Chun-Sheng Jia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1608006/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of thermodynamic properties for sulfur dioxide. Journal of Molecular Liquids, 2022, 352, 118722.	2.3	32
2	New insights into the beneficial use of coalbed-associated water: A feasibility study of co-produced water reinjection to coalbeds. Journal of Natural Gas Science and Engineering, 2022, 103, 104622.	2.1	2
3	Prediction of vibrational energy levels for the CO molecule and 7Li2 dimer. Chemical Physics Letters, 2022, 803, 139791.	1.2	0
4	A novel formulation representation of the equilibrium constant for water gas shift reaction. International Journal of Hydrogen Energy, 2022, 47, 27821-27838.	3.8	24
5	Prediction of thermodynamic properties for sulfur dimer. Chemical Physics Letters, 2022, 803, 139844.	1.2	21
6	Prediction of the ideal-gas thermodynamic properties for water. Journal of Molecular Liquids, 2021, 321, 114912.	2.3	58
7	A new well structure and methane recovery enhancement method in two coal seams. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2020, 42, 1977-1988.	1.2	6
8	Efficient predictions of Gibbs free energy for the gases CO, BF, and gaseous BBr. Journal of Molecular Structure, 2020, 1199, 126958.	1.8	59
9	Improved multiparameter exponentialâ€ŧype potential for diatomic molecules. International Journal of Quantum Chemistry, 2020, 120, e26058.	1.0	10
10	Predictions of thermodynamic properties for hydrogen sulfide. Journal of Molecular Liquids, 2020, 315, 113751.	2.3	47
11	Thermodynamic Properties for Carbon Dioxide. ACS Omega, 2019, 4, 19193-19198.	1.6	98
12	Predictions of Entropy and Gibbs Energy for Carbonyl Sulfide. ACS Omega, 2019, 4, 20000-20004.	1.6	29
13	Thermodynamic Properties of Gaseous Carbon Disulfide. ACS Omega, 2019, 4, 16121-16124.	1.6	28
14	Improved Five-Parameter Exponential-Type Potential Energy Model for Diatomic Molecules. Communications in Theoretical Physics, 2019, 71, 103.	1.1	42
15	Prediction of entropy and Gibbs free energy for nitrogen. Chemical Engineering Science, 2019, 202, 70-74.	1.9	109
16	Analytical Methods for High Energy Physics. Advances in High Energy Physics, 2019, 2019, 1-2.	0.5	0
17	Prediction of Gibbs free energy for the gases Cl2, Br2, and HCl. Chemical Physics Letters, 2019, 726, 83-86.	1.2	45
18	Prediction of enthalpy for the gases CO, HCl, and BF. Chemical Physics Letters, 2019, 715, 186-189.	1.2	66

#	Article	IF	CITATIONS
19	Prediction of enthalpy for the gases Cl2, Br2, and gaseous BBr. Chemical Physics Letters, 2019, 717, 16-20.	1.2	36
20	Enthalpy of gaseous phosphorus dimer. Chemical Engineering Science, 2018, 183, 26-29.	1.9	102
21	Predictions of entropy for diatomic molecules and gaseous substances. Chemical Physics Letters, 2018, 692, 57-60.	1.2	89
22	Solutions of the Klein–Gordon equation with the improved Tietz potential energy model. Journal of Mathematical Chemistry, 2018, 56, 2982-2994.	0.7	14
23	Prediction of enthalpy for nitrogen gas. European Physical Journal Plus, 2018, 133, 1.	1.2	36
24	Entropy of gaseous phosphorus dimer. Chemical Engineering Science, 2018, 190, 1-4.	1.9	77
25	Gibbs free energy of gaseous phosphorus dimer. Chemical Engineering Science, 2018, 190, 122-125.	1.9	112
26	Relativistic rotation-vibrational energies for the Cs2 molecule. European Physical Journal D, 2017, 71, 1.	0.6	37
27	Thermodynamic properties for the sodium dimer. Chemical Physics Letters, 2017, 673, 50-55.	1.2	138
28	Partition function of improved Tietz oscillators. Chemical Physics Letters, 2017, 676, 150-153.	1.2	141
29	Improved Pöschl-Teller potential energy model for diatomic molecules. International Journal of Quantum Chemistry, 2017, 117, e25383.	1.0	58
30	Relativistic rotation-vibrational energies for the CP molecule. Computational and Theoretical Chemistry, 2017, 1108, 57-62.	1,1	20
31	Thermodynamic properties for the lithium dimer. Chemical Physics Letters, 2017, 667, 211-215.	1.2	142
32	Entropy of gaseous boron monobromide. Chemical Physics Letters, 2017, 686, 131-133.	1.2	54
33	Relativistic spinless rotation-vibrational energies of carbon monoxide. European Physical Journal Plus, 2017, 132, 1.	1.2	16
34	Relativistic rotation-vibrational energies for the 107Ag 109Ag isotope. European Physical Journal Plus, 2017, 132, 1.	1.2	9
35	The Potential Model in High Energy Physics. Advances in High Energy Physics, 2017, 2017, 1-1.	0.5	0
36	Stability analysis of the solution of the Dirac equation for the vibrational energies of the SiF+ molecule. European Physical Journal Plus, 2016, 131, 1.	1.2	17

