Timothy T Hla

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1607488/publications.pdf Version: 2024-02-01

ΤΙΜΟΤΗΥ Τ ΗΙ Λ

#	Article	IF	CITATIONS
1	Human cyclooxygenase-2 cDNA Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 7384-7388.	3.3	1,462
2	Cyclooxygenase Isozymes: The Biology of Prostaglandin Synthesis and Inhibition. Pharmacological Reviews, 2004, 56, 387-437.	7.1	1,427
3	Edg-1, the G protein–coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. Journal of Clinical Investigation, 2000, 106, 951-961.	3.9	1,045
4	Sphingosine-1-Phosphate as a Ligand for the G Protein-Coupled Receptor EDG-1. Science, 1998, 279, 1552-1555.	6.0	970
5	Vascular Endothelial Cell Adherens Junction Assembly and Morphogenesis Induced by Sphingosine-1-Phosphate. Cell, 1999, 99, 301-312.	13.5	951
6	Overexpression of Cyclooxygenase-2 Is Sufficient to Induce Tumorigenesis in Transgenic Mice. Journal of Biological Chemistry, 2001, 276, 18563-18569.	1.6	697
7	Cyclooxygenase-1 and -2 expression in rheumatoid synovial tissues. Effects of interleukin-1 beta, phorbol ester, and corticosteroids Journal of Clinical Investigation, 1994, 93, 1095-1101.	3.9	605
8	Interleukin 1 regulates synthesis of amyloid beta-protein precursor mRNA in human endothelial cells Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 7606-7610.	3.3	575
9	LysophospholipidsReceptor Revelations. Science, 2001, 294, 1875-1878.	6.0	540
10	Endothelium-protective sphingosine-1-phosphate provided by HDL-associated apolipoprotein M. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9613-9618.	3.3	512
11	Induction of vascular endothelial growth factor expression in synovial fibroblasts by prostaglandin E and interleukin-1: a potential mechanism for inflammatory angiogenesis. FEBS Letters, 1995, 372, 83-87.	1.3	471
12	Dual Actions of Sphingosine-1-Phosphate: Extracellular through the Gi-coupled Receptor Edg-1 and Intracellular to Regulate Proliferation and Survival. Journal of Cell Biology, 1998, 142, 229-240.	2.3	464
13	FTY720: Sphingosine 1-Phosphate Receptor-1 in the Control of Lymphocyte Egress and Endothelial Barrier Function. American Journal of Transplantation, 2004, 4, 1019-1025.	2.6	455
14	The Nuclear Receptor PPARÎ ³ and Immunoregulation: PPARÎ ³ Mediates Inhibition of Helper T Cell Responses. Journal of Immunology, 2000, 164, 1364-1371.	0.4	442
15	International Union of Pharmacology. XXXIV. Lysophospholipid Receptor Nomenclature. Pharmacological Reviews, 2002, 54, 265-269.	7.1	441
16	Regulation of PTEN by Rho small GTPases. Nature Cell Biology, 2005, 7, 399-404.	4.6	427
17	Structural and functional characteristics of S1P receptors. Journal of Cellular Biochemistry, 2004, 92, 913-922.	1.2	423
18	Vascular Endothelium As a Contributor of Plasma Sphingosine 1-Phosphate. Circulation Research, 2008, 102, 669-676.	2.0	420

#	Article	IF	CITATIONS
19	An update on the biology of sphingosine 1-phosphate receptors. Journal of Lipid Research, 2014, 55, 1596-1608.	2.0	420
20	Emerging biology of sphingosine-1-phosphate: its role in pathogenesis and therapy. Journal of Clinical Investigation, 2015, 125, 1379-1387.	3.9	415
21	Endothelial Cell Apoptosis Induced by the Peroxisome Proliferator-activated Receptor (PPAR) Ligand 15-Deoxy-Δ12,14-prostaglandin J2. Journal of Biological Chemistry, 1999, 274, 17042-17048.	1.6	393
22	Recovery of mitogenic activity of a growth factor mutant with a nuclear translocation sequence. Science, 1990, 249, 1567-1570.	6.0	369
23	Immunosuppressive and Anti-angiogenic Sphingosine 1-Phosphate Receptor-1 Agonists Induce Ubiquitinylation and Proteasomal Degradation of the Receptor. Journal of Biological Chemistry, 2007, 282, 9082-9089.	1.6	363
24	Physiological and pathological actions of sphingosine 1-phosphate. Seminars in Cell and Developmental Biology, 2004, 15, 513-520.	2.3	355
25	Phosphorylation and Action of the Immunomodulator FTY720 Inhibits Vascular Endothelial Cell Growth Factor-induced Vascular Permeability. Journal of Biological Chemistry, 2003, 278, 47281-47290.	1.6	350
26	15-deoxy-Δ12,14-PGJ2 induces synoviocyte apoptosis and suppresses adjuvant-induced arthritis in rats. Journal of Clinical Investigation, 2000, 106, 189-197.	3.9	348
27	Sphingosine 1-phosphate: Lipid signaling in pathology and therapy. Science, 2019, 366, .	6.0	344
28	Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 591-596.	3.3	341
29	Obesity Is Associated with Inflammation and Elevated Aromatase Expression in the Mouse Mammary Gland. Cancer Prevention Research, 2011, 4, 329-346.	0.7	335
30	In vivo cyclooxygenase expression in synovial tissues of patients with rheumatoid arthritis and osteoarthritis and rats with adjuvant and streptococcal cell wall arthritis Journal of Clinical Investigation, 1992, 89, 97-108.	3.9	315
31	Inhibition of Human Lung Cancer Cell Growth by the Peroxisome Proliferator-Activated Receptor-Î ³ Agonists through Induction of Apoptosis. Biochemical and Biophysical Research Communications, 2000, 270, 400-405.	1.0	307
32	International Union of Basic and Clinical Pharmacology. LXXVIII. Lysophospholipid Receptor Nomenclature: TABLE 1. Pharmacological Reviews, 2010, 62, 579-587.	7.1	307
33	Expression of cyclooxygenase-2 in prostate carcinoma. Cancer, 2000, 89, 589-596.	2.0	304
34	Differential Coupling of the Sphingosine 1-Phosphate Receptors Edg-1, Edg-3, and H218/Edg-5 to the Gi, Gq, and G12 Families of Heterotrimeric G Proteins. Journal of Biological Chemistry, 1999, 274, 27351-27358.	1.6	300
35	Characterization of a Novel Sphingosine 1-Phosphate Receptor, Edg-8. Journal of Biological Chemistry, 2000, 275, 14281-14286.	1.6	299
36	Induction of Vascular Permeability by the Sphingosine-1-Phosphate Receptor–2 (S1P2R) and its Downstream Effectors ROCK and PTEN. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1312-1318.	1.1	297

