List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1607713/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus, Series B: Chemical and Physical Meteorology, 2022, 53, 133.	1.6	81
2	Regional climate effects of aerosols over China: modeling and observation. Tellus, Series B: Chemical and Physical Meteorology, 2022, 55, 914.	1.6	24
3	Effective radiative forcing of anthropogenic aerosols in E3SM version 1: historical changes, causality, decomposition, and parameterization sensitivities. Atmospheric Chemistry and Physics, 2022, 22, 9129-9160.	4.9	16
4	Development and Evaluation of Chemistryâ€Aerosolâ€Climate Model CAM5â€Chemâ€MAM7â€MOSAIC: Global Atmospheric Distribution and Radiative Effects of Nitrate Aerosol. Journal of Advances in Modeling Earth Systems, 2021, 13, e2020MS002346.	3.8	17
5	Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001851.	3.8	68
6	Exploring Topographyâ€Based Methods for Downscaling Subgrid Precipitation for Use in Earth System Models. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031456.	3.3	18
7	An Evaluation of Marine Boundary Layer Cloud Property Simulations in the Community Atmosphere Model Using Satellite Observations: Conventional Subgrid Parameterization versus CLUBB. Journal of Climate, 2018, 31, 2299-2320.	3.2	21
8	Development and Evaluation of an Explicit Treatment of Aerosol Processes at Cloud Scale Within a Multiâ€5cale Modeling Framework (MMF). Journal of Advances in Modeling Earth Systems, 2018, 10, 1663-1679.	3.8	1
9	The importance of considering sub-grid cloud variability when using satellite observations to evaluate the cloud and precipitation simulations in climate models. Geoscientific Model Development, 2018, 11, 3147-3158.	3.6	16
10	Lowâ€Cloud Feedback in CAM5â€CLUBB: Physical Mechanisms and Parameter Sensitivity Analysis. Journal of Advances in Modeling Earth Systems, 2018, 10, 2844-2864.	3.8	15
11	Volcanic Radiative Forcing From 1979 to 2015. Journal of Geophysical Research D: Atmospheres, 2018, 123, 12491-12508.	3.3	87
12	Observational constraint on cloud susceptibility weakened by aerosol retrieval limitations. Nature Communications, 2018, 9, 2640.	12.8	38
13	Intercomparisons of marine boundary layer cloud properties from the ARM CAPâ€MBL campaign and two MODIS cloud products. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2351-2365.	3.3	16
14	Dust-wind interactions can intensify aerosol pollution over eastern China. Nature Communications, 2017, 8, 15333.	12.8	105
15	Constraining the instantaneous aerosol influence on cloud albedo. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4899-4904.	7.1	77
16	SAM-CAAM: A Concept for Acquiring Systematic Aircraft Measurements to Characterize Aerosol Air Masses. Bulletin of the American Meteorological Society, 2017, 98, 2215-2228.	3.3	18
17	Influence of Superparameterization and a Higherâ€Order Turbulence Closure on Rainfall Bias Over Amazonia in Community Atmosphere Model Version 5. Journal of Geophysical Research D: Atmospheres, 2017, 122, 9879-9902.	3.3	10
18	Impacts of interactive dust and its direct radiative forcing on interannual variations of temperature and precipitation in winter over East Asia. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8761-8780.	3.3	12

#	Article	IF	CITATIONS
19	Aerosols at the poles: an AeroCom Phase II multi-model evaluation. Atmospheric Chemistry and Physics, 2017, 17, 12197-12218.	4.9	58
20	Quantification of marine aerosol subgrid variability and its correlation with clouds based on highâ€resolution regional modeling. Journal of Geophysical Research D: Atmospheres, 2017, 122, 6329-6346.	3.3	4
21	Assessing the Resolution Adaptability of the Zhangâ€McFarlane Cumulus Parameterization With Spatial and Temporal Averaging. Journal of Advances in Modeling Earth Systems, 2017, 9, 2753-2770.	3.8	11
22	Planning the Next Decade of Coordinated Research to Better Understand and Simulate Marine Low Clouds. Bulletin of the American Meteorological Society, 2016, 97, 1699-1702.	3.3	13
23	ARM-Led Improvements in Aerosols in Climate and Climate Models. Meteorological Monographs, 2016, 57, 27.1-27.12.	5.0	4