#	Article	IF	CITATIONS
37	Solutions of the Dirac equation with the Morse potential energy model in higher spatial dimensions. European Physical Journal Plus, 2016, 131, 1.	1.2	19
38	Relativistic energies of the SiC radical in higher spatial dimensions. European Physical Journal Plus, 2016, 131, 1.	1.2	12
39	D-Dimensional relativistic energies for silver dimer. Chemical Physics Letters, 2015, 636, 197-202.	1.2	28
40	Relativistic energies for the SiC radical. European Physical Journal A, 2015, 51, 1.	1.0	13
41	Solutions of the Klein–Gordon equation with the Morse potential energy model in higher spatial dimensions. Physica Scripta, 2015, 90, 035207.	1.2	25
42	D-dimensional energies for lithium dimer and silicon carbide radical. Journal of Molecular Spectroscopy, 2015, 311, 69-75.	0.4	16
43	Molecular spinless energies of the modified Rosen–Morse potential energy model in higher spatial dimensions. Chemical Physics Letters, 2015, 619, 54-60.	1.2	37
44	Relativistic energies for diatomic molecule nucleus motions with the spin symmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2015, 379, 137-142.	0.9	44
45	Molecular spinless energies of the improved Rosen-Morse potential energy model in D dimensions. European Physical Journal Plus, 2014, 129, 1.	1.2	10
46	D-dimensional energies for scandium monoiodide. Journal of Mathematical Chemistry, 2014, 52, 2559-2569.	0.7	12
47	Molecular energies of the improved Tietz potential energy model. Canadian Journal of Chemistry, 2014, 92, 201-205.	0.6	33
48	Molecular energies of the improved Rosenâ^'Morse potential energy model. Canadian Journal of Chemistry, 2014, 92, 40-44.	0.6	42
49	Molecular Spinless Energies of the Modified Rosen-Morse Potential Energy Model. Bulletin of the Korean Chemical Society, 2014, 35, 2699-2703.	1.0	11
50	D-dimensional energies for lithium dimer. Journal of Molecular Spectroscopy, 2014, 297, 21-24.	0.4	27
51	Solutions of the Klein-Gordon equation with the improved Manning-Rosen potential energy model in D dimensions. European Physical Journal Plus, 2014, 129, 1.	1.2	35
52	Diatomic molecule energies of the modified Rosenâ^'Morse potential energy model. Canadian Journal of Chemistry, 2014, 92, 341-345.	0.6	40
53	Relationship of the deformed hyperbolic Kratzer-like and Tietz potential energy models for diatomic molecules. Canadian Journal of Physics, 2014, 92, 1258-1261.	0.4	6
54	<i>D</i> -dimensional energies for cesium and sodium dimers. Canadian Journal of Chemistry, 2014, 92, 386-391.	0.6	22