#	Article	IF	CITATIONS
37	Involvement of nuclear factorkB in the regulation of cyclooxygenase-2 expression by interleukin-1 in rheumatoid synoviocytes. Arthritis and Rheumatism, 1997, 40, 226-236.	6.7	288
38	Akt-Mediated Phosphorylation of the G Protein-Coupled Receptor EDG-1 Is Required for Endothelial Cell Chemotaxis. Molecular Cell, 2001, 8, 693-704.	4.5	286
39	Signaling of sphingosine-1-phosphate via the S1P/EDG-family of G-protein-coupled receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2002, 1582, 72-80.	1.2	283
40	Extracellular Export of Sphingosine Kinase-1 Enzyme. Journal of Biological Chemistry, 2002, 277, 6667-6675.	1.6	269
41	Flow-Regulated Endothelial S1P Receptor-1 Signaling Sustains Vascular Development. Developmental Cell, 2012, 23, 600-610.	3.1	269
42	Antagonism of Sphingosine-1-Phosphate Receptors by FTY720 Inhibits Angiogenesis and Tumor Vascularization. Cancer Research, 2006, 66, 221-231.	0.4	265
43	Sphingosine 1-Phosphate-induced Endothelial Cell Migration Requires the Expression of EDG-1 and EDG-3 Receptors and Rho-dependent Activation of αvl²3- and l²1-containing Integrins. Journal of Biological Chemistry, 2001, 276, 11830-11837.	1.6	257
44	HDL-bound sphingosine 1-phosphate acts as a biased agonist for the endothelial cell receptor S1P ₁ to limit vascular inflammation. Science Signaling, 2015, 8, ra79.	1.6	254
45	Signaling and biological actions of sphingosine 1-phosphate. Pharmacological Research, 2003, 47, 401-407.	3.1	248
46	Sphingosine 1-Phosphate Activates Akt, Nitric Oxide Production, and Chemotaxis through a GiProtein/Phosphoinositide 3-Kinase Pathway in Endothelial Cells. Journal of Biological Chemistry, 2001, 276, 19672-19677.	1.6	244
47	Point-Counterpoint of Sphingosine 1-Phosphate Metabolism. Circulation Research, 2004, 94, 724-734.	2.0	243
48	Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes and Development, 2004, 18, 2392-2403.	2.7	238
49	Differential Pharmacological Properties and Signal Transduction of the Sphingosine 1-Phosphate Receptors EDG-1, EDG-3, and EDG-5. Journal of Biological Chemistry, 1999, 274, 18997-19002.	1.6	237
50	Sphingosine 1-phosphate signalling. Development (Cambridge), 2014, 141, 5-9.	1.2	235
51	Down-regulation of cytokine-induced cyclo-oxygenase-2 transcript isoforms by dexamethasone: evidence for post-transcriptional regulation. Biochemical Journal, 1996, 318, 325-331.	1.7	227
52	S1P1-Selective In Vivo-Active Agonists from High- Throughput Screening: Off-the-Shelf Chemical Probes of Receptor Interactions, Signaling, and Fate. Chemistry and Biology, 2005, 12, 703-715.	6.2	227
53	Genome-wide identification of microRNAs regulating cholesterol and triglyceride homeostasis. Nature Medicine, 2015, 21, 1290-1297.	15.2	214
54	Cytoplasmic HuR Expression Is a Prognostic Factor in Invasive Ductal Breast Carcinoma. Cancer Research, 2005, 65, 2157-2161.	0.4	209

