Susana I Cordoba De Torresi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1607131/publications.pdf

Version: 2024-02-01

211 papers

7,486 citations

48 h-index

44069

79698 73 g-index

214 all docs

214 docs citations

times ranked

214

7592 citing authors

#	Article	IF	Citations
1	Electrochromic Reactions in Manganese Oxides: I . Raman Analysis. Journal of the Electrochemical Society, 1993, 140, 3065-3070.	2.9	259
2	Influence of Thermal Treatment on Doped Polyaniline Studied by Resonance Raman Spectroscopy. Macromolecules, 2000, 33, 3077-3083.	4.8	203
3	Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochimica Acta, 2007, 52, 6346-6352.	5. 2	183
4	Electrocatalytic oxidation of urea by nanostructured nickel/cobalt hydroxide electrodes. Electrochimica Acta, 2008, 53, 4030-4034.	5. 2	167
5	Synthesis and characterization of two ionic liquids with emphasis on their chemical stability towards metallic lithium. Electrochimica Acta, 2007, 52, 6427-6437.	5. 2	160
6	Conducting polymerâ€"hydrogel composites for electrochemical release devices: Synthesis and characterization of semi-interpenetrating polyanilineâ€"polyacrylamide networks. Electrochemistry Communications, 2005, 7, 717-723.	4.7	159
7	Polyaniline acrylic coatings for corrosion inhibition: the role played by counter-ions. Corrosion Science, 2005, 47, 811-822.	6.6	142
8	Synthesis, characterization and immobilization of Prussian blue nanoparticles. A potential tool for biosensing devices. Chemical Communications, 2005, , 366-368.	4.1	135
9	Enzyme-mediated amperometric biosensors prepared with the Layer-by-Layer (LbL) adsorption technique. Biosensors and Bioelectronics, 2004, 19, 1611-1615.	10.1	129
10	Electrochromic Behavior of Nickel Oxide Electrodes: II. Identification of the Bleached State by Raman Spectroscopy and Nuclear Reactions. Journal of the Electrochemical Society, 1991, 138, 1554-1559.	2.9	114
11	Secondary doping of polyaniline studied by resonance Raman spectroscopy. Electrochimica Acta, 1999, 44, 1887-1891.	5. 2	112
12	Electrochromic Behavior of Nickel Oxide Electrodes: I. Identification of the Colored State Using Quartz Crystal Microbalance. Journal of the Electrochemical Society, 1991, 138, 1548-1553.	2.9	100
13	Charge Compensation Dynamics in the Redox Processes of Polypyrrole-Modified Electrodes. The Journal of Physical Chemistry, 1996, 100, 15910-15916.	2.9	96
14	Molecular-Level Manipulation of V2O5/Polyaniline Layer-by-Layer Films To Control Electrochromogenic and Electrochemical Properties. Chemistry of Materials, 2004, 16, 2293-2299.	6.7	94
15	Synthesis and Characterization of Copper Hexacyanoferrate Nanoparticles for Building Up Long-Term Stability Electrochromic Electrodes. Langmuir, 2007, 23, 6796-6800.	3.5	90
16	The role of ion exchange in the redox processes of polypyrrole/dodecyl sulfate films as studied by electrogravimetry using a quartz crystal microbalance. Synthetic Metals, 1992, 48, 259-270.	3.9	87
17	Galvanic coupling between metal substrate and polyaniline acrylic blends: corrosion protection mechanism. Electrochimica Acta, 2005, 50, 2213-2218.	5.2	83
18	Ether-Bond-Containing Ionic Liquids and the Relevance of the Ether Bond Position to Transport Properties. Journal of Physical Chemistry B, 2010, 114, 12488-12494.	2.6	83