24	Quantifying the impact of sub-grid surface wind variability on sea salt and dust emissions in CAM5. Geoscientific Model Development, 2016, 9, 607-632.	3.6	19
25	Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results. Journal of Geophysical Research D: Atmospheres, 2016, 121, 7254-7283.	3.3	80
26	Appreciation of peer reviewers for 2015. Journal of Geophysical Research D: Atmospheres, 2016, 121, 4335-4385.	3.3	0
27	Changes in Sea Salt Emissions Enhance ENSO Variability. Journal of Climate, 2016, 29, 8575-8588.	3.2	12
28	Vertical overlap of probability density functions of cloud and precipitation hydrometeors. Journal of Geophysical Research D: Atmospheres, 2016, 121, 12,966-12,984.	3.3	3
29	Improving our fundamental understanding of the role of aerosolâ ``cloud interactions in the climate system. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5781-5790.	7.1	479
30	Impacts of the East Asian Monsoon on springtime dust concentrations over China. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8137-8152.	3.3	16
31	Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 6321-6335.	3.3	23
32	DMS role in ENSO cycle in the tropics. Journal of Geophysical Research D: Atmospheres, 2016, 121, 13,537.	3.3	10
33	Rainâ€aerosol relationships influenced by wind speed. Geophysical Research Letters, 2016, 43, 2267-2274.	4.0	14
34	On the characteristics of aerosol indirect effect based on dynamic regimes in global climate models. Atmospheric Chemistry and Physics, 2016, 16, 2765-2783.	4.9	67
35	What controls the vertical distribution of aerosol? Relationships between process sensitivity in HadGEM3–UKCA and inter-model variation from AeroCom Phase II. Atmospheric Chemistry and Physics, 2016, 16, 2221-2241.	4.9	82
36	Author contributions can be clarified. Journal of Geophysical Research D: Atmospheres, 2016, 121, 8155-8155.	3.3	3

#	Article	IF	CITATIONS
37	Can nudging be used to quantify model sensitivities in precipitation and cloud forcing?. Journal of Advances in Modeling Earth Systems, 2016, 8, 1073-1091.	3.8	26
38	Coupling spectralâ€bin cloud microphysics with the MOSAIC aerosol model in WRFâ€Chem: Methodology and results for marine stratocumulus clouds. Journal of Advances in Modeling Earth Systems, 2016, 8, 1289-1309.	3.8	19
39	Global volcanic aerosol properties derived from emissions, 1990–2014, using CESM1(WACCM). Journal of Geophysical Research D: Atmospheres, 2016, 121, 2332-2348.	3.3	175
40	Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5804-5811.	7.1	120
41	Interannual modulation of subtropical Atlantic boreal summer dust variability by ENSO. Climate Dynamics, 2016, 46, 585-599.	3.8	21
42	A multiscale modeling framework model (superparameterized CAM5) with a higherâ€order turbulence closure: Model description and lowâ€cloud simulations. Journal of Advances in Modeling Earth Systems, 2015, 7, 484-509.	3.8	39
43	How does increasing horizontal resolution in a global climate model improve the simulation of aerosolâ€cloud interactions?. Geophysical Research Letters, 2015, 42, 5058-5065.	4.0	62
44	Global transformation and fate of SOA: Implications of lowâ€volatility SOA and gasâ€phase fragmentation reactions. Journal of Geophysical Research D: Atmospheres, 2015, 120, 4169-4195.	3.3	123
45	Improving representation of convective transport for scaleâ€aware parameterization: 2. Analysis of cloudâ€resolving model simulations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3510-3532.	3.3	21
46	Parametric behaviors of <scp>CLUBB</scp> in simulations of low clouds in the <scp>C</scp> ommunity <scp>A</scp> tmosphere <scp>M</scp> odel (<scp>CAM</scp>). Journal of Advances in Modeling Earth Systems, 2015, 7, 1005-1025.	3.8	32
47	Improving representation of convective transport for scaleâ€aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. Journal of Geophysical Research D: Atmospheres, 2015, 120, 3485-3509.	3.3	57
48	Aerosol transport and wet scavenging in deep convective clouds: A case study and model evaluation using a multiple passive tracer analysis approach. Journal of Geophysical Research D: Atmospheres, 2015, 120, 8448-8468.	3.3	56