#	Article	IF	CITATIONS
55	Intracellular Role for Sphingosine Kinase 1 in Intestinal Adenoma Cell Proliferation. Molecular and Cellular Biology, 2006, 26, 7211-7223.	1.1	201
56	Cyclooxygenase-1 and -2 isoenzymes. International Journal of Biochemistry and Cell Biology, 1999, 31, 551-557.	1.2	197
57	Engagement of S1P1-degradative mechanisms leads to vascular leak in mice. Journal of Clinical Investigation, 2011, 121, 2290-2300.	3.9	196
58	HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature, 2015, 523, 342-346.	13.7	192
59	Essential role of sphingosine 1–phosphate receptor 2 in pathological angiogenesis of the mouse retina. Journal of Clinical Investigation, 2007, 117, 2506-2516.	3.9	191
60	Sphingolipid Signaling in Metabolic Disorders. Cell Metabolism, 2012, 16, 420-434.	7.2	190
61	Extracellular export of sphingosine kinase-1a contributes to the vascular S1P gradient. Biochemical Journal, 2006, 397, 461-471.	1.7	188
62	Ligand-induced Trafficking of the Sphingosine-1-phosphate Receptor EDG-1. Molecular Biology of the Cell, 1999, 10, 1179-1190.	0.9	182
63	Requirement for sphingosine 1–phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. Journal of Clinical Investigation, 2004, 114, 1082-1089.	3.9	174
64	Sphingosine 1-phosphate (S1P). Neurology, 2011, 76, S3-8.	1.5	173
65	Sphingosine 1-phosphate and inflammation. International Immunology, 2019, 31, 617-625.	1.8	169
66	Cardiac and vascular effects of fingolimod: Mechanistic basis and clinical implications. American Heart Journal, 2014, 168, 632-644.	1.2	168
67	Size-selective opening of the blood–brain barrier by targeting endothelial sphingosine 1–phosphate receptor 1. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4531-4536.	3.3	167
68	Cyclooxygenase-2 modulates cellular growth and promotes tumorigenesis. Journal of Cellular and Molecular Medicine, 2003, 7, 207-222.	1.6	163
69	Essential role of the RNA-binding protein HuR in progenitor cell survival in mice. Journal of Clinical Investigation, 2009, 119, 3530-3543.	3.9	163
70	Deafness and Stria Vascularis Defects in S1P2 Receptor-null Mice. Journal of Biological Chemistry, 2007, 282, 10690-10696.	1.6	159
71	Role of the Sphingosine 1-Phosphate Receptor EDG-1 in Vascular Smooth Muscle Cell Proliferation and Migration. Circulation Research, 2001, 89, 496-502.	2.0	157
72	The vascular S1P gradient—Cellular sources and biological significance. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2008, 1781, 477-482.	1.2	157

#	Article	IF	CITATIONS
73	The Inducible G Protein-coupled Receptor edg-1 Signals via the Gi/Mitogen-activated Protein Kinase Pathway. Journal of Biological Chemistry, 1996, 271, 11272-11279.	1.6	156
74	Cell-surface residence of sphingosine 1-phosphate receptor 1 on lymphocytes determines lymphocyte egress kinetics. Journal of Experimental Medicine, 2010, 207, 1475-1483.	4.2	155
75	The G Protein–Coupled Receptor S1P2 Regulates Rho/Rho Kinase Pathway to Inhibit Tumor Cell Migration. Cancer Research, 2005, 65, 3788-3795.	0.4	154
76	Sphingosine 1-phosphate/sphingosine 1-phosphate receptor 1 signaling in rheumatoid synovium: Regulation of synovial proliferation and inflammatory gene expression. Arthritis and Rheumatism, 2006, 54, 742-753.	6.7	154
77	Sphingosine 1-phosphate in coagulation and inflammation. Seminars in Immunopathology, 2012, 34, 73-91.	2.8	154
78	Lymphatic endothelial S1P promotes mitochondrial function and survival in naive T cells. Nature, 2017, 546, 158-161.	13.7	153
79	TWEAK Is an Endothelial Cell Growth and Chemotactic Factor That Also Potentiates FGF-2 and VEGF-A Mitogenic Activity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2003, 23, 594-600.	1.1	152
80	The RNA-binding Protein HuR Regulates the Expression of Cyclooxygenase-2. Journal of Biological Chemistry, 2003, 278, 25227-25233.	1.6	151
81	Dual Roles of Tight Junction-associated Protein, Zonula Occludens-1, in Sphingosine 1-Phosphate-mediated Endothelial Chemotaxis and Barrier Integrity. Journal of Biological Chemistry, 2006, 281, 29190-29200.	1.6	151
82	PTEN as an effector in the signaling of antimigratory G protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 4312-4317.	3.3	149
83	Sphingosine-1-Phosphate Receptor-2 Function in Myeloid Cells Regulates Vascular Inflammation and Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 81-85.	1.1	148
84	HER2/neu-Induced Mammary Tumorigenesis and Angiogenesis Are Reduced in Cyclooxygenase-2 Knockout Mice. Cancer Research, 2005, 65, 10113-10119.	0.4	145
85	Discussion. Biochemical Pharmacology, 1999, 58, 201-207.	2.0	143
86	Cyclooxygenase Gene Expression in Inflammation and Angiogenesis ^a . Annals of the New York Academy of Sciences, 1993, 696, 197-204.	1.8	143
87	Regulation of Mammalian Physiology, Development, and Disease by the Sphingosine 1-Phosphate and Lysophosphatidic Acid Receptors. Chemical Reviews, 2011, 111, 6299-6320.	23.0	136
88	Defective sphingosine 1-phosphate receptor 1 (S1P1) phosphorylation exacerbates TH17-mediated autoimmune neuroinflammation. Nature Immunology, 2013, 14, 1166-1172.	7.0	135
89	Sphingosineâ€1â€phosphate receptor 1 signalling in T cells: trafficking and beyond. Immunology, 2014, 142, 347-353	2.0	124
90	Sphingosine 1-phosphate receptors. Prostaglandins and Other Lipid Mediators, 2001, 64, 135-142.	1.0	123

