Hui Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1607205/publications.pdf

Version: 2024-02-01

20307 19608 14,360 172 61 116 citations h-index g-index papers 176 176 176 14714 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	A Luminescent Mixed-Lanthanide Metal–Organic Framework Thermometer. Journal of the American Chemical Society, 2012, 134, 3979-3982.	6.6	1,033
2	High Efficiency Photocatalytic Water Splitting Using 2D αâ€Fe ₂ O ₃ /g ₃ N ₄ Zâ€6cheme Catalysts. Advanced Energ Materials, 2017, 7, 1700025.	gy 10.2	664
3	Zâ€Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi ₂ WO ₆ Nanosheets with Enhanced Photocatalytic Activities. Angewandte Chemie - International Edition, 2019, 58, 2073-2077.	7.2	445
4	A luminescent nanoscale metal–organic framework for sensing of nitroaromatic explosives. Chemical Communications, 2011, 47, 3153.	2.2	426
5	Recent progress in metal-organic frameworks-based hydrogels and aerogels and their applications. Coordination Chemistry Reviews, 2019, 398, 213016.	9.5	414
6	Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe ³⁺ . Journal of Materials Chemistry A, 2016, 4, 10900-10905.	5.2	412
7	Confinement of pyridinium hemicyanine dye within an anionic metal-organic framework for two-photon-pumped lasing. Nature Communications, 2013, 4, 2719.	5.8	381
8	Ionic liquid-induced strategy for carbon quantum dots/BiOX (X = Br, Cl) hybrid nanosheets with superior visible light-driven photocatalysis. Applied Catalysis B: Environmental, 2016, 181 , $260-269$.	10.8	380
9	Electrochemical CO ₂ Reduction with Atomic Ironâ€Dispersed on Nitrogenâ€Doped Graphene. Advanced Energy Materials, 2018, 8, 1703487.	10.2	369
10	Graphene-analogue carbon nitride: novel exfoliation synthesis and its application in photocatalysis and photoelectrochemical selective detection of trace amount of Cu ²⁺ . Nanoscale, 2014, 6, 1406-1415.	2.8	351
11	A robust near infrared luminescent ytterbium metal–organic framework for sensing of small molecules. Chemical Communications, 2011, 47, 5551-5553.	2.2	345
12	Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+. Journal of Materials Chemistry A, 2014, 2, 2563.	5. 2	330
13	A Zn4O-containing doubly interpenetrated porous metal–organic framework for photocatalytic decomposition of methyl orange. Chemical Communications, 2011, 47, 11715.	2.2	319
14	Synthesis of magnetic CoFe2O4/g-C3N4 composite and its enhancement of photocatalytic ability under visible-light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 478, 71-80.	2.3	253
15	One-Pot Synthesis of Visible-Light-Driven Plasmonic Photocatalyst Ag/AgCl in Ionic Liquid. ACS Applied Materials & Samp; Interfaces, 2011, 3, 22-29.	4.0	211
16	Controllable synthesis of Bi ₄ O ₅ Br ₂ ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight. Journal of Materials Chemistry A, 2015, 3, 15108-15118.	5.2	202
17	Tunable titanium metal–organic frameworks with infinite 1D Ti–O rods for efficient visible-light-driven photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2019, 7, 11928-11933.	5.2	192
18	Synthesis of g-C ₃ N ₄ at different temperatures for superior visible/UV photocatalytic performance and photoelectrochemical sensing of MB solution. RSC Advances, 2015, 5, 101552-101562.	1.7	175

#	Article	IF	CITATIONS
19	Synthesis and characterization of CeO2/g-C3N4 composites with enhanced visible-light photocatatalytic activity. RSC Advances, 2013, 3, 22269.	1.7	170
20	Morphology regulation of metal–organic framework-derived nanostructures for efficient oxygen evolution electrocatalysis. Journal of Materials Chemistry A, 2020, 8, 18215-18219.	5.2	168
21	Enhancing Oxygen Evolution Reaction through Modulating Electronic Structure of Trimetallic Electrocatalysts Derived from Metal–Organic Frameworks. Small, 2019, 15, e1901940.	5.2	163
22	Porous anatase TiO ₂ constructed from a metal–organic framework for advanced lithium-ion battery anodes. Journal of Materials Chemistry A, 2014, 2, 12571.	5.2	153