#	Article	IF	CITATIONS
55	Relationship of the Williams-Poulios and Manning-Rosen Potential Energy Models for Diatomic Molecules. Few-Body Systems, 2014, 55, 1159-1165.	0.7	8
56	D-dimensional energies for sodium dimer. Chemical Physics, 2014, 439, 79-84.	0.9	16
57	Solutions of the Klein-Gordon equation with the improved Rosen-Morse potential energy model. European Physical Journal Plus, 2013, 128, 1.	1.2	32
58	Equivalence of the deformed Rosen–Morse potential energy model and Tietz potential energy model. Journal of Mathematical Chemistry, 2013, 51, 2165-2172.	0.7	27
59	Equivalence of the Sun and Tietz potential models for diatomic molecules. Computational and Theoretical Chemistry, 2013, 1020, 170-172.	1.1	22
60	The 3 state of Cs2 molecule. Computational and Theoretical Chemistry, 2013, 1019, 137-140.	1.1	43
61	Calculation of the interaction potential energy curve and vibrational levels for the state of molecule. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1444-1447.	0.9	77
62	On the equivalence of the Badawi–Bessis–Bessis, Wei and Tietz potential energy functions for diatomic molecules. Physica Scripta, 2013, 88, 065003.	1.2	8
63	Molecular spinless energies of the improved Tietz potential energy model. European Physical Journal Plus, 2013, 128, 1.	1.2	24
64	Bound state solutions of the Klein–Gordon equation with the improved expression of the Manning–Rosen potential energy model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 682-686.	0.9	77
65	Equivalence of the deformed modified Rosen–Morse potential energy model and the Tietz potential energy model. Physica Scripta, 2013, 87, 025301.	1.2	37
66	Molecular Spinless Energies of the Morse Potential Energy Model. Bulletin of the Korean Chemical Society, 2013, 34, 3425-3428.	1.0	17
67	Modified Rosen-Morse potential-energy model for diatomic molecules. Physical Review A, 2012, 86, .	1.0	59
68	Improved expressions for the Schiöberg potential energy models for diatomic molecules. Journal of Molecular Spectroscopy, 2012, 278, 23-26.	0.4	58
69	Equivalence of the Wei potential model and Tietz potential model for diatomic molecules. Journal of Chemical Physics, 2012, 137, 014101.	1.2	144
70	Equivalence of the three empirical potential energy models for diatomic molecules. Journal of Molecular Spectroscopy, 2012, 274, 5-8.	0.4	92
71	Exact Solutions of the Klein–Gordon Equation with Position-Dependent Mass for Mixed Vector and Scalar Kink-Like Potentials. Few-Body Systems, 2012, 52, 11-18.	0.7	44
72	Approximate solutions of the SchrĶdinger equation with the generalized Morse potential model including the centrifugal term. International Journal of Quantum Chemistry, 2011, 111, 1870-1878.	1.0	73

#	Article	IF	CITATIONS
73	Approximate analytical solutions of the Klein–Gordon equation with the Pöschl–Teller potential including the centrifugal term. Physica Scripta, 2010, 81, 045001.	1.2	62
74	ARBITRARY I-WAVE BOUND STATE SOLUTIONS OF THE SCHR×DINGER EQUATION WITH THE ECKART POTENTIAL. Modern Physics Letters B, 2009, 23, 2269-2279.	1.0	14
75	ARBITRARY I-WAVE SOLUTIONS OF THE SCHR×DINGER EQUATION WITH THE HULTHÉN POTENTIAL MODEL. International Journal of Modern Physics A, 2009, 24, 4519-4528.	0.5	23
76	Bound state solutions of the Klein–Gordon equation with the generalized Pöschl–Teller potential. Physica Scripta, 2009, 79, 065014.	1.2	33
77	Reply to â€~Comment on â€~Approximate analytical solutions of the Dirac equation with the Pöschl–Teller potential including spin–orbit coupling''. Journal of Physics A: Mathematical and Theoretical, 2009, 42, 198002.	0.7	10
78	Approximate analytical solutions of the Dirac equation with the generalized Pöschl–Teller potential including the pseudo-centrifugal term. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 1621-1626.	0.9	141
79	Approximate Analytical Solutions of the Dirac Equation with the Hyperbolic Potential in the Presence of the Spin Symmetry and Pseudo-spin Symmetry. International Journal of Theoretical Physics, 2009, 48, 2633-2643.	0.5	26
80	Approximate analytical solutions of the Dirac equation with the generalized Morse potential model in the presence of the spin symmetry and pseudo-spin symmetry. Physica Scripta, 2009, 80, 035003.	1.2	33
81	APPROXIMATE ANALYTICAL SOLUTIONS OF THE SCHRÖDINGER EQUATION WITH THE MANNING–ROSEN POTENTIAL MODEL. Modern Physics Letters A, 2009, 24, 1863-1874.	0.5	31
82	Approximate analytical solutions of the Dirac–Manning–Rosen problem with the spin symmetry and pseudo-spin symmetry. Physica Scripta, 2009, 79, 055002.	1.2	34
83	Analytical approximation to the solution of the Dirac equation with the Eckart potential including the spin–orbit coupling term. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 2201-2207.	0.9	113
84	Position-dependent effective mass Schrödinger equations for PT-symmetric potentials. Journal of Mathematical Chemistry, 2008, 43, 435-446.	0.7	20
85	Bounded Solutions of the Dirac Equation with aÂPT-symmetric Kink-Like Vector Potential inÂTwo-Dimensional Space-Time. International Journal of Theoretical Physics, 2008, 47, 664-672.	0.5	17
86	Relativistic Confinement of Neutral Fermions withÂPartially Exactly Solvable and Exactly SolvableÂPT-Symmetric Potentials in the Presence ofÂPosition-Dependent Mass. International Journal of Theoretical Physics, 2008, 47, 2513-2522.	0.5	24
87	A new approximation scheme for the centrifugal term and the Hulthén potential. Physics Letters, Section A: General, Atomic and Solid State Physics, 2008, 372, 4779-4782.	0.9	73
88	Extension of PT-symmetric quantum mechanics to the Dirac theory with position-dependent mass. Annals of Physics, 2008, 323, 566-579.	1.0	77
89	Approximate analytical solutions of the Dirac equation with the Pöschl–Teller potential including the spin–orbit coupling term. Journal of Physics A: Mathematical and Theoretical, 2008, 41, 255302.	0.7	94
90	Pseudospin symmetry in the relativistic empirical potential as a diatomic molecular model. Physica Scripta, 2007, 75, 388-393.	1.2	41