#	Article	IF	CITATIONS
19	Hybrid nickel hexacyanoferrate/polypyrrole composite as mediator for hydrogen peroxide detection and its application in oxidase-based biosensors. Journal of Electroanalytical Chemistry, 2005, 581, 31-37.	3.8	82
20	lonic exchanges in dodecylbenzenesulfonate doped polypyrrole Part 1. Optical beam deflection studies. Synthetic Metals, 1995, 72, 59-64.	3.9	81
21	Raman characterization of polyaniline induced conformational changes. Synthetic Metals, 1999, 101, 834-835.	3.9	79
22	Polypyrrole/copper hexacyanoferrate hybrid as redox mediator for glucose biosensors. Talanta, 2006, 69, 403-408.	5 . 5	78
23	Polyaniline Based Acrylic Blends for Iron Corrosion Protection. Electrochemical and Solid-State Letters, 2001, 4, B27.	2.2	74
24	Electrochromic behaviour of manganese dioxide electrodes in slightly alkaline solutions. Electrochimica Acta, 1992, 37, 2015-2019.	5 . 2	73
25	Sonochemically synthesized Ni(OH)2 and Co(OH)2 nanoparticles and their application in electrochromic electrodes. Electrochemistry Communications, 2006, 8, 554-560.	4.7	72
26	The effect of Cd, Co, and Zn as additives on nickel hydroxide opto-electrochemical behavior. Journal of Power Sources, 2001, 102, 224-232.	7.8	71
27	Electrochemical and morphological stabilization of V2O5 nanofibers by the addition of polyaniline. Electrochimica Acta, 2007, 52, 4419-4427.	5 . 2	69
28	Polyaniline/poly(methylmethacrylate) blends for corrosion protection: The effect of passivating dopants on different metals. Progress in Organic Coatings, 2007, 58, 33-39.	3.9	68
29	Conducting polymers revisited: applications in energy, electrochromism and molecular recognition. Journal of Solid State Electrochemistry, 2017, 21, 2489-2515.	2.5	68
30	Synthesis and characterization of stable Co and Cd doped nickel hydroxide nanoparticles for electrochemical applications. Ultrasonics Sonochemistry, 2009, 16, 35-40.	8.2	63
31	V2O5 nanoparticles obtained from a synthetic bariandite-like vanadium oxide: Synthesis, characterization and electrochemical behavior in an ionic liquid. Journal of Colloid and Interface Science, 2009, 337, 586-593.	9.4	63
32	Nickel hydroxide electrodes as amperometric detectors for carbohydrates in flow injection analysis and liquid chromatography. Journal of Electroanalytical Chemistry, 2009, 636, 18-23.	3.8	62
33	Ionic exchanges in dodecylbenzenesulfonate-doped polypyrrole Part II: Electrochemical quartz crystal microbalance study. Synthetic Metals, 1995, 72, 283-287.	3.9	61
34	Optical characterization of bismuth reversible electrodeposition. Journal of Electroanalytical Chemistry, 1996, 414, 11-16.	3.8	61
35	The electrochemical response of binary mixtures of hydrous transition metal hydroxides co-precipitated on conducting substrates with reference to the oxygen evolution reaction. Electrochimica Acta, 1986, 31, 1321-1332.	5.2	60
36	Electroactive Multilayer Films of Polyaniline and Vanadium Pentoxide. Journal of Physical Chemistry B, 2003, 107, 8351-8354.	2.6	60

#	Article	IF	Citations
37	Electrochemical oxidation of glycine by doped nickel hydroxide modified electrode. Sensors and Actuators B: Chemical, 2008, 135, 245-249.	7.8	60
38	Lithium Electroinsertion into an Inorganic-Organic Hybrid Material Composed from V[sub 2]O[sub 5] and Polyaniline. Journal of the Electrochemical Society, 2002, 149, A546.	2.9	59
39	Performance of rust converter based in phosphoric and tannic acids. Corrosion Science, 2004, 46, 1515-1525.	6.6	59
40	Optimized multilayer oxalate biosensor. Talanta, 2004, 62, 649-654.	5.5	59
41	Copper hexacyanoferrate nanoparticles modified electrodes: A versatile tool for biosensors. Journal of Electroanalytical Chemistry, 2008, 622, 219-224.	3.8	58
42	Transport properties of V2O5/polypyrrole nanocomposite prepared by a sol-gel alkoxide route. Journal of Electroanalytical Chemistry, 2002, 536, 37-45.	3.8	57
43	Biocompatible xanthan/polypyrrole scaffolds for tissue engineering. Materials Science and Engineering C, 2015, 52, 121-128.	7.3	56
44	Comparisons of charge compensation process in aqueous media of polyaniline and self-doped polyanilines. Synthetic Metals, 2001, 122, 321-327.	3.9	54
45	Ac-impedance and Raman spectroscopy study of the electrochemical behaviour of pure aluminium in citric acid media. Electrochimica Acta, 2001, 46, 1871-1878.	5. 2	52
46	Relation between the nature of the surface facets and the reactivity of Cu2O nanostructures anchored on TiO2NT@PDA electrodes in the photoelectrocatalytic conversion of CO2 to methanol. Applied Catalysis B: Environmental, 2020, 261, 118221.	20.2	52
47	Comparison of Secondary Doping and Thermal Treatment in Poly(diphenylamine) and Polyaniline Monitored by Resonance Raman Spectroscopy. Macromolecules, 2002, 35, 121-125.	4.8	50
48	Investigation of the Electrical and Electrochemical Properties of Nanocomposites from V ₂ O ₅ , Polypyrrole, and Polyaniline. Journal of Physical Chemistry C, 2008, 112, 2202-2209.	3.1	50
49	In situ Raman study of sulfonate-doped polyaniline. Electrochimica Acta, 1999, 44, 1989-1997.	5. 2	49
50	Structure and properties of a nanocomposite formed by vanadium pentoxide containing poly(N-propane sulfonic acid aniline). Journal of Power Sources, 2001, 103, 113-119.	7.8	49
51	Structural parameters of polyacrylamide hydrogels obtained by the Equilibrium Swelling Theory. European Polymer Journal, 2009, 45, 1232-1238.	5 . 4	49
52	Why Could the Nature of Surface Facets Lead to Differences in the Activity and Stability of Cu ₂ O-Based Electrocatalytic Sensors?. ACS Catalysis, 2018, 8, 6265-6272.	11.2	49
53	On the stabilization of conducting pernigraniline salt by the synthesis and oxidation of polyaniline in hydrophobic ionic liquids. Physical Chemistry Chemical Physics, 2008, 10, 1457.	2.8	48
54	Ellipsometric, Electrogravimetric, and Spectroelectrochemical Studies of the Redox Process of Sulfonated Polyaniline. Langmuir, 2000, 16, 7835-7841.	3.5	47