#	Article	IF	CITATIONS
91	Inhibitory Role of Sphingosine 1-Phosphate Receptor 2 in Macrophage Recruitment during Inflammation. Journal of Immunology, 2010, 184, 1475-1483.	0.4	121
92	Cytoplasmic HuR expression correlates with poor outcome and with cyclooxygenase 2 expression in serous ovarian carcinoma. Cancer Research, 2003, 63, 7591-4.	0.4	118
93	Lysophosphatidic Acid Stimulates the G-protein-coupled Receptor EDG-1 as a Low Affinity Agonist. Journal of Biological Chemistry, 1998, 273, 22105-22112.	1.6	108
94	Requirement for sphingosine 1–phosphate receptor-1 in tumor angiogenesis demonstrated by in vivo RNA interference. Journal of Clinical Investigation, 2004, 114, 1082-1089.	3.9	105
95	Overexpression of Cyclooxygenase-2 Induces Cell Cycle Arrest. Journal of Biological Chemistry, 1999, 274, 34141-34147.	1.6	104
96	A novel method to quantify sphingosine 1-phosphate by immobilized metal affinity chromatography (IMAC). Prostaglandins and Other Lipid Mediators, 2007, 84, 154-162.	1.0	103
97	Leptomycin B, an Inhibitor of the Nuclear Export Receptor CRM1, Inhibits COX-2 Expression. Journal of Biological Chemistry, 2003, 278, 2773-2776.	1.6	102
98	S1P Control of Endothelial Integrity. Current Topics in Microbiology and Immunology, 2014, 378, 85-105.	0.7	100
99	Impaired endothelial barrier function in apolipoprotein Mâ€deficient mice is dependent on sphingosineâ€1â€phosphate receptor 1. FASEB Journal, 2016, 30, 2351-2359.	0.2	99
100	The Prostaglandin E2 Receptor EP2 Is Required for Cyclooxygenase 2–Mediated Mammary Hyperplasia. Cancer Research, 2005, 65, 4496-4499.	0.4	98
101	S1PR1 (Sphingosine-1-Phosphate Receptor 1) Signaling Regulates Blood Flow and Pressure. Hypertension, 2017, 70, 426-434.	1.3	98
102	Nogo-B regulates endothelial sphingolipid homeostasis to control vascular function and blood pressure. Nature Medicine, 2015, 21, 1028-1037.	15.2	96
103	Constitutive expression of the S1P1 receptor in adult tissues. Prostaglandins and Other Lipid Mediators, 2004, 73, 141-150.	1.0	92
104	Regulation of vascular physiology and pathology by the S1P2 receptor subtype. Cardiovascular Research, 2008, 82, 221-228.	1.8	89
105	An engineered S1P chaperone attenuates hypertension and ischemic injury. Science Signaling, 2017, 10, .	1.6	89
106	Tumorigenic Transformation of Immortalized ECV Endothelial Cells by Cyclooxygenase-1 Overexpression. Journal of Biological Chemistry, 1997, 272, 21455-21460.	1.6	87
107	Vascular and Immunobiology of the Circulatory Sphingosine 1-Phosphate Gradient. Annual Review of Physiology, 2017, 79, 67-91.	5.6	87
108	HER-2/neu Status Is a Determinant of Mammary Aromatase Activity In vivo: Evidence for a Cyclooxygenase-2-Dependent Mechanism. Cancer Research, 2006, 66, 5504-5511.	0.4	86

#	Article	IF	CITATIONS
109	EP2 and EP4 Receptors Regulate Aromatase Expression in Human Adipocytes and Breast Cancer Cells. Journal of Biological Chemistry, 2008, 283, 3433-3444.	1.6	86
110	Feedback Control of the Arachidonate Cascade in Rheumatoid Synoviocytes by 15-deoxy-Δ12,14-Prostaglandin J2. Biochemical and Biophysical Research Communications, 2001, 283, 750-755.	1.0	85
111	Coexpression of phosphotyrosine-containing proteins, platelet-derived growth factor-B, and fibroblast growth factor-1 in situ in synovial tissues of patients with rheumatoid arthritis and Lewis rats with adjuvant or streptococcal cell wall arthritis Journal of Clinical Investigation, 1993, 91, 553-565.	3.9	80
112	Mapping Pathways Downstream of Sphingosine 1-Phosphate Subtype 1 by Differential Chemical Perturbation and Proteomics. Journal of Biological Chemistry, 2007, 282, 7254-7264.	1.6	79
113	Erythrocyte-derived sphingosine 1-phosphate is essential for vascular development. Journal of Clinical Investigation, 2014, 124, 4823-4828.	3.9	79
114	C16:0-Ceramide Signals Insulin Resistance. Cell Metabolism, 2014, 20, 703-705.	7.2	77
115	Dissociation of Basal Turnover and Cytokine-Induced Transcript Stabilization of the Human Cyclooxygenase-2 mRNA by Mutagenesis of the 3′-Untranslated Region. Biochemical and Biophysical Research Communications, 1998, 242, 508-512.	1.0	75
116	Normal acute and chronic inflammatory responses in sphingosine kinase 1 knockout mice. FEBS Letters, 2006, 580, 4607-4612.	1.3	75
117	TRAF2 regulates TNF and NF- $\hat{I}^{e}B$ signalling to suppress apoptosis and skin inflammation independently of Sphingosine kinase 1. ELife, 2015, 4, .	2.8	75
118	Antagonistic Function of the RNA-binding Protein HuR and miR-200b in Post-transcriptional Regulation of Vascular Endothelial Growth Factor-A Expression and Angiogenesis. Journal of Biological Chemistry, 2013, 288, 4908-4921.	1.6	73
119	Endothelial S1P ₁ Signaling Counteracts Infarct Expansion in Ischemic Stroke. Circulation Research, 2021, 128, 363-382.	2.0	71
120	The Mouse Gene for the Inducible G-Protein-Coupled Receptoredg-1. Genomics, 1997, 43, 15-24.	1.3	70
121	CD4 T cell sphingosine 1-phosphate receptor (S1PR)1 and S1PR4 and endothelial S1PR2 regulate afferent lymphatic migration. Science Immunology, 2019, 4, .	5.6	70
122	Sphingosine 1-Phosphate Receptor Signaling Regulates Proper Embryonic Vascular Patterning. Journal of Biological Chemistry, 2013, 288, 2143-2156.	1.6	69
123	Bioactive lysolipids in cancer and angiogenesis. , 2019, 193, 91-98.		69
124	Phospholipase C \hat{l}^2 3 deficiency leads to macrophage hypersensitivity to apoptotic induction and reduction of atherosclerosis in mice. Journal of Clinical Investigation, 2008, 118, 195-204.	3.9	69
125	Sphingosine 1â€Phosphate Receptor 1 Signaling Maintains Endothelial Cell Barrier Function and Protects Against ImmuneÂComplex–Induced Vascular Injury. Arthritis and Rheumatology, 2018, 70, 1879-1889.	2.9	68
126	Serum Withdrawal-induced Post-transcriptional Stabilization of Cyclooxygenase-2 mRNA in MDA-MB-231 Mammary Carcinoma Cells Requires the Activity of the p38 Stress-activated Protein Kinase. Journal of Biological Chemistry, 2000, 275, 39507-39515.	1.6	67