49	Interannual to decadal climate variability of sea salt aerosols in the coupled climate model CESM1.0. Journal of Geophysical Research D: Atmospheres, 2015, 120, 1502-1519.	3.3	13
50	Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6894-6899.	7.1	130
51	Intercomparison of largeâ€eddy simulations of Arctic mixedâ€phase clouds: Importance of ice size distribution assumptions. Journal of Advances in Modeling Earth Systems, 2014, 6, 223-248.	3.8	114
52	A sensitivity analysis of cloud properties to CLUBB parameters in the singleâ€column Community Atmosphere Model (SCAM5). Journal of Advances in Modeling Earth Systems, 2014, 6, 829-858.	3.8	51
53	Using an explicit emission tagging method in global modeling of sourceâ€receptor relationships for black carbon in the Arctic: Variations, sources, and transport pathways. Journal of Geophysical Research D: Atmospheres, 2014, 119, 12,888.	3.3	92
54	Semidirect dynamical and radiative effect of North African dust transport on lower tropospheric clouds over the subtropical North Atlantic in CESM 1.0. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8284-8303.	3.3	5

#	Article	IF	CITATIONS
55	A simple model of global aerosol indirect effects. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6688-6707.	3.3	53
56	Implementation of the chemistry module MECCA (v2.5) in the modal aerosol version of the Community Atmosphere Model component (v3.6.33) of the Community Earth System Model. Geoscientific Model Development, 2013, 6, 255-262.	3.6	8
57	The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): overview and description of models, simulations and climate diagnostics. Geoscientific Model Development, 2013, 6, 179-206.	3.6	388
58	Aerosol–climate interactions in the Norwegian Earth System Model – NorESM1-M. Geoscientific Model Development, 2013, 6, 207-244.	3.6	158
59	A 4-D climatology (1979–2009) of the monthly tropospheric aerosol optical depth distribution over the Mediterranean region from a comparative evaluation and blending of remote sensing and model products. Atmospheric Measurement Techniques, 2013, 6, 1287-1314.	3.1	131
60	Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations. Atmospheric Chemistry and Physics, 2013, 13, 1853-1877.	4.9	779
61	Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 2013, 13, 2607-2634.	4.9	125
62	Corrigendum to "Evaluation of preindustrial to present-day black carbon and its albedo forcing from Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)" published in Atmos. Chem. Phys., 13, 2607–2634, 2013. Atmospheric Chemistry and Physics, 2013, 13, 6553-6554.	4.9	3
63	Black carbon vertical profiles strongly affect its radiative forcing uncertainty. Atmospheric Chemistry and Physics, 2013, 13, 2423-2434.	4.9	223
64	Radiative forcing in the ACCMIP historical and future climate simulations. Atmospheric Chemistry and Physics, 2013, 13, 2939-2974.	4.9	395
65	Host model uncertainties in aerosol radiative forcing estimates: results from the AeroCom Prescribed intercomparison study. Atmospheric Chemistry and Physics, 2013, 13, 3245-3270.	4.9	143
66	Modal Bin Hybrid Model: A surface area consistent, tripleâ€moment sectional method for use in processâ€oriented modeling of atmospheric aerosols. Journal of Geophysical Research D: Atmospheres, 2013, 118, 10,011.	3.3	2
67	Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model. Geoscientific Model Development, 2013, 6, 765-782.	3.6	169
68	A Community Atmosphere Model With Superparameterized Clouds. Eos, 2013, 94, 221-222.	0.1	15
69	PDF Parameterization of Boundary Layer Clouds in Models with Horizontal Grid Spacings from 2 to 16 km. Monthly Weather Review, 2012, 140, 285-306.	1.4	80
70	Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5. Geoscientific Model Development, 2012, 5, 709-739.	3.6	807
71	Indirect radiative forcing by ion-mediated nucleation of aerosol. Atmospheric Chemistry and Physics, 2012, 12, 11451-11463.	4.9	32
72	Global distribution and climate forcing of marine organic aerosol – Part 2: Effects on cloud properties and radiative forcing. Atmospheric Chemistry and Physics, 2012, 12, 6555-6563.	4.9	33