23	Single-Atom Coated Separator for Robust Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2019, 11, 25147-25154.	4.0	152
24	Construction of a 2D Grapheneâ€Like MoS ₂ /C ₃ N ₄ Heterojunction with Enhanced Visibleâ€Light Photocatalytic Activity and Photoelectrochemical Activity. Chemistry - A European Journal, 2016, 22, 4764-4773.	1.7	149
25	A microporous metal–organic framework with both open metal and Lewis basic pyridyl sites for highly selective C ₂ H ₂ /CH ₄ and C ₂ H ₂ /CO ₂ gas separation at room temperature. Journal of Materials Chemistry A, 2013, 1, 77-81.	5.2	148
26	A luminescent nanoscale metal–organic framework with controllable morphologies for spore detection. Chemical Communications, 2012, 48, 7377.	2.2	146
27	One-pot synthesis of copper-doped graphitic carbon nitride nanosheet by heating Cu–melamine supramolecular network and its enhanced visible-light-driven photocatalysis. Journal of Solid State Chemistry, 2015, 228, 60-64.	1.4	140
28	A New Approach to Construct a Doubly Interpenetrated Microporous Metal–Organic Framework of Primitive Cubic Net for Highly Selective Sorption of Small Hydrocarbon Molecules. Chemistry - A European Journal, 2011, 17, 7817-7822.	1.7	137
29	Carbon Quantum Dots Induced Ultrasmall BiOI Nanosheets with Assembled Hollow Structures for Broad Spectrum Photocatalytic Activity and Mechanism Insight. Langmuir, 2016, 32, 2075-2084.	1.6	136
30	Direct Synthesis of Porous Nanorodâ€Type Graphitic Carbon Nitride/CuO Composite from Cu–Melamine Supramolecular Framework towards Enhanced Photocatalytic Performance. Chemistry - an Asian Journal, 2015, 10, 1276-1280.	1.7	131
31	Gold Nanoparticles and gâ€C ₃ N ₄ â€Intercalated Graphene Oxide Membrane for Recyclable Surface Enhanced Raman Scattering. Advanced Functional Materials, 2017, 27, 1701714.	7.8	129
32	Different Morphologies of SnS ₂ Supported on 2D g-C ₃ N ₄ for Excellent and Stable Visible Light Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2018, 6, 5132-5141.	3.2	125
33	Facile Gel-Based Morphological Control of Ag/ <i>g</i> -C ₃ N ₄ Porous Nanofibers for Photocatalytic Hydrogen Generation. ACS Sustainable Chemistry and Engineering, 2017, 5, 10633-10639.	3.2	122
34	Recent advance in single-atom catalysis. Rare Metals, 2021, 40, 767-789.	3.6	116
35	Magnetic g-C ₃ N ₄ /NiFe ₂ O ₄ hybrids with enhanced photocatalytic activity. RSC Advances, 2015, 5, 57960-57967.	1.7	110
36	Metal-Oxide-Mediated Subtractive Manufacturing of Two-Dimensional Carbon Nitride for High-Efficiency and High-Yield Photocatalytic H ₂ Evolution. ACS Nano, 2019, 13, 11294-11302.	7.3	109

#	Article	IF	Citations
37	A Zr-MOF nanoflower sensor and its mixed-matrix membrane for the highly sensitive detection of nitroaromatics. Journal of Materials Chemistry C, 2022, 10, 7469-7475.	2.7	105
38	A ketone functionalized luminescent terbium metal–organic framework for sensing of small molecules. Chemical Communications, 2015, 51, 376-379.	2.2	97
39	A Doubly Interpenetrated Metal–Organic Framework with Open Metal Sites and Suitable Pore Sizes for Highly Selective Separation of Small Hydrocarbons at Room Temperature. Crystal Growth and Design, 2013, 13, 2094-2097.	1.4	96
40	Reversible Formation of gâ€C ₃ N ₄ 3D Hydrogels through Ionic Liquid Activation: Gelation Behavior and Roomâ€Temperature Gasâ€Sensing Properties. Advanced Functional Materials, 2017, 27, 1700653.	7.8	90
41	Rapid synthesis of ultrathin 2D materials through liquid-nitrogen and microwave treatments. Journal of Materials Chemistry A, 2019, 7, 5209-5213.	5.2	89
42	Enhanced Photocatalytic Activity of Ag ₃ VO ₄ Loaded with Rare-Earth Elements under Visible-Light Irradiation. Industrial & Engineering Chemistry Research, 2009, 48, 10771-10778.	1.8	88
43	Visible-light-driven Ag/AgBr/ZnFe2O4 composites with excellent photocatalytic activity for E. coli disinfection and organic pollutant degradation. Journal of Colloid and Interface Science, 2018, 512, 555-566.	5.0	84