#	Article	IF	Citations
55	Effect of Additives in the Stabilization of the $\hat{l}\pm$ Phase of Ni(OH)[sub 2] Electrodes. Journal of the Electrochemical Society, 2001, 148, A1179.	2.9	47
56	Mechanism of Action of Corrosion Protection Coating for AA2024-T3 Based on Poly(aniline)-Poly(methylmethacrylate) Blend. Journal of the Electrochemical Society, 2005, 152, B45.	2.9	47
57	Quartz crystal microbalance characterization of electrochemical doping of polyaniline films. Synthetic Metals, 1993, 61, 291-296.	3.9	46
58	Electrochemical and Raman studies on a hybrid organic–inorganic nanocomposite of vanadium oxide and a sulfonated polyaniline. Electrochimica Acta, 2001, 46, 3555-3562.	5.2	44
59	Electrostatic layer-by-layer and electrophoretic depositions as methods for electrochromic nanoparticle immobilization. Electrochimica Acta, 2009, 54, 2800-2804.	5.2	44
60	Glucose Amperometric Biosensor Based on the Co-immobilization of Glucose Oxidase (GOx) and Ferrocene in Poly(pyrrole) Generated from Ethanol / Water Mixtures. Journal of the Brazilian Chemical Society, 2001, 12, 729.	0.6	43
61	A New Sensor for Ammonia Determination Based on Polypyrrole Films Doped with Dodecylbenzenesulfonate (DBSA) Ions. Electroanalysis, 2002, 14, 1577-1586.	2.9	43
62	Electrochemical and kinetic studies of lithium intercalation in composite nanofibers of vanadium oxide/polyaniline. Electrochimica Acta, 2005, 50, 5009-5014.	5.2	43
63	Electrostatic Layer-by-Layer Deposition and Electrochemical Characterization of Thin Films Composed of MnO ₂ Nanoparticles in a Room-Temperature Ionic Liquid. Langmuir, 2008, 24, 3602-3610.	3.5	43
64	Redox behavior of nanohybrid material with defined morphology: Vanadium oxide nanotubes intercalated with polyaniline. Journal of Power Sources, 2006, 156, 533-540.	7.8	42
65	On the application of nanostructured electrodes prepared by Ti/TiO2/WO3 "template― A case study of removing toxicity of indigo using visible irradiation. Chemosphere, 2013, 91, 586-593.	8.2	42
66	Advances in Conducting, Biodegradable and Biocompatible Copolymers for Biomedical Applications. Frontiers in Materials, 2019, 6, .	2.4	42
67	The effect of manganese addition on nickel hydroxide electrodes with emphasis on its electrochromic properties. Electrochimica Acta, 1995, 40, 1101-1107.	5.2	41
68	Ionic Exchange Phenomena Related to the Redox Processes of Polyaniline in Nonaqueous Media. Journal of the Electrochemical Society, 2000, 147, 665.	2.9	41
69	Chemical and Electrochemical Characterization of a Novel Nanocomposite Formed from V[sub 2]O[sub 5] and Poly(N-propane sulfonic acid aniline), a Self-Doped Polyaniline. Journal of the Electrochemical Society, 2000, 147, 2437.	2.9	41
70	Eletrodos modificados por hidróxido de nÃquel: um estudo de revisão sobre suas propriedades estruturais e eletroquÃmicas visando suas aplicações em eletrocatálise, eletrocromismo e baterias secundárias. Quimica Nova, 2010, 33, 2176-2186.	0.3	40
71	Sub-15 nm CeO ₂ nanowires as an efficient non-noble metal catalyst in the room-temperature oxidation of aniline. Catalysis Science and Technology, 2018, 8, 1828-1839.	4.1	39
72	Electrochemical and chromogenic relaxation processes in polyaniline films. Polymer, 2002, 43, 5895-5901.	3.8	37