#	Article	IF	CITATIONS
73	Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: a regional modelling study using WRF-Chem. Atmospheric Chemistry and Physics, 2012, 12, 8777-8796.	4.9	43
74	Application of the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models: AeroCom phase I results. Journal of Geophysical Research, 2012, 117, .	3.3	170
75	Constraining cloud lifetime effects of aerosols using Aâ€Train satellite observations. Geophysical Research Letters, 2012, 39, .	4.0	117
76	Aerosol optical depth increase in partly cloudy conditions. Journal of Geophysical Research, 2012, 117,	3.3	65
77	Constraining the influence of natural variability to improve estimates of global aerosol indirect effects in a nudged version of the Community Atmosphere Model 5. Journal of Geophysical Research, 2012, 117, .	3.3	89
78	Representation of Arctic mixed-phase clouds and the Wegener-Bergeron-Findeisen process in climate models: Perspectives from a cloud-resolving study. Journal of Geophysical Research, 2011, 116, .	3.3	63
79	Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations. Journal of Geophysical Research, 2011, 116, .	3.3	62
80	Soot microphysical effects on liquid clouds, a multi-model investigation. Atmospheric Chemistry and Physics, 2011, 11, 1051-1064.	4.9	58
81	Global distribution and climate forcing of marine organic aerosol: 1. Model improvements and evaluation. Atmospheric Chemistry and Physics, 2011, 11, 11689-11705.	4.9	87
82	Aerosol indirect effects in a multi-scale aerosol-climate model PNNL-MMF. Atmospheric Chemistry and Physics, 2011, 11, 5431-5455.	4.9	143
83	Global dust model intercomparison in AeroCom phase I. Atmospheric Chemistry and Physics, 2011, 11, 7781-7816.	4.9	839
84	Droplet nucleation: Physically-based parameterizations and comparative evaluation. Journal of Advances in Modeling Earth Systems, 2011, 3, .	3.8	123
85	The multi-scale aerosol-climate model PNNL-MMF: model description and evaluation. Geoscientific Model Development, 2011, 4, 137-168.	3.6	88
86	Indirect and Semi-direct Aerosol Campaign. Bulletin of the American Meteorological Society, 2011, 92, 183-201.	3.3	228
87	Downscaling hydroclimatic changes over the Western US based on CAM subgrid scheme and WRF regional climate simulations. International Journal of Climatology, 2010, 30, 675-693.	3.5	22
88	Development of RAMS-CMAQ to Simulate Aerosol Optical Depth and Aerosol Direct Radiative Forcing and Its Application to East Asia. Atmospheric and Oceanic Science Letters, 2009, 2, 368-375.	1.3	3
89	Effects of aerosols on the dynamics and microphysics of squall lines simulated by spectral bin and bulk parameterization schemes. Journal of Geophysical Research, 2009, 114, .	3.3	65
90	Dominant role by vertical wind shear in regulating aerosol effects on deep convective clouds. Journal of Geophysical Research, 2009, 114, .	3.3	265

#	Article	IF	CITATIONS
91	Effects of sootâ€induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations. Journal of Geophysical Research, 2009, 114, .	3.3	126
92	Simulations of Arctic mixedâ€phase clouds in forecasts with CAM3 and AM2 for Mâ€PACE. Journal of Geophysical Research, 2008, 113, .	3.3	44
93	The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol–cloud interactions in multiscale modeling framework models: tracer transport results. Environmental Research Letters, 2008, 3, 025005.	5.2	34
94	The use of the Climate-science Computational End Station (CCES) development and grand challenge team for the next IPCC assessment: an operational plan. Journal of Physics: Conference Series, 2008, 125, 012024.	0.4	3
95	Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models. Bulletin of the American Meteorological Society, 2007, 88, 1059-1084.	3.3	198
96	Inclusion of Ice Microphysics in the NCAR Community Atmospheric Model Version 3 (CAM3). Journal of Climate, 2007, 20, 4526-4547.	3.2	189
97	Parameterization of optical properties for hydrated internally mixed aerosol. Journal of Geophysical Research, 2007, 112, .	3.3	124
98	Impact on modeled cloud characteristics due to simplified treatment of uniform cloud condensation nuclei during NEAQS 2004. Geophysical Research Letters, 2007, 34, .	4.0	145