44	A cationic microporous metal–organic framework for highly selective separation of small hydrocarbons at room temperature. Journal of Materials Chemistry A, 2013, 1, 9916.	5.2	83
45	An -OH group functionalized MOF for ratiometric Fe3+ sensing. Journal of Solid State Chemistry, 2018, 258, 441-446.	1.4	82
46	3D Coral-Like Ni ₃ S ₂ on Ni Foam as a Bifunctional Electrocatalyst for Overall Water Splitting. ACS Applied Materials & Samp; Interfaces, 2018, 10, 31330-31339.	4.0	80
47	An Allâ€Organic Dâ€A System for Visibleâ€Lightâ€Driven Overall Water Splitting. Small, 2020, 16, e2003914.	5.2	80
48	Engineering black phosphorus to porous g-C ₃ N ₄ -metal–organic framework membrane: a platform for highly boosting photocatalytic performance. Journal of Materials Chemistry A, 2019, 7, 4408-4414.	5.2	79
49	Hierarchical <i>Z</i> -scheme g-C ₃ N ₄ /Au/ZnIn ₂ S ₄ photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion. Environmental Science: Nano, 2020, 7, 676-687.	2.2	79
50	Graphene quantum dots modified flower like Bi2WO6 for enhanced photocatalytic nitrogen fixation. Journal of Colloid and Interface Science, 2019, 557, 498-505.	5.0	78
51	Synthesis and characterization of g-C ₃ with enhanced visible-light photocatalytic activity for the degradation of organic pollutants. RSC Advances, 2014, 4, 34539.	1.7	77
52	Plasma treated Bi ₂ WO ₆ ultrathin nanosheets with oxygen vacancies for improved photocatalytic CO ₂ reduction. Inorganic Chemistry Frontiers, 2020, 7, 597-602.	3.0	77
53	Synthesis and photocatalytic activity of a bentonite/g-C3N4 composite. RSC Advances, 2014, 4, 11831.	1.7	76
54	A Specifically Exposed Cobalt Oxide/Carbon Nitride 2D Heterostructure for Carbon Dioxide Photoreduction. Industrial & Description of the Photoreduction of	1.8	76

#	Article	IF	CITATIONS
55	Non-metal photocatalyst nitrogen-doped carbon nanotubes modified mpg-C3N4: facile synthesis and the enhanced visible-light photocatalytic activity. Journal of Colloid and Interface Science, 2017, 494, 38-46.	5.0	74
56	Hydrothermal synthesis of mpg-C ₃ N ₄ and Bi ₂ WO ₆ nest-like structure nanohybrids with enhanced visible light photocatalytic activities. RSC Advances, 2017, 7, 38682-38690.	1.7	73
57	Trimetallic Metal–Organic Framework Derived Carbonâ€Based Nanoflower Electrocatalysts for Efficient Overall Water Splitting. Advanced Materials Interfaces, 2019, 6, 1900290.	1.9	72
58	A multidimensional In ₂ S ₃ â€"CuInS ₂ heterostructure for photocatalytic carbon dioxide reduction. Inorganic Chemistry Frontiers, 2018, 5, 3163-3169.	3.0	67
59	A metal–organic framework for selectively sensing of PO43â^' anion in aqueous solution. Journal of Alloys and Compounds, 2011, 509, 2552-2554.	2.8	66
60	Ionic liquid-assisted synthesis and improved photocatalytic activity of p-n junction g-C3N4/BiOCl. Journal of Materials Science, 2016, 51, 4769-4777.	1.7	65
61	Recyclable Visible Light-Driven O-g-C ₃ N ₄ /Graphene Oxide/N-Carbon Nanotube Membrane for Efficient Removal of Organic Pollutants. ACS Applied Materials & Samp; Interfaces, 2018, 10, 42427-42435.	4.0	65
62	Hexamethylenetetramine-assisted hydrothermal synthesis of octahedral nickel ferrite oxide nanocrystallines with excellent supercapacitive performance. Journal of Materials Science, 2018, 53, 7621-7636.	1.7	63
63	In situ construction efficient visible-light-driven three-dimensional Polypyrrole/Zn3In2S6 nanoflower to systematically explore the photoreduction of Cr(VI): Performance, factors and mechanism. Journal of Hazardous Materials, 2020, 384, 121480.	6.5	61
64	Construction of SnO ₂ /graphene-like g-C ₃ N ₄ with enhanced visible light photocatalytic activity. RSC Advances, 2017, 7, 36101-36111.	1.7	59
65	Synthesis and photocatalytic activity of g-C ₃ N ₄ /BiOI/BiOBr ternary composites. RSC Advances, 2016, 6, 41204-41213.	1.7	58
66	Benzimidazole-functionalized Zr-UiO-66 nanocrystals for luminescent sensing of Fe 3+ in water. Journal of Solid State Chemistry, 2017, 245, 160-163.	1.4	58
