	8.4	20
38	How could preventive therapy affect the prevalence of drug resistance? Causes and consequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140306.	4.0	19
39	Evaluation of Tuberculosis Treatment Response With Serial C-Reactive Protein Measurements. Open Forum Infectious Diseases, 2018, 5, ofy253.	0.9	19
40	Development of a Treatment-decision Algorithm for Human Immunodeficiency Virus–uninfected Children Evaluated for Pulmonary Tuberculosis. Clinical Infectious Diseases, 2021, 73, e904-e912.	5.8	19
41	Evaluating the reliability of mobility metrics from aggregated mobile phone data as proxies for SARS-CoV-2 transmission in the USA: a population-based study. The Lancet Digital Health, 2022, 4, e27-e36.	12.3	19
42	Where is tuberculosis transmission happening? Insights from the literature, new tools to study transmission and implications for the elimination of tuberculosis. Respirology, 2018, 23, 807-817.	2.3	17
43	Using Chemical Reaction Kinetics to Predict Optimal Antibiotic Treatment Strategies. PLoS Computational Biology, 2017, 13, e1005321.	3.2	16
44	Risk ratios for contagious outcomes. Journal of the Royal Society Interface, 2018, 15, 20170696.	3.4	16
45	Household studies provide key insights on the transmission of, and susceptibility to, SARS-CoV-2. Lancet Infectious Diseases, The, 2020, 20, 1103-1104.	9.1	16
46	Time Since Infection and Risks of Future Disease for Individuals with Mycobacterium tuberculosis Infection in the United States. Epidemiology, 2021, 32, 70-78.	2.7	16
47	Phylogeography and transmission of M. tuberculosis in Moldova: A prospective genomic analysis. PLoS Medicine, 2022, 19, e1003933.	8.4	16
48	Costâ€effectiveness of expanding the capacity of opioid agonist treatment in Ukraine: dynamic modeling analysis. Addiction, 2020, 115, 437-450.	3.3	15
49	Cost-effectiveness of post-treatment follow-up examinations and secondary prevention of tuberculosis in a high-incidence setting: a model-based analysis. The Lancet Global Health, 2020, 8, e1223-e1233.	6.3	15
50	Trends in C-Reactive Protein, D-Dimer, and Fibrinogen during Therapy for HIV-Associated Multidrug-Resistant Tuberculosis. American Journal of Tropical Medicine and Hygiene, 2018, 99, 1336-1341.	1.4	15
51	ClassTR: Classifying Within-Host Heterogeneity Based on Tandem Repeats with Application to Mycobacterium tuberculosis Infections. PLoS Computational Biology, 2016, 12, e1004475.	3.2	14
52	Second line drug susceptibility testing to inform the treatment of rifampin-resistant tuberculosis: a quantitative perspective. International Journal of Infectious Diseases, 2017, 56, 185-189.	3.3	14
53	Impact of Effective Global Tuberculosis Control on Health and Economic Outcomes in the United States. American Journal of Respiratory and Critical Care Medicine, 2020, 202, 1567-1575.	5.6	14
54	Whole-genome sequencing of Mycobacterium tuberculosis for rapid diagnostics and beyond. Lancet Respiratory Medicine,the, 2016, 4, 6-8.	10.7	13

#	Article	IF	CITATIONS
55	A Likelihood Approach for Real-Time Calibration of Stochastic Compartmental Epidemic Models. PLoS Computational Biology, 2017, 13, e1005257.	3.2	13
56	Comparative Modeling of Tuberculosis Epidemiology and Policy Outcomes in California. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 356-365.	5.6	13
57	Effect of empirical treatment on outcomes of clinical trials of diagnostic assays for tuberculosis. Lancet Infectious Diseases, The, 2015, 15, 16-17.	9.1	12
58	ldentifying costâ€effective dynamic policies to control epidemics. Statistics in Medicine, 2016, 35, 5189-5209.	1.6	12
59	The cost-effectiveness of alternative vaccination strategies for polyvalent meningococcal vaccines in Burkina Faso: A transmission dynamic modeling study. PLoS Medicine, 2018, 15, e1002495.	8.4	12
60	Use of daily Internet search query data improves real-time projections of influenza epidemics. Journal of the Royal Society Interface, 2018, 15, 20180220.	3.4	11
61	Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones. PLoS Computational Biology, 2020, 16, e1008106.	3.2	11
62	Risk factors for recurrent tuberculosis after successful treatment in a high burden setting: a cohort study. BMC Infectious Diseases, 2020, 20, 789.	2.9	10
63	Evaluating the potential impact of enhancing HIV treatment and tuberculosis control programmes on the burden of tuberculosis. Journal of the Royal Society Interface, 2015, 12, 20150146.	3.4	9
64	Tradeoffs in Introduction Policies for the Anti-Tuberculosis Drug Bedaquiline: A Model-Based Analysis. PLoS Medicine, 2016, 13, e1002142.	8.4	9
65	Population implications of the use of bedaquiline in people with extensively drug-resistant tuberculosis: are fears of resistance justified?. Lancet Infectious Diseases, The, 2017, 17, e429-e433.	9.1	9
66	Towards better prediction of Mycobacterium tuberculosis lineages from MIRU-VNTR data. Infection, Genetics and Evolution, 2019, 72, 59-66.	2.3	9
67	Accurate quantification of uncertainty in epidemic parameter estimates and predictions using stochastic compartmental models. Statistical Methods in Medical Research, 2019, 28, 3591-3608.	1.5	9
68	Trends, Mechanisms, and Racial/Ethnic Differences of Tuberculosis Incidence in the US-Born Population Aged 50 Years or Older in the United States. Clinical Infectious Diseases, 2022, 74, 1594-1603.	5.8	9
69	Population Immunity to Pre-Omicron and Omicron Severe Acute Respiratory Syndrome Coronavirus 2 Variants in US States and Counties Through 1 December 2021. Clinical Infectious Diseases, 2023, 76, e350-e359.	5.8	9
70	Protective effects of household-based TB interventions are robust to neighbourhood-level variation in exposure risk in Lima, Peru: a model-based analysis. International Journal of Epidemiology, 2018, 47, 185-192.	1.9	8
71	Tracking and predicting U.S. influenza activity with a real-time surveillance network. PLoS Computational Biology, 2020, 16, e1008180.	3.2	8
72	Adaptive Policies to Balance Health Benefits and Economic Costs of Physical Distancing Interventions during the COVID-19 Pandemic. Medical Decision Making, 2021, 41, 386-392.	2.4	7