99	Evaluation of a new mixedâ€phase cloud microphysics parameterization with CAM3 singleâ€column model and Mâ€PACE observations. Geophysical Research Letters, 2007, 34, .	4.0	21
100	Use of in situ cloud condensation nuclei, extinction, and aerosol size distribution measurements to test a method for retrieving cloud condensation nuclei profiles from surface measurements. Journal of Geophysical Research, 2006, 111, .	3.3	39
101	Predicting cloud droplet number concentration in Community Atmosphere Model (CAM)-Oslo. Journal of Geophysical Research, 2006, 111, .	3.3	61
102	Preface to special section: Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period examining aerosol properties and radiative influences. Journal of Geophysical Research, 2006, 111, .	3.3	23
103	Physically Based Global Downscaling: Regional Evaluation. Journal of Climate, 2006, 19, 429-445.	3.2	18
104	Physically Based Global Downscaling: Climate Change Projections for a Full Century. Journal of Climate, 2006, 19, 1589-1604.	3.2	24
105	Physically-based global downscaling climate change projections for a full century. Journal of Physics: Conference Series, 2005, 16, 343-347.	0.4	0
106	Load Balancing and Scalability of a Subgrid Orography Scheme in a Global Climate Model. International Journal of High Performance Computing Applications, 2005, 19, 237-245.	3.7	2
107	Parallel simulations of aerosol influence on clouds using cloud-resolving and single-column models. Journal of Geophysical Research, 2005, 110, .	3.3	30
108	Simulations of midlatitude frontal clouds by single-column and cloud-resolving models during the Atmospheric Radiation Measurement March 2000 cloud intensive operational period. Journal of Geophysical Research, 2005, 110, .	3.3	66

#	Article	IF	CITATIONS
109	Modeling springtime shallow frontal clouds with cloud-resolving and single-column models. Journal of Geophysical Research, 2005, 110, .	3.3	51
110	Influence of slightly soluble organics on aerosol activation. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	13
111	Parameterization of the influence of organic surfactants on aerosol activation. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	56
112	MIRAGE: Model description and evaluation of aerosols and trace gases. Journal of Geophysical Research, 2004, 109, .	3.3	251
113	Use of In Situ Data to Test a Raman Lidar–Based Cloud Condensation Nuclei Remote Sensing Method. Journal of Atmospheric and Oceanic Technology, 2004, 21, 387-394.	1.3	21
114	Regional climate effects of aerosols over China: modeling and observation. Tellus, Series B: Chemical and Physical Meteorology, 2003, 55, 914-934.	1.6	140
115	Evaluating aerosol/cloud/radiation process parameterizations with single-column models and Second Aerosol Characterization Experiment (ACE-2) cloudy column observations. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	47
116	Model Assessment of the Ability of MODIS to Measure Top-of-Atmosphere Direct Radiative Forcing from Smoke Aerosols. Journals of the Atmospheric Sciences, 2002, 59, 657-667.	1.7	14
117	A parameterization of aerosol activation 3. Sectional representation. Journal of Geophysical Research, 2002, 107, AAC 1-1.	3.3	242
118	Title is missing!. Climatic Change, 2002, 54, 141-164.	3.6	31
119	Intercomparison and evaluation of cumulus parametrizations under summertime midlatitude continental conditions. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 1095-1135.	2.7	119
120	Evaluation of aerosol indirect radiative forcing in MIRAGE. Journal of Geophysical Research, 2001, 106, 5317-5334.	3.3	97
121	Evaluation of aerosol direct radiative forcing in MIRAGE. Journal of Geophysical Research, 2001, 106, 5295-5316.	3.3	174
122	A physically based estimate of radiative forcing by anthropogenic sulfate aerosol. Journal of Geophysical Research, 2001, 106, 5279-5293.	3.3	147
123	Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus, Series B: Chemical and Physical Meteorology, 2001, 53, 133-149.	1.6	122
124	Comparison of simulated and observed aerosol optical depth. AIP Conference Proceedings, 2000, , .	0.4	0
125	A comparison of single column model simulations of summertime midlatitude continental convection. Journal of Geophysical Research, 2000, 105, 2091-2124.	3.3	107