#	Article	IF	CITATIONS
73	On the electrochemical and spectroscopic properties of a soluble polyaniline parent copolymer. Electrochimica Acta, 2002, 47, 2005-2011.	5.2	37
74	A highly efficient redox chromophore for simultaneous application in a photoelectrochemical dye sensitized solar cell and electrochromic devices. New Journal of Chemistry, 2005, 29, 320-324.	2.8	37
75	Conducting polymer- hydrogel blends for electrochemically controlled drug release devices. Journal of the Brazilian Chemical Society, 2008, 19, 630-636.	0.6	37
76	PdPt-TiO2 nanowires: correlating composition, electronic effects and O-vacancies with activities towards water splitting and oxygen reduction. Applied Catalysis B: Environmental, 2020, 277, 119177.	20.2	36
77	Gold–Rhodium Nanoflowers for the Plasmon-Enhanced Hydrogen Evolution Reaction under Visible Light. ACS Catalysis, 2021, 11, 13543-13555.	11.2	36
78	The effect of iron hydroxide on nickelous hydroxide electrodes with emphasis on the oxygen evolution reaction. Electrochimica Acta, 1987, 32, 749-755.	5.2	35
79	Layer-by-Layer Nanostructured Hybrid Films of Polyaniline and Vanadium Oxide. Journal of Nanoscience and Nanotechnology, 2002, 2, 29-32.	0.9	34
80	lonic transport in conducting polymers/nickel tetrasulfonated phthalocyanine modified electrodes. Polymer, 2003, 44, 5369-5379.	3.8	34
81	Physicochemical Properties of Three Ionic Liquids Containing a Tetracyanoborate Anion and Their Lithium Salt Mixtures. Journal of Physical Chemistry B, 2014, 118, 8772-8781.	2.6	34
82	Synthesis of highly dispersed gold nanoparticles on Al2O3, SiO2, and TiO2 for the solvent-free oxidation of benzyl alcohol under low metal loadings. Journal of Materials Science, 2019, 54, 238-251.	3.7	34
83	XANES study of polyaniline–V2O5 and sulfonated polyaniline–V2O5 nanocomposites. Electrochimica Acta, 2002, 47, 3179-3186.	5.2	33
84	"On line―mass spectrometric detection of ammonia oxidation products generated by polypyrrole based amperometric sensors. Analytica Chimica Acta, 2003, 489, 207-214.	5.4	33
85	Mixed Ni/Co Hydroxide Nanoparticles Synthesized by Sonochemical Method. Journal of Nanoscience and Nanotechnology, 2007, 7, 3221-3226.	0.9	33
86	In situ FTIR insights into the electrooxidation mechanism of glucose as a function of the surface facets of Cu2O-based electrocatalytic sensors. Journal of Catalysis, 2019, 375, 95-103.	6.2	33
87	Infrared characterization of electrochromic nickel hydroxide prepared by homogeneous chemical precipitation. Thin Solid Films, 1993, 229, 180-186.	1.8	32
88	Técnicas in situ de baixo custo em eletroquÃmica: a microbalança a cristal de quartzo. Quimica Nova, 2000, 23, 664-679.	0.3	32
89	Redox behavior of crosslinked polyaniline films. Journal of the Brazilian Chemical Society, 2000, 11, 91-94.	0.6	32
90	Reduction of interference signal of ascorbate and urate in poly(pyrrole)-based ammonia sensors in aqueous solutions. Electrochimica Acta, 2004, 49, 3665-3670.	5.2	32

#	Article	IF	Citations
91	All solid-state electrochromic device consisting of a water soluble viologen dissolved in gelatin-based ionogel. Solar Energy Materials and Solar Cells, 2015, 132, 101-106.	6.2	32
92	Study of charge compensation during the redox process of self-doped polyaniline in aqueous media. Journal of the Brazilian Chemical Society, 2000, $11,32$.	0.6	31
93	Characterization of conducting polyaniline blends by Resonance Raman Spectroscopy. Journal of the Brazilian Chemical Society, 2005, 16, 322-327.	0.6	31
94	On the pH dependence of electroactivity of poly(methylene blue) films. Electrochimica Acta, 2010, 55, 1766-1771.	5.2	31
95	Performance improvement of macroporous polypyrrole sensor for detection of ammonia by incorporation of magnetite nanoparticles. Sensors and Actuators B: Chemical, 2015, 213, 444-451.	7.8	31
96	Comparison of V[sub 2]O[sub 5] Xerogels Prepared by the Vanadate and Alkoxide Routes Using X-Ray Absorption and other Methods. Journal of the Electrochemical Society, 2003, 150, A721.	2.9	30
97	Evidence of redox interactions between polypyrrole and Fe3O4 in polypyrrole–Fe3O4 composite films. Electrochimica Acta, 2010, 55, 6116-6122.	5.2	30
98	Novel Conducting and Biodegradable Copolymers with Noncytotoxic Properties toward Embryonic Stem Cells. ACS Omega, 2018, 3, 5593-5604.	3.5	30
99	Structural, morphological and spectroelectrochemical characterization of poly (2-ethyl aniline). Journal of the Brazilian Chemical Society, 2000, 11, 317-323.	0.6	29
100	Materiais para cátodos de baterias secundárias de lÃŧio. Quimica Nova, 2002, 25, 287-299.	0.3	29
101	Design of molecular wires based on supramolecular structures for application in glucose biosensors. Biosensors and Bioelectronics, 2006, 22, 298-305.	10.1	28
102	Nanochromics: old materials, new structures and architectures for high performance devices. Journal of the Brazilian Chemical Society, 2008, 19, 1248-1257.	0.6	28
103	Electrophoretic deposition of Au@PEDOT nanoparticles towards the construction of high-performance electrochromic electrodes. Solar Energy Materials and Solar Cells, 2013, 118, 72-80.	6.2	28
104	Evaluating the performance of polypyrrole nanowires on the electrochemical sensing of ammonia in solution. Journal of Electroanalytical Chemistry, 2012, 669, 90-94.	3.8	26
105	<scp> </scp> -Cysteine electrooxidation in alkaline and acidic media: a combined spectroelectrochemical and computational study. RSC Advances, 2017, 7, 7492-7501.	3.6	26
106	Urea amperometric biosensors based on a multifunctional bipolymeric layer: Comparing enzyme immobilization methods. Sensors and Actuators B: Chemical, 2009, 137, 476-482.	7.8	25
107	Structure effects of self-assembled Prussian blue confined in highly organized mesoporous TiO2 on the electrocatalytic properties towards H2O2 detection. Biosensors and Bioelectronics, 2010, 26, 890-893.	10.1	25
108	Template synthesis of polyaniline: a route to achieve nanocomposites. Synthetic Metals, 1999, 101, 754-755.	3.9	24