67	Synthesis of zinc ferrite/silver iodide composite with enhanced photocatalytic antibacterial and pollutant degradation ability. Journal of Colloid and Interface Science, 2018, 528, 70-81.	5.0	58
68	Zâ€Scheme 2D/2D Heterojunction of Black Phosphorus/Monolayer Bi ₂ WO ₆ Nanosheets with Enhanced Photocatalytic Activities. Angewandte Chemie, 2019, 131, 2095-2099.	1.6	58
69	Magnetically separable Fe2O3/g-C3N4 catalyst with enhanced photocatalytic activity. RSC Advances, 2015, 5, 95727-95735.	1.7	57
70	Accelerating Photogenerated Charge Kinetics via the Synergetic Utilization of 2D Semiconducting Structural Advantages and Nobleâ€Metalâ€Free Schottky Junction Effect. Small, 2019, 15, e1804613.	5.2	56
71	Enhanced long-wavelength light utilization with polyaniline/bismuth-rich bismuth oxyhalide composite towards photocatalytic degradation of antibiotics. Journal of Colloid and Interface Science, 2019, 537, 101-111.	5.0	53
72	Nitrogen-rich graphitic carbon nitride nanotubes for photocatalytic hydrogen evolution with simultaneous contaminant degradation. Journal of Colloid and Interface Science, 2020, 560, 555-564.	5.0	53

#	Article	IF	CITATIONS
73	Understanding Photoelectrochemical Water Oxidation with X-ray Absorption Spectroscopy. ACS Energy Letters, 2020, 5, 975-993.	8.8	52
74	Graphitic Carbon Nitride Nanorods for Photoelectrochemical Sensing of Trace Copper(II) lons. European Journal of Inorganic Chemistry, 2014, 2014, 3665-3673.	1.0	51
75	High yield synthesis of nano-size g-C ₃ N ₄ derivatives by a dissolve-regrowth method with enhanced photocatalytic ability. RSC Advances, 2015, 5, 26281-26290.	1.7	51
76	Magnetically Separable Fe3O4 Nanoparticles-Decorated Reduced Graphene Oxide Nanocomposite for Catalytic Wet Hydrogen Peroxide Oxidation. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 907-916.	1.9	50
77	g ₃ N ₄ /TiO ₂ Nanocomposites for Degradation of Ciprofloxacin under Visible Light Irradiation. ChemistrySelect, 2016, 1, 5679-5685.	0.7	50
78	Bimetallic metal-organic framework nanosheets as efficient electrocatalysts for oxygen evolution reaction. Journal of Solid State Chemistry, 2019, 272, 32-37.	1.4	47
79	Accelerated Photoreduction of CO ₂ to CO over a Stable Heterostructure with a Seamless Interface. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39523-39532.	4.0	47
80	Anchoring Copper Single Atoms on Porous Boron Nitride Nanofiber to Boost Selective Reduction of Nitroaromatics. ACS Nano, 2022, 16, 4152-4161.	7.3	47
81	Enhanced photoelectrochemical aptasensing triggered by nitrogen deficiency and cyano group simultaneously engineered 2D carbon nitride for sensitively monitoring atrazine. Biosensors and Bioelectronics, 2022, 206, 114144.	5.3	47
82	Two Co-zeolite imidazolate frameworks with different topologies for degradation of organic dyes via peroxymonosulfate activation. Journal of Solid State Chemistry, 2017, 256, 10-13.	1.4	44
83	Efficient photocatalytic hydrogen evolution mediated by defect-rich 1T-PtS ₂ atomic layer nanosheet modified mesoporous graphitic carbon nitride. Journal of Materials Chemistry A, 2019, 7, 18906-18914.	5.2	44
84	Novel Ag ₂ S quantum dot modified 3D flower-like SnS ₂ composites for photocatalytic and photoelectrochemical applications. Inorganic Chemistry Frontiers, 2018, 5, 63-72.	3.0	43
85	An efficient broad spectrum-driven carbon and oxygen co-doped g-C3N4 for the photodegradation of endocrine disrupting: Mechanism, degradation pathway, DFT calculation and toluene selective oxidation. Journal of Hazardous Materials, 2021, 401, 123309.	6.5	43
86	A coreâ€"shell structured magnetic Ag/AgBr@Fe ₂ O ₃ composite with enhanced photocatalytic activity for organic pollutant degradation and antibacterium. RSC Advances, 2015, 5, 71035-71045.	1.7	41
87	A Z-scheme magnetic recyclable Ag/AgBr@CoFe ₂ O ₄ photocatalyst with enhanced photocatalytic performance for pollutant and bacterial elimination. RSC Advances, 2017, 7, 30845-30854.	1.7	40