126	A parameterization of aerosol activation: 2. Multiple aerosol types. Journal of Geophysical Research, 2000, 105, 6837-6844.	3.3	696

#	Article	IF	CITATIONS
127	A Comparison of Three Different Modeling Strategies for Evaluating Cloud and Radiation Parameterizations. Monthly Weather Review, 1999, 127, 1967-1984.	1.4	27
128	A parameterization of aerosol activation: 1. Single aerosol type. Journal of Geophysical Research, 1998, 103, 6123-6131.	3.3	201
129	Comments on "A limited-area-model case study of the effects of sub-grid scale variations in relative humidity and cloud upon the direct radiative forcing of sulfate aerosol― Geophysical Research Letters, 1998, 25, 1039-1040.	4.0	10
130	Competition between Sea Salt and Sulfate Particles as Cloud Condensation Nuclei. Journals of the Atmospheric Sciences, 1998, 55, 3340-3347.	1.7	135
131	Application of cloud microphysics to NCAR community climate model. Journal of Geophysical Research, 1997, 102, 16507-16527.	3.3	39
132	Prediction of cloud droplet number in a general circulation model. Journal of Geophysical Research, 1997, 102, 21777-21794.	3.3	216
133	Simulation of the Great Plains Low-Level Jet and Associated Clouds by General Circulation Models. Monthly Weather Review, 1996, 124, 1388-1408.	1.4	20
134	The current state and future direction of Eulerian models in simulating the tropospheric chemistry and transport of trace species: a review. Atmospheric Environment, 1995, 29, 189-222.	4.1	126
135	A parameterization of cloud droplet nucleation part I: single aerosol type. Atmospheric Research, 1993, 30, 198-221.	4.1	121
136	Computationally Efficient Approximations to Stratiform Cloud Microphysics Parameterization. Monthly Weather Review, 1992, 120, 1572-1582.	1.4	62
137	An Analysis of Cloud Liquid Water Feedback and Clobal Climate Sensitivity in a General Circulation Model. Journal of Climate, 1992, 5, 907-919.	3.2	46
138	The GCM credibility gap. Climatic Change, 1992, 21, 345-346.	3.6	7
139	Three-dimensional modeling of the global atmospheric sulfur cycle: A first step. Atmospheric Environment Part A General Topics, 1991, 25, 2513-2520.	1.3	35
140	Planktonic dimethylsulfide and cloud albedo: An estimate of the feedback response. Climatic Change, 1991, 18, 1-15.	3.6	29
141	Global oceanâ€ŧoâ€atmosphere dimethyl sulfide flux. Journal of Geophysical Research, 1990, 95, 7543-7552.	3.3	118
142	Sulphate aerosols and climate. Nature, 1989, 340, 438-438.	27.8	11
143	Unstable Radiative–Dynamical Interactions. Part I. Basic Theory. Journals of the Atmospheric Sciences, 1989, 46, 2528-2543.	1.7	10
144	Unstable Radiative-Dynamical Interactions. Part II: Expanded Theory. Journals of the Atmospheric Sciences, 1989, 46, 2544-2561.	1.7	3

#	Article	IF	CITATIONS
145	Global Climatic Effects of a Nuclear War: An Interdisciplinary Problem. , 1989, , 315-319.		0
146	Climatic response to large atmospheric smoke injections: Sensitivity studies with a tropospheric general circulation model. Journal of Geophysical Research, 1988, 93, 8315-8337.	3.3	42
147	A globalâ€scale Lagrangian trace species model of transport, transformation, and removal processes. Journal of Geophysical Research, 1988, 93, 8339-8354.	3.3	90
148	Design and Use of Zonally-Averaged Climate Models. , 1988, , 755-809.		7
149	The response of the upper ocean to a large summertime injection of smoke in the atmosphere. Journal of Geophysical Research, 1987, 92, 1967-1974.	3.3	4
150	The climatic effects of large injections of atmospheric smoke and dust: A study of climate feedback mechanisms with one―and threeâ€dimensional climate models. Journal of Geophysical Research, 1985, 90, 12937-12950.	3.3	61
151	Empirical Models of the Eddy Heat Flux and Vertical Shear on Short Time Scales. Journals of the Atmospheric Sciences, 1984, 41, 389-401.	1.7	3
152	Short-Term Fluctuations in the Eddy Heat Flux and Baroclinic Stability of the Atmosphere. Journals of the Atmospheric Sciences, 1982, 39, 1734-1746.	1.7	12
153	A Statistical Study of the Dynamics of Blocking. Monthly Weather Review, 1980, 108, 1144-1159.	1.4	27