6

#	Article	IF	CITATIONS
91	Trapping neutral fermions with a PT-symmetric trigonometric potential in the presence of position-dependent mass. Physics Letters, Section A: General, Atomic and Solid State Physics, 2007, 369, 274-279.	0.9	21
92	Position-dependent effective mass Dirac equations withPT-symmetric and non-PT-symmetric potentials. Journal of Physics A, 2006, 39, 11877-11887.	1.6	43
93	Approximation solution of the Dirac equation with position-dependent mass for the generalized Hulthén potential. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 352, 478-483.	0.9	44
94	Classes of exact Klein–Gordon equations with spatially dependent masses: Regularizing the one-dimensional inversely linear potential. Physics Letters, Section A: General, Atomic and Solid State Physics, 2006, 352, 484-487.	0.9	44
95	A unified treatment of exactly solvable trigonometric potential models. Physica Scripta, 2006, 73, 164-168.	1.2	5
96	Exact solution of the Dirac–Eckart problem with spin and pseudospin symmetry. Journal of Physics A, 2006, 39, 7737-7744.	1.6	142
97	Bound states of relativistic particles in the generalized symmetrical double-well potential. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 337, 189-196.	0.9	78
98	Bound states of the Dirac equation with vector and scalar Scarf-type potentials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 340, 59-69.	0.9	82
99	Exact solutions of the SchrĶdinger equation with position-dependent mass for some Hermitian and non-Hermitian potentials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 345, 279-286.	0.9	75
100	Bound states of the Dirac equation with vector and scalar Eckart potentials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 346, 54-64.	0.9	94
101	SYSTEMATIC STUDY ON EXACTLY SOLVABLE TRIGONOMETRIC POTENTIALS WITH PT SYMMETRY. Modern Physics Letters A, 2005, 20, 1753-1761.	0.5	13
102	Mapping of the five-parameter exponential-type potential model into trigonometric-type potentials. Journal of Physics A, 2004, 37, 11275-11284.	1.6	37
103	Bound states of the Klein–Gordon equation with vector and scalar five-parameter exponential-type potentials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 332, 157-167.	0.9	76
104	Bound states of the Klein–Gordon equation with vector and scalar Rosen–Morse-type potentials. Physics Letters, Section A: General, Atomic and Solid State Physics, 2004, 333, 212-217.	0.9	141
105	Bound states of the five-parameter exponential-type potential model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2003, 311, 115-125.	0.9	126
106	NEW SOLVABLE PSEUDO-HERMITIAN POTENTIAL MODELS WITH REAL SPECTRA. Modern Physics Letters A, 2003, 18, 1247-1255.	0.5	9
107	PT symmetry and shape invariance for a potential well with a barrier. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 294, 185-189.	0.9	96
108	Pseudo-Hermitian potential models with PT symmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 300, 115-121.	0.9	49

#	Article	IF	CITATIONS
109	Complexified Pöschl–Teller II potential model. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 305, 231-238.	0.9	45
110	A new -pseudo-Hermitian complex potential with PT symmetry. Physics Letters, Section A: General, Atomic and Solid State Physics, 2002, 298, 78-82.	0.9	30
111	Shape invariance and the supersymmetry WKB approximation for a diatomic molecule potential. Journal of Physics A, 2000, 33, 6993-6998.	1.6	49
112	A unified recurrence operator method for obtaining normalized explicit wavefunctions for shape-invariant potentials. Journal of Physics A, 1998, 31, 4763-4772.	1.6	52