#	Article	IF	CITATIONS
73	Bayesian evidence synthesis to estimate subnational TB incidence: An application in Brazil. Epidemics, 2021, 35, 100443.	3.0	7
74	High-resolution estimates of tuberculosis incidence among non-U.Sborn persons residing in the United States, 2000–2016. Epidemics, 2020, 33, 100419.	3.0	6
75	Adaptive guidelines for the treatment of gonorrhea to increase the effective life span of antibiotics among men who have sex with men in the United States: A mathematical modeling study. PLoS Medicine, 2020, 17, e1003077.	8.4	6
76	Test, trace, and isolate in the UK. BMJ, The, 2021, 372, n822.	6.0	6
77	Use of Lot Quality Assurance Sampling to Ascertain Levels of Drug Resistant Tuberculosis in Western Kenya. PLoS ONE, 2016, 11, e0154142.	2.5	6
78	Neighbourhood prevalence-to-notification ratios for adult bacteriologically-confirmed tuberculosis reveals hotspots of underdiagnosis in Blantyre, Malawi. PLoS ONE, 2022, 17, e0268749.	2.5	6
79	Evolution and emergence of multidrug-resistant Mycobacterium tuberculosis in Chisinau, Moldova. Microbial Genomics, 2021, 7, .	2.0	5
80	Cost-Effectiveness of Alternative Uses of Polyvalent Meningococcal Vaccines in Niger: An Agent-Based Transmission Modeling Study. Medical Decision Making, 2019, 39, 553-567.	2.4	4
81	Ongoing challenges to understanding multidrug- and rifampicin-resistant tuberculosis in children <i>versus</i> adults. European Respiratory Journal, 2021, 57, 2002504.	6.7	4
82	The positive externalities of migrant-based TB control strategy in a Chinese urban population with internal migration: a transmission-dynamic modeling study. BMC Medicine, 2021, 19, 95.	5.5	4
83	Evaluation of 6-Month Versus Continuous Isoniazid Preventive Therapy for Mycobacterium tuberculosis in Adults Living With HIV/AIDS in Malawi. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 85, 643-650.	2.1	4
84	Evidence sources on the natural history of latent tuberculosis infection. Lancet Infectious Diseases, The, 2018, 18, 834-835.	9.1	2
85	Assessing Local Risk of Rifampicin-Resistant Tuberculosis in KwaZulu-Natal, South Africa Using Lot Quality Assurance Sampling. PLoS ONE, 2016, 11, e0153143.	2.5	2
86	The Health and Economic Benefits of Tests That Predict Future Progression to Tuberculosis Disease. Epidemiology, 2022, 33, 75-83.	2.7	2
87	vCOMBAT: a novel tool to create and visualize a computational model of bacterial antibiotic target-binding. BMC Bioinformatics, 2022, 23, 22.	2.6	2
88	Antimicrobial Resistance Risks of Cholera Prophylaxis for United Nations Peacekeepers. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	1
89	Transmission Modeling with Regression Adjustment for Analyzing Household-based Studies of Infectious Disease. Epidemiology, 2020, 31, 238-247.	2.7	1
90	Children as sentinels of tuberculosis transmission: disease mapping of programmatic data. BMC Medicine, 2020, 18, 234.	5.5	1

#	Article	IF	CITATIONS
91	Evaluating spatially adaptive guidelines for the treatment of gonorrhea to reduce the incidence of gonococcal infection and increase the effective lifespan of antibiotics. PLoS Computational Biology, 2022, 18, e1009842.	3.2	1
92	The contributions of Steve Lawn to the science, advocacy and policy of HIV-associated TB. International Journal of Tuberculosis and Lung Disease, 2016, 20, 1563-1564.	1.2	0
93	Reply to Chen et al. Journal of Infectious Diseases, 2016, 214, 1287-1288.	4.0	0
94	82125 Multiple epidemics of multidrug-resistant tuberculosis revealed by spatial disease mapping and whole-genome sequencing analysis in urban China. Journal of Clinical and Translational Science, 2021, 5, 5-6.	0.6	0
95	Spatially targeted digital chest radiography to reduce tuberculosis in high-burden settings: A study of adaptive decision making. Epidemics, 2022, 38, 100540.	3.0	0
96	Title is missing!. , 2020, 17, e1003077.		0
97	Title is missing!. , 2020, 17, e1003077.		0
98	Title is missing!. , 2020, 17, e1003077.		0
99	Title is missing!. , 2020, 17, e1003077.		0