#	Article	IF	CITATIONS
109	Resonant Raman spectroscopy as a tool for determining the formation of a ladder structure in electropolymerized poly(5-amino-1-naphthol). Journal of Electroanalytical Chemistry, 2002, 518, 33-40.	3.8	22
110	Micro/nanostructured carbon composite modified with a hybrid redox mediator and enzymes as a glucose biosensor. Carbon, 2011, 49, 3039-3047.	10.3	22
111	Opportunities and Knowledge Gaps of SO ₂ Electrocatalytic Oxidation for H ₂ Electrochemical Generation. ACS Catalysis, 2019, 9, 8136-8143.	11.2	22
112	Polyaniline composites: improving the electrochemical properties by template synthesis. Journal of Solid State Electrochemistry, 2001, 5, 412-418.	2.5	21
113	Structural and electrochemical properties of nanocomposites formed by V2O5 and poly(3-alkylpyrroles). Journal of Power Sources, 2003, 114, 133-136.	7.8	21
114	Polymeric electro-mechanic devices applied to antibiotic-controlled release. Sensors and Actuators B: Chemical, 2008, 130, 638-644.	7.8	21
115	Three-dimensional graphene/carbon nanotubes hybrid composites for exploring interaction between glucose oxidase and carbon based electrodes. Journal of Electroanalytical Chemistry, 2016, 775, 235-242.	3.8	21
116	Electrochromic behavior of WO3 nanoplate thin films in acid aqueous solution and a protic ionic liquid. Journal of Electroanalytical Chemistry, 2016, 765, 111-117.	3.8	21
117	One pot biocatalytic synthesis of a biodegradable electroactive macromonomer based on 3,4-ethylenedioxytiophene and poly(l -lactic acid). Materials Science and Engineering C, 2018, 83, 35-43.	7.3	21
118	The long and successful journey of electrochemically active amino acids. From fundamental adsorption studies to potential surface engineering tools Anais Da Academia Brasileira De Ciencias, 2018, 90, 607-630.	0.8	21
119	Mechanistic Insights into the Light-Driven Catalysis of an Immobilized Lipase on Plasmonic Nanomaterials. ACS Catalysis, 2021, 11, 414-423.	11.2	21
120	An Organic Aqueous Gel as Electrolyte for Application in Electrochromic Devices Based in Bismuth Electrodeposition. Journal of the Electrochemical Society, 2003, 150, E578.	2.9	20
121	Fully conducting hydro-sponges with electro-swelling properties tuned by synthetic parameters. Electrochimica Acta, 2013, 101, 216-224.	5.2	20
122	Rheological Changes and Kinetics of Water Uptake by Poly(ionic liquid)-Based Thin Films. Langmuir, 2013, 29, 15589-15595.	3.5	20
123	Visible light plasmon excitation of silver nanoparticles against antibiotic-resistant Pseudomonas aeruginosa. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101908.	2.6	19
124	AgAu Hollow Nanoshells on Layered Graphene Oxide and Silica Submicrospheres as Plasmonic Nanozymes for Light-Enhanced Electrochemical H ₂ O ₂ Sensing. ACS Applied Nano Materials, 2021, 4, 12062-12072.	5.0	19
125	Design considerations for ionic liquid based electrochemical double layer capacitors. Electrochimica Acta, 2018, 270, 453-460.	5.2	18
126	Electrodissolution of cobalt in carbonate/bicarbonate media. Electrochimica Acta, 2002, 47, 4531-4541.	5.2	17

