Kentaro Imamura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1607752/publications.pdf

Version: 2024-02-01

933447 940533 27 272 10 16 h-index citations g-index papers 27 27 27 207 citing authors all docs docs citations times ranked

#	Article	IF	Citations
1	Fabrication of Si nanoparticles from Si swarf and application to solar cells. Applied Surface Science, 2014, 312, 39-42.	6.1	46
2	Hydrogen generation by reaction of Si nanopowder with neutral water. Journal of Nanoparticle Research, 2017, 19, 176.	1.9	46
3	Ultra-low reflectivity polycrystalline silicon surfaces formed by surface structure chemical transfer method. Applied Physics Letters, 2013, 103, .	3.3	21
4	Reaction of Si nanopowder with water investigated by FT-IR and XPS. AIP Advances, 2017, 7, .	1.3	18
5	Surface Structure Chemical Transfer Method for Formation of Ultralow Reflectivity Si Surfaces. Journal of the Electrochemical Society, 2013, 160, H443-H445.	2.9	17
6	Ultralow reflectivity surfaces by formation of nanocrystalline Si layer for crystalline Si solar cells. Solar Energy Materials and Solar Cells, 2015, 141, 1-6.	6.2	17
7	Hydrogen generation from water using Si nanopowder fabricated from swarf. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	15
8	Surface nanocrystalline Si structure and its surface passivation for highly efficient black Si solar cells. Progress in Photovoltaics: Research and Applications, 2017, 25, 358-366.	8.1	15
9	Multifractal analysis and optical properties of nanostructured silicon layers. Applied Surface Science, 2017, 395, 150-156.	6.1	12
10	Mechanism of ultra-low reflectance for nanocrystalline Si/crystalline Si structure formed by surface structure chemical transfer method. Journal of Applied Physics, 2017, 121, .	2.5	12
11	Light trapping of crystalline Si solar cells by use of nanocrystalline Si layer plus pyramidal texture. Applied Surface Science, 2017, 395, 50-55.	6.1	9
12	Improvement of Conversion Efficiency of Silicon Solar Cells by Submicronâ€Textured Rear Reflector Obtained by Metalâ€Assisted Chemical Etching. Solar Rrl, 2017, 1, 1700061.	5.8	8
13	Planarization mechanism for 6H–SiC (0001) Si-faced surfaces using electrochemical reactions. Materials Research Express, 2019, 6, 055906.	1.6	7
14	Fabrication Mechanism of Atomically Flat n-Type 4H-SiC (000-1) Surfaces by Electrochemical Method. ECS Journal of Solid State Science and Technology, 2017, 6, P265-P269.	1.8	6
15	Structure and hydrogen generation mechanism of Si-based agent. Applied Surface Science, 2021, 536, 147398.	6.1	6
16	Effective passivation for nanocrystalline Si layer/crystalline Si solar cells by use of phosphosilicate glass. Solar Energy, 2018, 169, 297-301.	6.1	5
17	High conversion efficiency of crystalline Si solar cells using black â°' Si fabricated by SSCT method. Journal of Electrical Engineering, 2017, 68, 37-42.	0.7	4
18	Fabrication of Si nanopowder and application to hydrogen generation and photoluminescent material. Journal of Electrical Engineering, 2017, 68, 17-23.	0.7	4

#	Article	IF	CITATIONS
19	Communicationâ€"Enhancement of Boron Back-Surface-Field and Suppression of Auger Recombination to Improve Ultralow-Reflectance Si Solar Cells. ECS Journal of Solid State Science and Technology, 2020, 9, 045013.	1.8	3
20	Investigation of morphological and optical properties of nanostructured layers formed by the SSCT etching of silicon. Applied Surface Science, 2018, 461, 72-77.	6.1	1
21	Properties of nanocrystalline Si layers embedded in structure of solar cell. Journal of Electrical Engineering, 2017, 68, 48-52.	0.7	0
22	Properties of nanostructured layers formed on silicon. AIP Conference Proceedings, 2018, , .	0.4	0
23	Surface structure chemical transfer method to fabricate low reflectance multi-crystalline Si wafers produced with fixed abrasive machining technology. AIP Advances, 2019, 9, .	1.3	0
24	Black silicon $\hat{a} \in \text{``correlation}$ between microstructure and Raman scattering. Journal of Electrical Engineering, 2019, 70, 58-64.	0.7	0
25	Improvement of ultralow reflectance Si solar cells by machine-learning-assisted optimization for diffusion process. Materials Today Communications, 2022, 31, 103250.	1.9	0
26	Improvement of blue response of black Si solar cells due to graded band structure. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 140, 115196.	2.7	0
27	Analysis of Photoluminiscence in the NCSI-DMA System. Communications - Scientific Letters of the University of Zilina, 2017, 19, 21-25.	0.6	0