Τιμοτην Τ Ηία

#	Article	IF	CITATIONS
127	Regulation of limb development by the sphingosine 1-phosphate receptor S1p1/EDG-1 occurs via the hypoxia/VEGF axis. Developmental Biology, 2004, 268, 441-447.	0.9	67
128	The BCL6 RD2 Domain Governs Commitment of Activated B Cells to Form Germinal Centers. Cell Reports, 2014, 8, 1497-1508.	2.9	67
129	Endothelial sphingosine 1-phosphate receptors promote vascular normalization and antitumor therapy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3157-3166.	3.3	67
130	Induction of cyclooxygenase-2 in monocyte/macrophage by mucins secreted from colon cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2736-2741.	3.3	66
131	Lysophospholipid receptors in vertebrate development, physiology, and pathology. Journal of Lipid Research, 2009, 50, S293-S298.	2.0	66
132	Sphingosine Kinases Are Not Required for Inflammatory Responses in Macrophages. Journal of Biological Chemistry, 2013, 288, 32563-32573.	1.6	65
133	COX-2 suppresses tissue factor expression via endocannabinoid-directed PPARδactivation. Journal of Experimental Medicine, 2007, 204, 2053-2061.	4.2	64
134	Induction of Antiproliferative Connective Tissue Growth Factor Expression in Wilms' Tumor Cells by Sphingosine-1-Phosphate Receptor 2. Molecular Cancer Research, 2008, 6, 1649-1656.	1.5	62
135	Platelet and Erythrocyte Sources of S1P Are Redundant for Vascular Development and Homeostasis, but Both Rendered Essential After Plasma S1P Depletion in Anaphylactic Shock. Circulation Research, 2016, 119, e110-26.	2.0	61
136	Bisphenol A diglycidyl ether (BADGE) is a PPARÎ ³ agonist in an ECV304 cell line. British Journal of Pharmacology, 2000, 131, 651-654.	2.7	60
137	Gene regulation by RNA binding proteins and microRNAs in angiogenesis. Trends in Molecular Medicine, 2011, 17, 650-658.	3.5	60
138	TLR4 (Toll-Like Receptor 4)-Dependent Signaling Drives Extracellular Catabolism of LDL (Low-Density) Tj ETQq0 () 0 ₁₉ BT /(Overlock 10 Tr
139	HDL activation of endothelial sphingosine-1-phosphate receptor-1 (S1P1) promotes regeneration and suppresses fibrosis in the liver. JCI Insight, 2016, 1, e87058.	2.3	59
140	Intimal Smooth Muscle Cells as a Target for Peroxisome Proliferator-Activated Receptor-Î ³ Ligand Therapy. Circulation Research, 2002, 91, 210-217.	2.0	58
141	Intestinal Epithelial HuR Modulates Distinct Pathways of Proliferation and Apoptosis and Attenuates Small Intestinal and Colonic Tumor Development. Cancer Research, 2014, 74, 5322-5335.	0.4	55
142	Isolation of the cDNA for human prostaglandin H synthase. Prostaglandins, 1986, 32, 829-845.	1.2	54
143	S1P/S1P1 signaling stimulates cell migration and invasion in Wilms tumor. Cancer Letters, 2009, 276, 171-179.	3.2	54
144	ELAVL1 Modulates Transcriptome-wide miRNA Binding in Murine Macrophages. Cell Reports, 2014, 9, 2330-2343.	2.9	54

#	Article	IF	CITATIONS
145	ELAVL1 regulates alternative splicing of elF4E transporter to promote postnatal angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 18309-18314.	3.3	54
146	Lysolipid receptor cross-talk regulates lymphatic endothelial junctions in lymph nodes. Journal of Experimental Medicine, 2019, 216, 1582-1598.	4.2	54
147	Sphingosine-1-phosphate Signaling in Endothelial Activation. Journal of Atherosclerosis and Thrombosis, 2003, 10, 125-131.	0.9	53
148	Prostaglandin E2 and vasoactive intestinal peptide increase vascular endothelial cell growth factor mRNAs in lung cancer cells. Lung Cancer, 2001, 31, 203-212.	0.9	52
149	S1P1 localizes to the colonic vasculature in ulcerative colitis and maintains blood vessel integrity. Journal of Lipid Research, 2013, 54, 843-851.	2.0	52
150	Sphingosineâ€1â€Phosphate Signaling via the EDGâ€1 Family of Gâ€Proteinâ€Coupled Receptors. Annals of the New York Academy of Sciences, 2000, 905, 16-24.	1.8	51
151	TARGETING SPHINGOSINE-1-PHOSPHATE RECEPTORS AS ANTI-TUMOR AND ANTI-ANGIOGENIC THERAPY IN RENAL CELL CARCINOMA. Journal of Urology, 2008, 179, 40-40.	0.2	48
152	Sphingosine-1-phosphate signaling regulates lamellipodia localization of cortactin complexes in endothelial cells. Histochemistry and Cell Biology, 2006, 126, 297-304.	0.8	47
153	Role of Sphingosine 1-Phosphate in the Pathogenesis of Sjol^gren's Syndrome. Journal of Immunology, 2008, 180, 1921-1928.	0.4	47
154	S1PR1 regulates the quiescence of lymphatic vessels by inhibiting laminar shear stress–dependent VEGF-C signaling. JCI Insight, 2020, 5, .	2.3	47
155	Up-regulating Sphingosine 1-Phosphate Receptor-2 Signaling Impairs Chemotactic, Wound-healing, and Morphogenetic Responses in Senescent Endothelial Cells. Journal of Biological Chemistry, 2008, 283, 30363-30375.	1.6	46
156	Knock Out of S1P3 Receptor Signaling Attenuates Inflammation and Fibrosis in Bleomycin-Induced Lung Injury Mice Model. PLoS ONE, 2014, 9, e106792.	1.1	43
157	Postâ€transcriptional regulation of Nrf2â€mRNA by the mRNAâ€binding proteins HuR and AUF1. FASEB Journal, 2019, 33, 14636-14652.	0.2	42
158	Lysophospholipid Mediators in Health and Disease. Annual Review of Pathology: Mechanisms of Disease, 2022, 17, 459-483.	9.6	42
159	Role of guanine nucleotide exchange factor P-Rex-2b in sphingosine 1-phosphate-induced Rac1 activation and cell migration in endothelial cells. Prostaglandins and Other Lipid Mediators, 2005, 76, 95-104.	1.0	41
160	Sphingosine 1-Phosphate Receptor Signaling Establishes AP-1 Gradients to Allow for Retinal Endothelial Cell Specialization. Developmental Cell, 2020, 52, 779-793.e7.	3.1	38
161	Regulation of vascular endothelial cell growth factor expression in mouse mammary tumor cells by the EP2 subtype of the prostaglandin E2 receptor. Prostaglandins and Other Lipid Mediators, 2005, 76, 48-58.	1.0	36
162	Sphingosine Interaction with Acidic Leucine-rich Nuclear Phosphoprotein-32A (ANP32A) Regulates PP2A Activity and Cyclooxygenase (COX)-2 Expression in Human Endothelial Cells. Journal of Biological Chemistry, 2010, 285, 26825-26831.	1.6	36