#	Article	IF	Citations
127	Determination of the Formation of Ladder Structure in Poly(5-amino-1-naphthol) by Resonant Raman and XPS Characterization. Macromolecules, 2003, 36, 2079-2084.	4.8	16
128	Chemical modification of a nanocrystalline TiO2 film for efficient electric connection of glucose oxidase. Journal of Colloid and Interface Science, 2010, 346, 442-447.	9.4	16
129	Ni(ii)-modified solid substrates as a platform to adsorb His-tag proteins. Journal of Materials Chemistry B, 2013, 1, 4921.	5.8	16
130	Zero-Order Release Profiles from A Multistimuli Responsive Electro-Conductive Hydrogel. Journal of Biomaterials and Nanobiotechnology, 2012, 03, 262-268.	0.5	16
131	Uma visão das tendências e perspectivas em eletrocromismo: a busca de novos materiais e desenhos mais simples. Quimica Nova, 2000, 23, 79-87.	0.3	15
132	Porous Polymeric Templates on ITO Prepared by Breath Figure Method for Gold Electrodeposition. Electrochimica Acta, 2015, 158, 187-195.	5.2	15
133	Spectroelectrochemical study of a soluble derivative of poly(aniline) in a room temperature ionic liquid. Electrochimica Acta, 2007, 53, 1217-1224.	5.2	14
134	Nanostructured thin films obtained by electrodeposition over a colloidal crystal template: applications in electrochemical devices. Journal of the Brazilian Chemical Society, 2009, 20, 663-673.	0.6	14
135	Macroporous MnO2 electrodes obtained by template assisted electrodeposition for electrochemical capacitors. Journal of the Brazilian Chemical Society, 2010, 21, 1704-1709.	0.6	14
136	Improving the performance of a glucose biosensor using an ionic liquid for enzyme immobilization. On the chemical interaction between the biomolecule, the ionic liquid and the cross-linking agent. Electrochimica Acta, 2012, 73, 123-128.	5.2	14
137	In search of an appropriate ionic liquid as electrolyte for macroporous manganese oxide film electrochemistry. Journal of Power Sources, 2013, 239, 1-8.	7.8	14
138	Electrical Stimulation and Conductive Polymers as a Powerful Toolbox for Tailoring Cell Behaviour in vitro. Frontiers in Medical Technology, 2021, 3, 670274.	2.5	14
139	Effect of thickness, chemical nature of dopants and an alkyl substituent on absorption bands of polyaniline. Journal of Solid State Electrochemistry, 1998, 2, 24-29.	2.5	13
140	Template conversion of MoO ₃ to MoS ₂ nanoribbons: synthesis and electrochemical properties. RSC Advances, 2018, 8, 30346-30353.	3.6	13
141	Kinetics, Assembling, and Conformation Control of Lâ€Cysteine Adsorption on Pt Investigated by in situ FTIR Spectroscopy and QCMâ€D. ChemPhysChem, 2018, 19, 2340-2348.	2.1	13
142	The effect of nanoscale surface electrical properties of partially biodegradable PEDOT-co-PDLLA conducting polymers on protein adhesion investigated by atomic force microscopy. Materials Science and Engineering C, 2019, 99, 468-478.	7.3	13
143	Spectroelectrochemical characterization (OMA and Raman) of sulfonic acids â€" doped polyanilines. Synthetic Metals, 1997, 84, 785-786.	3.9	12
144	Stabilization of polyaniline by the incorporation of magnetite nanoparticles. Materials Chemistry and Physics, 2012, 132, 529-533.	4.0	12

#	Article	IF	CITATIONS
145	Polymeric binuclear ruthenium complex as efficient electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 2018, 283, 18-26.	5.2	12
146	Tuning protein delivery from different architectures of layer-by-layer assemblies on polymer films. Materials Advances, 2020, 1, 2043-2056.	5. 4	12
147	Impedance spectroscopy study of poly(ethylene oxide) sodium hexafluortitanate complex. Solid State lonics, 1999, 126, 259-267.	2.7	11
148	Lithium intercalation in nanostructured thin films of a mixed-valence layered vanadium oxide using an ionic liquid electrolyte. Journal of Power Sources, 2013, 224, 72-79.	7.8	11
149	Influence of the Electrode and Chaotropicity of the Electrolyte on the Oscillatory Behavior of the Electrocatalytic Oxidation of SO ₂ . Journal of Physical Chemistry C, 2018, 122, 1243-1247.	3.1	11
150	Use of poly[ionic liquid] as a conductive binder in lithium ion batteries. Journal of Solid State Electrochemistry, 2018, 22, 3589-3596.	2.5	11
151	Porous Graphene Oxide Films Prepared via the Breath-Figure Method: A Simple Strategy for Switching Access of Redox Species to an Electrode Surface. ACS Applied Materials & Samp; Interfaces, 2020, 12, 55181-55188.	8.0	11
152	The importance of the shape of Cu2O nanocrystals on plasmon-enhanced oxygen evolution reaction in alkaline media. Electrochimica Acta, 2021, 390, 138810.	5.2	11
153	Spectroscopic characterization and investigation of the dynamic of charge compensation process of supramolecular films derived from tetra-2-pyridyl-1,4-pyrazine ligand. Journal of the Brazilian Chemical Society, 2008, 19, 651-659.	0.6	10
154	Platinum nanoparticle-modified electrodes, morphologic, and electrochemical studies concerning electroactive materials deposition. Journal of Solid State Electrochemistry, 2010, 14, 675-679.	2.5	10
155	Investigation of the electrochemical behavior of l-cysteine in acidic media. Journal of Electroanalytical Chemistry, 2016, 765, 87-91.	3.8	10
156	Electrochemical quartz crystal microbalance with dissipation investigation of fibronectin adsorption dynamics driven by electrical stimulation onto a conducting and partially biodegradable copolymer. Biointerphases, 2020, 15, 021003.	1.6	10
157	High-resolution light-activated electrochemistry on amorphous silicon-based photoelectrodes. Chemical Communications, 2020, 56, 7435-7438.	4.1	9
158	Influence of Ni doping on vanadium oxide/hexadecylamine multiwall nanotubes. Physica B: Condensed Matter, 2007, 398, 333-336.	2.7	8
159	Nitric oxide sensing by cytochrome c bonded to a conducting polymer modified glassy carbon electrode. Synthetic Metals, 2009, 159, 2159-2161.	3.9	8
160	Electrochromic Properties of a Metallo-supramolecular Polymer Derived from Tetra(2-pyridyl-1,4-pyrazine) Ligands Integrated in Thin Multilayer Films. Langmuir, 2012, 28, 3332-3337.	3 . 5	8
161	Correlation between pore size and reactivity of macro/mesoporous iron and copper hexacyanoferrates for H2O2 electrocatalysis. Journal of Electroanalytical Chemistry, 2013, 706, 48-54.	3.8	8
162	Viologen-functionalized poly(ionic liquids): Spectroelectrochemical and QCM-D studies. Journal of Electroanalytical Chemistry, 2018, 819, 365-373.	3.8	8