88	Twoâ€Dimensional Co@Nâ€Carbon Nanocomposites Facilely Derived from Metal–Organic Framework Nanosheets for Efficient Bifunctional Electrocatalysis. Chemistry - an Asian Journal, 2018, 13, 1485-1491.	1.7	39
89	Porous defective carbon nitride obtained by a universal method for photocatalytic hydrogen production from water splitting. Journal of Colloid and Interface Science, 2020, 566, 171-182.	5.0	39
90	Preparation and thiols sensing of luminescent metal–organic framework films functionalized with lanthanide ions. Microporous and Mesoporous Materials, 2013, 179, 198-204.	2.2	38

#	Article	IF	CITATIONS
91	Unique Dualâ€Sites Boosting Overall CO ₂ Photoconversion by Hierarchical Electron Harvesters. Small, 2021, 17, e2103796.	5.2	38
92	Modification of Ag ₃ VO ₄ with graphene-like MoS ₂ for enhanced visible-light photocatalytic property and stability. New Journal of Chemistry, 2016, 40, 2168-2177.	1.4	37
93	Metallic cobalt nanoparticles embedded in sulfur and nitrogen co-doped rambutan-like nanocarbons for the oxygen reduction reaction under both acidic and alkaline conditions. Journal of Materials Chemistry A, 2019, 7, 14291-14301.	5.2	37
94	Graphene-analogue boron nitride/Ag ₃ PO ₄ composite for efficient visible-light-driven photocatalysis. RSC Advances, 2014, 4, 56853-56862.	1.7	36
95	Small-molecule axon-polarization studies enabled by a shear-free microfluidic gradient generator. Lab on A Chip, 2014, 14, 2047-2056.	3.1	36
96	Chemical reduction implanted oxygen vacancy on the surface of 1D MoO3â^'x/g-C3N4 composite for boosted LED light-driven photoactivity. Journal of Materials Science, 2019, 54, 5343-5358.	1.7	36
97	Novel broad-spectrum-driven oxygen-linked band and porous defect co-modified orange carbon nitride for photodegradation of Bisphenol A and 2-Mercaptobenzothiazole. Journal of Hazardous Materials, 2020, 396, 122659.	6.5	36
98	Improved Water Oxidation of Fe ₂ O ₃ /Fe ₂ TiO ₅ Photoanode by Functionalizing with a Hydrophilic Organic Hole Storage Overlayer. ACS Catalysis, 2022, 12, 7833-7842.	5.5	36
99	Highly Efficient Visible-Light-Driven Schottky Catalyst MoN/2D g-C ₃ N ₄ for Hydrogen Production and Organic Pollutants Degradation. Industrial & Degradati	1.8	35
100	Preparation of magnetic Ag/AgCl/CoFe ₂ O ₄ composites with high photocatalytic and antibacterial ability. RSC Advances, 2015, 5, 41475-41483.	1.7	32
101	Core–shell magnetic Ag/AgCl@Fe ₂ O ₃ photocatalysts with enhanced photoactivity for eliminating bisphenol A and microbial contamination. New Journal of Chemistry, 2016, 40, 3413-3422.	1.4	32
102	Titanium metal-organic framework nanorods for highly sensitive nitroaromatic explosives detection and nanomolar sensing of Fe3+. Journal of Solid State Chemistry, 2019, 278, 120892.	1.4	32
103	Self-assembly construction of NiCo LDH/ultrathin g-C3N4 nanosheets photocatalyst for enhanced CO2 reduction and charge separation mechanism study. Rare Metals, 2022, 41, 2118-2128.	3.6	32
104	Design of 3D WO ₃ /h-BN nanocomposites for efficient visible-light-driven photocatalysis. RSC Advances, 2017, 7, 25160-25170.	1.7	31
105	Graphene oxide-modified LaVO ₄ nanocomposites with enhanced photocatalytic degradation efficiency of antibiotics. Inorganic Chemistry Frontiers, 2018, 5, 2818-2828.	3.0	31
106	Fabrication of magnetic BaFe ₁₂ O ₁₉ /Ag ₃ PO ₄ composites with an <i>in situ</i> photo-Fenton-like reaction for enhancing reactive oxygen species under visible light irradiation. Catalysis Science and Technology, 2019, 9, 2563-2570.	2.1	30
107	Nitriding Nickel-Based Cocatalyst: A Strategy To Maneuver Hydrogen Evolution Capacity for Enhanced Photocatalysis. ACS Sustainable Chemistry and Engineering, 2020, 8, 884-892.	3.2	30
108	Plasma-induced defect engineering: Boosted the reverse water gas shift reaction performance with electron trap. Journal of Colloid and Interface Science, 2020, 580, 814-821.	5.0	29