#	Article	IF	CITATIONS
163	Molecular characterization of the 5.2 KB isoform of the human cyclooxygenase-1 transcript. Prostaglandins, 1996, 51, 81-85.	1.2	35
164	Post-transcriptional gene regulation by HuR and microRNAs in angiogenesis. Current Opinion in Hematology, 2014, 21, 235-240.	1.2	35
165	S1P and the birth of platelets. Journal of Experimental Medicine, 2012, 209, 2137-2140.	4.2	34
166	Sphingosine 1-phosphate-regulated transcriptomes in heterogenous arterial and lymphatic endothelium of the aorta. ELife, 2020, 9, .	2.8	34
167	Genomic insights into mediator lipidomics. Prostaglandins and Other Lipid Mediators, 2005, 77, 197-209.	1.0	33
168	Sphingosine 1-phosphate (S1P)/S1P receptor 1 signaling regulates receptor activator of NF-κB ligand (RANKL) expression in rheumatoid arthritis. Biochemical and Biophysical Research Communications, 2012, 419, 154-159.	1.0	33
169	Identification of ApoA4 as a sphingosine 1-phosphate chaperone in ApoM- and albumin-deficient mice. Journal of Lipid Research, 2019, 60, 1912-1921.	2.0	33
170	Cytotoxic activity of chimeric proteins composed of acidic fibroblast growth factor and <i>Pseudomonas</i> exotoxin on a variety of cell types. FASEB Journal, 1991, 5, 2843-2849.	0.2	32
171	Platelet-derived growth factor (PDGF)-induced chemotaxis does not require the G protein-coupled receptor S1P1 in murine embryonic fibroblasts and vascular smooth muscle cells. FEBS Letters, 2003, 533, 25-28.	1.3	32
172	SnapShot: Bioactive Lysophospholipids. Cell, 2012, 148, 378-378.e2.	13.5	32
173	Bioluminescence imaging of G protein-coupled receptor activation in living mice. Nature Communications, 2017, 8, 1163.	5.8	32
174	Isolation of immediate-early differentiation mRNAs by enzymatic amplification of subtracted cDNA from human endothelial cells. Biochemical and Biophysical Research Communications, 1990, 167, 637-643.	1.0	31
175	Gαq-mediated plasma membrane translocation of sphingosine kinase-1 and cross-activation of S1P receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2009, 1791, 357-370.	1.2	30
176	Elavl1a regulates zebrafish erythropoiesis via posttranscriptional control of gata1. Blood, 2014, 123, 1384-1392.	0.6	29
177	Village chicken production in Myanmar – purpose, magnitude and major constraints. World's Poultry Science Journal, 2007, 63, 308-322.	1.4	28
178	PPARδ is pro-tumorigenic in a mouse model of COX-2-induced mammary cancer. Prostaglandins and Other Lipid Mediators, 2009, 88, 97-100.	1.0	28
179	S1P/S1P ₂ Signaling Induces Cyclooxygenase-2 Expression in Wilms Tumor. Journal of Urology, 2009, 181, 1347-1352.	0.2	28
180	FTY720 inhibits tumor growth and enhances the tumor-suppressive effect of topotecan in neuroblastoma by interfering with the sphingolipid signaling pathway. Pediatric Blood and Cancer, 2013, 60, 1418-1423.	0.8	28