#	Article	IF	CITATIONS
163	Influence of Anion Chaotropicity on the SO ₂ Oxidation Reaction: When Spectator Species Determine the Reaction Pathway. ChemElectroChem, 2020, 7, 1843-1850.	3.4	8
164	SO2 electrooxidation reaction on Pt single crystal surfaces in acidic media: Electrochemical and in situ FTIR studies. Electrochimica Acta, 2022, 403, 139601.	5 . 2	8
165	Gold–rhodium nanoflowers for the plasmon enhanced ethanol electrooxidation under visible light for tuning the activity and selectivity. Electrochimica Acta, 2022, 420, 140439.	5. 2	8
166	Immobilization of Catalysts of Biological Interest on Porous Oxidized Silicon Surfaces. Journal of Nanoscience and Nanotechnology, 2008, 8, 3570-3576.	0.9	7
167	Kinetic and Thermodynamic Studies on the Adsorption of Reactive Red 239 by Carra Sawdust Treated with Formaldehyde. Adsorption Science and Technology, 2012, 30, 881-899.	3.2	7
168	From a planar electrode to a random assembly of microelectrodes: A new approach based on the electrochemical reduction of 5-bromo-1,10-phenanthroline at gold electrodes. Electrochemistry Communications, 2014, 38, 32-35.	4.7	7
169	Controlling Gold Electrodeposition on Porous Polymeric Templates Produced by the Breathâ€Figure Method: Fabrication of SERSâ€Active Surfaces. ChemPlusChem, 2019, 84, 1052-1059.	2.8	7
170	Mechanism of Electrochemical L ysteine Oxidation on Pt. ChemElectroChem, 2019, 6, 1009-1013.	3.4	7
171	Electroactivity of 3D conducting polymers in water-in-salt electrolyte and their electrochemical capacitor performance. Journal of Electroanalytical Chemistry, 2021, 880, 114822.	3.8	7
172	Cerium oxide-sulfur nanohybrids: Combining the robust adsorption of polysulfides with enhanced redox kinetics to improve the energy Storage capabilities of Li-S batteries. Electrochimica Acta, 2021, 382, 138284.	5 . 2	7
173	Metal oxides as electrocatalysts for water splitting: On plasmonâ€driven enhanced activity. Electrochemical Science Advances, 2022, 2, e2100079.	2.8	7
174	Stimuli-Responsive Regulation of Biocatalysis through Metallic Nanoparticle Interaction. Bioconjugate Chemistry, 2022, 33, 53-66.	3.6	7
175	Raman characterization of C60 salts electroformed in aqueous media. Electrochemistry Communications, 2000, 2, 547-551.	4.7	6
176	Improvement of thermal stability of an organic-aqueous gel electrolyte for bismuth electrodeposition devices. Solar Energy Materials and Solar Cells, 2005, 85, 489-497.	6.2	6
177	QCM-D study of electrochemical synthesis of 3D polypyrrole thin films for negative electrodes in supercapacitors. Electrochimica Acta, 2019, 324, 134887.	5 . 2	6
178	Electronic and ionic exchange in poly(5-amino 1-naphthol) in acid aqueous solution. Electrochimica Acta, 2004, 49, 1409-1415.	5.2	6
179	MnO ₂ Nanowires Decorated with Au Nanoparticles for Plasmon-Enhanced Electrocatalytic Detection of H ₂ O ₂ . ACS Applied Nano Materials, 2022, 5, 2943-2952.	5.0	6
180	Capacitive electrical stimulation of a conducting polymeric thin film induces human mesenchymal stem cell osteogenesis. Biointerphases, 2022, 17, 011001.	1.6	6