#	Article	IF	CITATIONS
109	MO degradation by Ag–Ag2O/g-C3N4 composites under visible-light irradation. SpringerPlus, 2016, 5, 369.	1.2	28
110	Novel visible-light-driven Fe ₂ O ₃ /Ag ₃ VO ₄ composite with enhanced photocatalytic activity toward organic pollutants degradation. RSC Advances, 2016, 6, 3600-3607.	1.7	28
111	Accelerating the Hole Mobility of Graphitic Carbon Nitride for Photocatalytic Hydrogen Evolution via 2D/2D Heterojunction Structural Advantages and Ni(OH) ₂ Characteristic. Solar Rrl, 2020, 4, 1900538.	3.1	28
112	Bimetallic Metalâ€Organic Frameworkâ€Derived Nanosheetâ€Assembled Nanoflower Electrocatalysts for Efficient Oxygen Evolution Reaction. Chemistry - an Asian Journal, 2019, 14, 1590-1594.	1.7	27
113	Realizing the synergistic effect of electronic modulation over graphitic carbon nitride for highly efficient photodegradation of bisphenol A and 2-mercaptobenzothiazole: Mechanism, degradation pathway and density functional theory calculation. Journal of Colloid and Interface Science, 2021, 583. 113-127.	5.0	26
114	Graphene Oxide-Loaded SnO ₂ Quantum Wires with Sub-4 Nanometer Diameters for Low-Temperature H ₂ S Gas Sensing. ACS Applied Nano Materials, 2020, 3, 6385-6393.	2.4	25
115	The CeO ₂ /Ag ₃ PO ₄ photocatalyst with stability and high photocatalytic activity under visible light irradiation. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2356-2363.	0.8	24
116	Facile synthesis of CNT/AgI with enhanced photocatalytic degradation and antibacterial ability. RSC Advances, 2016, 6, 6905-6914.	1.7	23
117	Preparation of oxygen-deficient 2D WO3â^'x nanoplates and their adsorption behaviors for organic pollutants: equilibrium and kinetics modeling. Journal of Materials Science, 2019, 54, 12463-12475.	1.7	23
118	Oxidative Absorption of Elemental Mercury from Flue Gas Using a Modified Fenton-like Wet Scrubbing System. Energy & System. E	2.5	23
119	Construction of solid–liquid interfacial Fenton-like reaction under visible light irradiation over etched CoxFeyO4–BiOBr photocatalysts. Catalysis Science and Technology, 2018, 8, 551-561.	2.1	22
120	Enhanced visible-light-driven photocatalytic activity of Ag3PO4/metal–organic framework composite. Polyhedron, 2019, 163, 1-6.	1.0	22
121	A fluorescent titanium-based metal-organic framework sensor for nitroaromatics and nanomolar Fe3+ detection. Journal of Solid State Chemistry, 2020, 288, 121391.	1.4	22
122	Distributed-feedback laser actions in zirconia-ORMOSIL waveguides based on energy transfer between co-doped laser dyes. Optics Communications, 2008, 281, 5218-5221.	1.0	21
123	Porous silver microrods by plasma vulcanization activation for enhanced electrocatalytic carbon dioxide reduction. Journal of Colloid and Interface Science, 2022, 606, 793-799.	5.0	21
124	Plasmonicâ€enhanced visibleâ€lightâ€driven photocatalytic activity of Ag–AgBr synthesized in reactable ionic liquid. Journal of Chemical Technology and Biotechnology, 2012, 87, 1626-1633.	1.6	20
125	Tailoring of crystalline structure of carbon nitride for superior photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 2019, 556, 324-334.	5.0	20
126	Minireview on the Commonly Applied Copper-Based Electrocatalysts for Electrochemical CO ₂ Reduction. Energy &	2.5	20

#	Article	IF	CITATIONS
127	Facet-dependent CdS/Bi ₄ TaO ₈ Cl Z-scheme heterojunction for enhanced photocatalytic tetracycline hydrochloride degradation and the carrier separation mechanism study <i>via</i> single-particle spectroscopy. Inorganic Chemistry Frontiers, 2022, 9, 2252-2263.	3.0	20
128	Designing Visibleâ€Lightâ€Driven Zâ€scheme Catalyst 2D gâ€C ₃ N ₄ /Bi ₂ MoO ₆ : Enhanced Photodegradation Activity of Organic Pollutants. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800520.	0.8	19
129	Highly efficient photosynthesis of H ₂ O ₂ <i>via</i> two-channel pathway photocatalytic water splitting. Inorganic Chemistry Frontiers, 2022, 9, 1701-1707.	3.0	19