#	Article	IF	CITATIONS
181	Cell-intrinsic sphingosine kinase 2 promotes macrophage polarization and renal inflammation in response to unilateral ureteral obstruction. PLoS ONE, 2018, 13, e0194053.	1.1	28
182	Signaling through 3′,5′-Cyclic Adenosine Monophosphate and Phosphoinositide-3 Kinase Induces Sodium/lodide Symporter Expression in Breast Cancer. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 5196-5203.	1.8	27
183	Individual variation of human S1P1 coding sequence leads to heterogeneity in receptor function and drug interactions. Journal of Lipid Research, 2014, 55, 2665-2675.	2.0	27
184	Auranofin inhibits interleukin-1β-induced transcript of cyclooxygenase-2 on cultured human synoviocytes. European Journal of Pharmacology, 1999, 385, 71-79.	1.7	26
185	Evaluation of strategies to improve village chicken production-controlled field trials to assess effects of Newcastle disease vaccination and altered chick rearing in Myanmar. Preventive Veterinary Medicine, 2009, 90, 17-30.	0.7	26
186	Induction of cyclooxygenase-2 in macrophages by catalase: role of NF-κB and PI3K signaling pathways. Biochemical and Biophysical Research Communications, 2004, 316, 398-406.	1.0	25
187	Sphingosine kinase 1 is a critical component of the copper-dependent FGF1 export pathway. Experimental Cell Research, 2007, 313, 3308-3318.	1.2	25
188	Mortality rates adjusted for unobserved deaths and associations with Newcastle disease virus serology among unvaccinated village chickens in Myanmar. Preventive Veterinary Medicine, 2008, 85, 241-252.	0.7	25
189	Aging Suppresses Sphingosine-1-Phosphate Chaperone ApoM in Circulation Resulting in Maladaptive Organ Repair. Developmental Cell, 2020, 53, 677-690.e4.	3.1	25
190	Sphingosine 1-phosphate receptor-targeted therapeutics in rheumatic diseases. Nature Reviews Rheumatology, 2022, 18, 335-351.	3.5	24
191	Genetic deletion of microsomal prostaglandin E synthase-1 suppresses mouse mammary tumor growth and angiogenesis. Prostaglandins and Other Lipid Mediators, 2013, 106, 99-105.	1.0	23
192	Antitumor Activity of a Novel Sphingosine-1-Phosphate 2 Antagonist, AB1, in Neuroblastoma. Journal of Pharmacology and Experimental Therapeutics, 2015, 354, 261-268.	1.3	23
193	Myeloid sphingosine-1-phosphate receptor 1 is important for CNS autoimmunity and neuroinflammation. Journal of Autoimmunity, 2019, 105, 102290.	3.0	23
194	Differential recovery of prostacyclin synthesis in cultured vascular endothelial vs. smooth muscle cells after inactivation of cyclooxygenase with aspirin. Prostaglandins Leukotrienes and Essential Fatty Acids, 1989, 36, 175-184.	1.0	21
195	Characterization of edg-2, a human homologue of theXenopus maternal transcript G10 from endothelial cells. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1995, 1260, 227-229.	2.4	21
196	Endothelial-Specific Loss of Sphingosine-1-Phosphate Receptor 1 Increases Vascular Permeability and Exacerbates Bleomycin-induced Pulmonary Fibrosis. American Journal of Respiratory Cell and Molecular Biology, 2022, 66, 38-52.	1.4	21
197	COX-2 inhibitors and genetic background reduce mammary tumorigenesis in cyclooxygenase-2 transgenic mice. Prostaglandins and Other Lipid Mediators, 2005, 76, 86-94.	1.0	19
198	Treatment with the Immunomodulator FTY720 (Fingolimod) Significantly Reduces Renal Inflammation in Murine Unilateral Ureteral Obstruction. Journal of Urology, 2014, 191, 1508-1516.	0.2	19

#	Article	IF	CITATIONS
199	Upregulation of sphingosine-1-phosphate receptor 3 on fibroblast-like synoviocytes is associated with the development of collagen-induced arthritis via increased interleukin-6 production. PLoS ONE, 2019, 14, e0218090.	1.1	19
200	Endothelial Spns2 and ApoM Regulation of Vascular Tone and Hypertension Via Sphingosineâ€lâ€Phosphate. Journal of the American Heart Association, 2021, 10, e021261.	1.6	18
201	IMMUNOLOGY: Enhanced: Dietary Factors and Immunological Consequences. Science, 2005, 309, 1682-1683.	6.0	17
202	Sphingolipid Modulation of Angiogenic Factor Expression in Neuroblastoma. Cancer Prevention Research, 2011, 4, 1325-1332.	0.7	17
203	Ceramide activation of RhoA/Rho kinase impairs actin polymerization during aggregated LDL catabolism. Journal of Lipid Research, 2017, 58, 1977-1987.	2.0	17
204	CLIC1 and CLIC4 mediate endothelial S1P receptor signaling to facilitate Rac1 and RhoA activity and function. Science Signaling, 2021, 14, .	1.6	17
205	Lysolipids in Vascular Development, Biology, and Disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 564-584.	1.1	15
206	Maternal or zygotic sphingosine kinase is required to regulate zebrafish cardiogenesis. Developmental Dynamics, 2015, 244, 948-954.	0.8	14
207	The ceramide synthase 2b gene mediates genomic sensing and regulation of sphingosine levels during zebrafish embryogenesis. ELife, 2017, 6, .	2.8	14
208	Induction of chemokine (C-C motif) ligand 2 by sphingosine-1-phosphate signaling in neuroblastoma. Journal of Pediatric Surgery, 2014, 49, 1286-1291.	0.8	13
209	Selective Inhibition of Cyclooxygenase-2 with Antisense Oligodeoxynucleotide Restricts Induction of Rat Adjuvant-Induced Arthritis. Biochemical and Biophysical Research Communications, 2000, 269, 415-421.	1.0	12
210	Fine-Tuning S1P Therapeutics. Chemistry and Biology, 2012, 19, 1080-1082.	6.2	11
211	Protein kinase Cα and sphingosine 1-phosphate-dependent signaling in endothelial cell. Prostaglandins and Other Lipid Mediators, 2006, 80, 15-27.	1.0	9
212	Sphingosine 1-phosphate receptor 1 regulates cell-surface localization of membrane proteins in endothelial cells. Biochimica Et Biophysica Acta - General Subjects, 2019, 1863, 1079-1087.	1.1	9
213	Quality Versus Quantity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 1018-1019.	1.1	8
214	The immediate-early gene product MAD-3/EDC-3/lκBα is an endogenous modulator of fibroblast growth factor-1 (FGF-1) dependent human endothelial cell growth. FEBS Letters, 1997, 414, 419-424.	1.3	7
215	Regulation of a Vascular Plexus by gata4 Is Mediated in Zebrafish through the Chemokine sdf1a. PLoS ONE, 2012, 7, e46844.	1.1	7