#	Article	IF	Citations
181	Direct evidence of redox mediation between a poly(aniline-co-N-propanesulfonic acid aniline) and 2,5-dimercapto-1,3,4-thiadiazole by UV-visible reflectance spectroscopy. Journal of the Brazilian Chemical Society, 2002, 13, 449.	0.6	5
182	Identification of charge carriers in the conduction mechanism of an alternated copolymer of poly(aniline) and poly(phenylene sulfide). Polymer, 2006, 47, 1259-1266.	3.8	5
183	Controlling hydrophilicity and electrocatalytic properties of metallic hexacyanoferrates/conducting polymers hybrids for the detection of H2O2. Electrochimica Acta, 2013, 110, 459-464.	5.2	5
184	Electrochemical template synthesis of adherent polyaniline thin films with tubular structure. Journal of Solid State Electrochemistry, 2016, 20, 983-991.	2.5	5
185	An Overview on the Development of Electrochemical Capacitors and Batteries – Part I. Anais Da Academia Brasileira De Ciencias, 2020, 92, e20200796.	0.8	5
186	Mechanochemical Strategies for the Preparation of SiO2-Supported AgAu Nanoalloy Catalysts. Frontiers in Chemistry, 2022, 10, 836597.	3.6	5
187	Hierarchically fractal Co with highly exposed active facets and directed electron-transfer effect. Chemical Communications, 2022, 58, 6882-6885.	4.1	5
188	Characterization of anodic silicon oxide films grown in room temperature ionic liquids. Electrochimica Acta, 2008, 53, 7396-7402.	5.2	4
189	QCM-D studies of polypyrrole influence on structure stabilization of \hat{l}^2 phase of Ni(OH)2 nanoparticles during electrochemical cycling. Electrochemistry Communications, 2014, 48, 164-168.	4.7	4
190	l-Cysteine oxidation studied by rotating ring disk electrodes: Verification of reaction intermediates. Journal of Electroanalytical Chemistry, 2018, 817, 18-23.	3.8	4
191	Raman resonances in sulfonate or Cl-doped PANI films. , 1997, , .		3
192	Spatially localized electrodeposition of multiple metals <i>via</i> light-activated electrochemistry for surface enhanced Raman spectroscopy applications. Chemical Communications, 2020, 56, 5831-5834.	4.1	3
193	L-cysteine oxidation on Pt and Au rotating disk electrodes: Insights on mixed controlled kinetics. Journal of Electroanalytical Chemistry, 2021, 880, 114920.	3.8	3
194	Assembly of Nanoâ€Biocatalyst for the Tandem Hydrolysis and Reduction of pâ€Nitrophenol Esters. Particle and Particle Systems Characterization, 2021, 38, 2100136.	2.3	3
195	Ética nas publicações cientÃficas. Quimica Nova, 2008, 31, 197-197.	0.3	3
196	Biomassa renovável e o futuro da indústria quÃmica. Quimica Nova, 2008, 31, 1923-1923.	0.3	3
197	A importância das revistas QuÃmica Nova e Journal of the Brazilian Chemical Society no crescimento da área de quÃmica no Brasil. Quimica Nova, 2007, 30, 1491-1497.	0.3	2
198	Sociedade, divulgação cientÃfica e jornalismo cientÃfico. Quimica Nova, 2012, 35, 447-447.	0.3	2

#	Article	IF	Citations
199	HÃ; futuro para as revistas das sociedades cientÃficas?. Quimica Nova, 2010, 33, 243-243.	0.3	1
200	É plágio: e da�. Quimica Nova, 2011, 34, 371-371.	0.3	1
201	Gold Nanoparticles and [PEDOT-Poly(D,L-Lactic Acid)] Composite: Synthesis, Characterization and Application to H2O2 Sensing. Journal of the Brazilian Chemical Society, 0, , .	0.6	1
202	Electrodeposition of a Nanostructured Hybrid Copper Hexacyanoferrate/Polypyrrole Film Using Lyotropic Liquid Crystals and Colloidal Particles Templates. Application to H2O2 Detection ECS Transactions, 2007, 11, 7-19.	0.5	0
203	Influence of Anion Chaotropicity on the SO 2 Oxidation Reaction: When Spectator Species Determine the Reaction Pathway. ChemElectroChem, 2020, 7, 1804-1804.	3.4	O
204	Downplaying the role of water in the rheological changes of conducting polymers by using water-in-salt electrolytes. Physical Chemistry Chemical Physics, 2021, 23, 12251-12259.	2.8	0
205	Novidades em QN. Quimica Nova, 2008, 31, 1607-1607.	0.3	0
206	QuÃmica é uma ciência em expansão. Quimica Nova, 2009, 32, 1987-1987.	0.3	0
207	Homenagem da sociedade Brasileira de quÃmica ao professor Hans Viertler. Quimica Nova, 2010, 33, 2013-2013.	0.3	O
208	PaÃs emergente em ciência. Quimica Nova, 2011, 34, 179-180.	0.3	0
209	Diálogos da sociedade sobre a biodiversidade brasileira na Rio+20. Quimica Nova, 2012, 35, 1073-1074.	0.3	O
210	O que esperamos das revistas da SBQ?. Quimica Nova, 2012, 35, 233-234.	0.3	0
211	SYNTHESIS AND CHARACTERIZATION OF MACROPOROUS ORGANIC-INORGANIC COMPOSITES FOR H2O2SENSING. Quimica Nova, 2015, , .	0.3	O