130	Synthesis of Multiwalled Carbon Nanotube Modified BiOCl Microspheres with Enhanced Visible‣ight Response Photoactivity. Clean - Soil, Air, Water, 2016, 44, 781-787.	0.7	18
131	Designing Zâ€scheme 2D ₃ N ₄ /Ag ₃ VO ₄ hybrid structures for improved photocatalysis and photocatalytic mechanism insight. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600946.	0.8	18
132	Interfacial self-assembly of monolayer Mg-doped NiO honeycomb structured thin film with enhanced performance for gas sensing. Journal of Materials Science: Materials in Electronics, 2018, 29, 11498-11508.	1.1	18
133	The construction of a Fenton system to achieve in situ H2O2 generation and decomposition for enhanced photocatalytic performance. Inorganic Chemistry Frontiers, 2019, 6, 1490-1500.	3.0	18
134	Surfactant-thermal method to synthesize a new Zn(II)-trimesic MOF with confined Ru(bpy)32+ complex. Journal of Solid State Chemistry, 2015, 226, 295-298.	1.4	17
135	WO ₃ nanorod photocatalysts decorated with few-layer g-C ₃ N ₄ nanosheets: controllable synthesis and photocatalytic mechanism research. RSC Advances, 2016, 6, 80193-80200.	1.7	17
136	A Fluorescent Titaniumâ€based Metalâ€Organic Framework Sensor for Nitroâ€aromatics Detection. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2021, 647, 759-763.	0.6	17
137	An ortho-methylated fluorescent chemosensor based on pyrromethene for highly selective and sensitive detection of Ag+ and Hg2+ ions. Materials Chemistry and Physics, 2013, 141, 591-595.	2.0	16
138	Construction of 3D Hierarchical GO/MoS 2 /gâ€C 3 N 4 Ternary Nanocomposites with Enhanced Visibleâ€Light Photocatalytic Degradation Performance. ChemistrySelect, 2019, 4, 7123-7133.	0.7	16
139	In situ growth of Ag/AgCl on the surface of CNT and the effect of CNT on the photoactivity of the composite. New Journal of Chemistry, 2015, 39, 5540-5547.	1.4	15
140	Single layer twoâ€dimensional Oâ€g ₃ N ₄ : An efficient photocatalyst for improved molecular oxygen activation ability. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600704.	0.8	15
141	Electrocatalysis: Trimetallic Metal–Organic Framework Derived Carbonâ€Based Nanoflower Electrocatalysts for Efficient Overall Water Splitting (Adv. Mater. Interfaces 12/2019). Advanced Materials Interfaces, 2019, 6, 1970078.	1.9	15
142	Highly Efficient Adsorption of Oils and Pollutants by Porous Ultrathin Oxygen-Modified BCN Nanosheets. ACS Sustainable Chemistry and Engineering, 2019, 7, 3234-3242.	3.2	14
143	Metal Nanoparticles Confined within an Inorganic–Organic Framework Enable Superior Substrate-Selective Catalysis. ACS Applied Materials & Interfaces, 2020, 12, 42739-42748.	4.0	14
144	Facile preparation of continuous indium metal-organic framework thin films on indium tin oxide glass. Thin Solid Films, 2013, 544, 296-300.	0.8	13

#	Article	IF	CITATIONS
145	Energy transfer mechanisms among various laser dyes co-doped into gel glasses. Dyes and Pigments, 2013, 96, 242-248.	2.0	13
146	Partial Oxidation of Sn2+ Induced Oxygen Vacancy Overspread on the Surface of SnO2â^'x/g-C3N4 Composites for Enhanced LED-Light-Driven Photoactivity. Journal of Inorganic and Organometallic Polymers and Materials, 2019, 29, 765-775.	1.9	13
147	Fabrication and characterization of visible-light-induced photocatalyst Gd2O3/Ag3VO4. Reaction Kinetics, Mechanisms and Catalysis, 2010, 99, 471.	0.8	12
148	Metallic 1T-TiS ₂ nanodots anchored on a 2D graphitic C ₃ N ₄ nanosheet nanostructure with high electron transfer capability for enhanced photocatalytic performance. RSC Advances, 2017, 7, 55269-55275.	1.7	12
149	Plasma-induced black bismuth tungstate as a photon harvester for photocatalytic carbon dioxide conversion. New Journal of Chemistry, 2021, 45, 1993-2000.	1.4	11
150	Crystal phase engineering boosted photo-electrochemical kinetics of CoSe2 for oxygen evolution catalysis. Journal of Colloid and Interface Science, 2022, 611, 22-28.	5.0	11