#	Article	IF	CITATIONS
217	Recovery of prostacyclin synthesis in human vascular endothelial cells following intermittent or continuous exposure to indomethacin. Pharmacological Research Communications, 1985, 17, 447-456.	0.2	6
218	Assessment of Sphingosine-1-Phosphate Activity in Biological Samples by Receptor Internalization and Adherens Junction Formation. Methods in Molecular Biology, 2012, 874, 69-76.	0.4	6
219	A dark side to omega-3 fatty acids. Nature, 2017, 552, 180-181.	13.7	6
220	Switching Intracellular Signaling Pathways to Study Sphingosine 1â€Phosphate Receptors. Annals of the New York Academy of Sciences, 2000, 905, 260-262.	1.8	4
221	Sphingosine kinases protect murine embryonic stem cells from sphingosine-induced cell cycle arrest. Stem Cells, 2020, 38, 613-623.	1.4	4
222	Prostaglandins & other Lipid Mediators: a new phase, a new team. Prostaglandins and Other Lipid Mediators, 2004, 73, 1-2.	1.0	3
223	The ABCs of Lipophile Transport. Science, 2009, 323, 883-884.	6.0	3
224	Abrogation of Endogenous Glycolipid Antigen Presentation on Myelin-Laden Macrophages by D-Sphingosine Ameliorates the Pathogenesis of Experimental Autoimmune Encephalomyelitis. Frontiers in Immunology, 2019, 10, 404.	2.2	3
225	Ramping up RANTES in the acute response to arterial injury. Journal of Clinical Investigation, 2010, 120, 90-92.	3.9	3
226	Lipid Mediators, M2 Macrophages, and Pathological Neovascularization. Trends in Molecular Medicine, 2018, 24, 977-978.	3.5	2
227	Colonoscopic-Guided Pinch Biopsies in Mice as a Useful Model for Evaluating the Roles of Host and Luminal Factors in Colonic Inflammation. American Journal of Pathology, 2018, 188, 2811-2825.	1.9	2
228	DOCK4 Regulation of Rho GTPases Mediates Pulmonary Vascular Barrier Function. Arteriosclerosis, Thrombosis, and Vascular Biology, 2022, , 101161ATVBAHA122317565.	1.1	2
229	Reconstituted U1 small nuclear ribonucleoprotein complex restores 5′ splice site cleavage activity. Biochemical and Biophysical Research Communications, 1988, 154, 1010-1017.	1.0	1
230	Inhibition of Gene Expression In Vivo Using Multiplex siRNA. , 2005, 309, 197-204.		1
231	Plugging Vascular Leak by Sphingosine Kinase From Bone Marrow Progenitor Cells. Circulation Research, 2009, 105, 614-616.	2.0	1
232	150 CONNECTIVE TISSUE GROWTH FACTOR (CTGF) AND SPHINGOSINE-1-PHOSPHATE (S1P) RECEPTOR 1 AND 2 LEVELS ARE ALTERED IN WILM'S TUMOR. Journal of Urology, 2012, 187, .	0.2	1
233	Mapping Pathways Downstream of S1P1 by Differential Chemical Perturbation and Proteomics. FASEB Journal, 2007, 21, A427.	0.2	1
234	Plasma components to protect the endothelial barrier after shock: AÂrole for sphingosine 1-phosphate. Surgery, 2022, 171, 825-832.	1.0	1

#	Article	lF	CITATIONS
235	Signal Transduction and Gene Regulation in the Endothelium. Cold Spring Harbor Perspectives in Medicine, 0, , a041153.	2.9	1
236	Sphingolipids and the Endothelium. , 2007, , 403-409.		0
237	A festschrift for J. Martyn Bailey, a biochemist extraordinaire. Prostaglandins and Other Lipid Mediators, 2007, 83, 154-157.	1.0	0
238	837 INDUCTION OF MONOCYTE CHEMOATTRACTANT PROTEIN 1 BY SPHINGOSINE-1-PHOSPHATE IN NEUROBLASTOMA. Journal of Urology, 2012, 187, .	0.2	0
239	Signal transduction in tumor angiogenesis. , 0, , 861-871.		0
240	Support Myanmar's embattled scientists and students. Nature, 2021, 592, 507-507.	13.7	0
241	Endothelial Transporter Spinster 2 (SPNS2) and Apolipoprotein M (ApoM) Regulation of Vascular Tone and Hypertension via Sphingosineâ€1â€phosphate (S1P). FASEB Journal, 2021, 35, .	0.2	0
242	Application of the RNA Interference (RNAi) Technology to Angiogenesis Research. , 2004, , 167-176.		0
243	Regulation of Cyclooxygenase Gene Expression in Vascular Endothelial Cells. , 1991, , 53-58.		0
244	Role of the Early Response Gene Cyclooxygenase (Cox)-2 in Angiogenesis. , 1996, , 191-198.		0
245	Regulation of Expression and the Functional Role of Cyclooxygenase-2. , 1996, , 105-109.		0
246	A window into endothelial injury mechanisms revealed by S1PR1 GPCR reporter mice. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, SY60-3.	0.0	0
247	Abstract 122: Ceramide Activation of Macrophage RhoA/Rho Kinase/LIM Kinase Signaling Impairs Aggregated LDL Degradation and Foam Cell Formation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, .	1.1	0