151	Ultrathin structure of oxygen doped carbon nitride for efficient CO ₂ photocatalytic reduction. Nanotechnology, 2022, 33, 115404.	1.3	10
152	Self-assembly and boosted photodegradation properties of perylene diimide <i>via</i> different solvents. New Journal of Chemistry, 2021, 45, 21701-21707.	1.4	9
153	Graphene quantum dots modified Ag ₃ PO ₄ for facile synthesis and the enhanced photocatalytic performance. Journal of the Chinese Advanced Materials Society, 2018, 6, 255-269.	0.7	8
154	Porous-C3N4 with High Ability for Selective Adsorption and Photodegradation of Dyes Under Visible-Light. Journal of Inorganic and Organometallic Polymers and Materials, 2017, 27, 1674-1682.	1.9	7
155	Construction of cobaltous oxide/nickel–iron oxide electrodes with great cycle stability and high energy density for advanced asymmetry supercapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30, 21219-21228.	1.1	7
156	Modulating the Electronic Structure of Porous Nanocubes Derived from Trimetallic Metal–Organic Frameworks to Boost Oxygen Evolution Reaction Performance. Chemistry - an Asian Journal, 2019, 14, 3357-3362.	1.7	7
157	Shortâ€time Thermal Oxidation of Ultrathin and Broadband Carbon Nitride for Efficient Photocatalytic H ₂ Generation. ChemCatChem, 2020, 12, 1169-1176.	1.8	7
158	In Situ Growth and Activation of Ag/Ag ₂ S Nanowire Clusters by H ₂ S Plasma Treatment for Promoted Electrocatalytic CO ₂ Reduction. Advanced Sustainable Systems, 2021, 5, 2100256.	2.7	7
159	Surface Engineering of 2D Carbon Nitride with Cobalt Sulfide Cocatalyst for Enhanced Photocatalytic Hydrogen Evolution. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100012.	0.8	6
160	Positively charged silver improve carbon dioxide electroreduction reaction performance by introducing phosphate. Journal of Colloid and Interface Science, 2022, 609, 65-74.	5.0	6
161	Graphene-like BN/BiOBr composite: synthesis via a reactable ionic liquid and enhanced visible light photocatalytic performance. Materials Technology, 2016, 31, 463-470.	1.5	4
162	Hydrothermal Synthesis and Upâ€conversion Luminescence of Ho ³⁺ /Yb ³⁺ Coâ€doped PbTiO ₃ . Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2019, 645, 1111-1117.	0.6	4

#	Article	IF	CITATIONS
163	Boosting CO ₂ Capture and Its Photochemical Conversion on Bismuth Surface. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2000671.	0.8	4
164	Steering Hole Transfer from the Light Absorber to Oxygen Evolution Sites for Photocatalytic Overall Water Splitting. Advanced Materials Interfaces, 0, , 2101158.	1.9	4
165	Construction of a 2D Graphene-Like MoS2 /C3 N4 Heterojunction with Enhanced Visible-Light Photocatalytic Activity and Photoelectrochemical Activity. Chemistry - A European Journal, 2016, 22, 4645-4645.	1.7	3
166	Solar driven high efficiency hydrogen evolution catalyzed by surface engineered ultrathin carbon nitride. New Journal of Chemistry, 2020, 44, 19314-19322.	1.4	3
167	Activation of Fe species on graphitic carbon nitride nanotubes for efficient photocatalytic ammonia synthesis. International Journal of Energy Research, 2022, 46, 13453-13462.	2.2	3
168	Hydrogels: Reversible Formation of g ₃ N ₄ 3D Hydrogels through Ionic Liquid Activation: Gelation Behavior and Roomâ€Temperature Gasâ€Sensing Properties (Adv. Funct. Mater.) Tj ETQq0 (0 0 7 g8BT /C	Ove r lock 10 Ti
169	Integration of metallic TaS ₂ Coâ€catalyst on carbon nitride photoharvester for enhanced photocatalytic performance. Canadian Journal of Chemical Engineering, 2019, 97, 1821-1827.	0.9	1
170	Preparation and photocatalytic performance of metallic Nb0.9Ta0.1S2/2D-C3N4 composite. Oxford Open Materials Science, 2020, 1 , .	0.5	1
171	A luminescent nano-scale metal-organic framework for sensing small molecules. , 2010, , .		0
172	Constructing Ni 3 C/2D g 3 N 4 Photocatalyst and the Internal Catalytic Mechanism Study. Physica Status Solidi (A) Applications and Materials Science, 2021, 218, 2100171.	0.8	0