
Toshiro Sato

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1606745/publications.pdf Version: 2024-02-01

Τοςμιρο δάτο

#	Article	IF	CITATIONS
1	Epithelium Replacement Contributes to Field Expansion of Squamous Epithelium and Ulcerative Colitis–Associated Neoplasia. Gastroenterology, 2022, 162, 334-337.e5.	0.6	4
2	Organoid vs In Vivo Mouse Model: Which is Better Research Tool to Understand the Biologic Mechanisms of Intestinal Epithelium?. Cellular and Molecular Gastroenterology and Hepatology, 2022, 13, 195-197.	2.3	11
3	Organoid Medicine for Inflammatory Bowel Disease. Stem Cells, 2022, 40, 123-132.	1.4	12
4	Comprehensive Genomic Profiling of Neuroendocrine Carcinomas of the Gastrointestinal System. Cancer Discovery, 2022, 12, 692-711.	7.7	58
5	Spatiotemporal reprogramming of differentiated cells underlies regeneration and neoplasia in the intestinal epithelium. Nature Communications, 2022, 13, 1500.	5.8	17
6	Organoid screening reveals epigenetic vulnerabilities in human colorectal cancer. Nature Chemical Biology, 2022, 18, 605-614.	3.9	24
7	Cell–matrix interface regulates dormancy in human colon cancer stem cells. Nature, 2022, 608, 784-794.	13.7	60
8	Wnt Signaling Shapes the Histologic Variation in Diffuse Gastric Cancer. Gastroenterology, 2021, 160, 823-830.	0.6	37
9	Somatic cell-derived organoids as prototypes of human epithelial tissues and diseases. Nature Materials, 2021, 20, 156-169.	13.3	105
10	An organoid-based organ-repurposing approach to treat short bowel syndrome. Nature, 2021, 592, 99-104.	13.7	57
11	Building consensus on definition and nomenclature of hepatic, pancreatic, and biliary organoids. Cell Stem Cell, 2021, 28, 816-832.	5.2	133
12	Direct derivation of human alveolospheres for SARS-CoV-2 infection modeling and drug screening. Cell Reports, 2021, 35, 109218.	2.9	38
13	Phenotypic screening system using three-dimensional (3D) culture models for natural product screening. Journal of Antibiotics, 2021, 74, 660-666.	1.0	3
14	Nasal delivery of single-domain antibody improves symptoms of SARS-CoV-2 infection in an animal model. PLoS Pathogens, 2021, 17, e1009542.	2.1	27
15	Rebuttal to: In Vivo Studies Should Take Priority When Defining Mechanisms of Intestinal Crypt Morphogenesis. Cellular and Molecular Gastroenterology and Hepatology, 2021, 13, 5.	2.3	2
16	Differential pre-malignant programs and microenvironment chart distinct paths to malignancy in human colorectal polyps. Cell, 2021, 184, 6262-6280.e26.	13.5	125
17	Chromosome Engineering of Human Colon-Derived Organoids to Develop a Model of Traditional Serrated Adenoma. Gastroenterology, 2020, 158, 638-651.e8.	0.6	55
18	Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature, 2020, 577, 254-259.	13.7	202

#	Article	IF	CITATIONS
19	Linking human intestinal scaffolds and organoids to combat intestinal failure. Nature Medicine, 2020, 26, 1517-1518.	15.2	4
20	Regulated IFN signalling preserves the stemness of intestinal stem cells by restricting differentiation into secretory-cell lineages. Nature Cell Biology, 2020, 22, 919-926.	4.6	21
21	LSD1 represses a neonatal/reparative gene program in adult intestinal epithelium. Science Advances, 2020, 6, .	4.7	18
22	An Organoid Biobank of Neuroendocrine Neoplasms Enables Genotype-Phenotype Mapping. Cell, 2020, 183, 1420-1435.e21.	13.5	111
23	Development of a Scalable Coculture System for Gut Anaerobes and Human Colon Epithelium. Gastroenterology, 2020, 159, 388-390.e5.	0.6	55
24	Organoid Derivation and Orthotopic Xenotransplantation for Studying Human Intestinal Stem Cell Dynamics. Methods in Molecular Biology, 2020, 2171, 303-320.	0.4	6
25	Characterization of radioresistant epithelial stem cell heterogeneity in the damaged mouse intestine. Scientific Reports, 2020, 10, 8308.	1.6	17
26	Cnnm4 deficiency suppresses Ca2+ signaling and promotes cell proliferation in the colon epithelia. Oncogene, 2019, 38, 3962-3969.	2.6	13
27	Interleukinâ€13 and its signaling pathway is associated with obesityâ€related colorectal tumorigenesis. Cancer Science, 2019, 110, 2156-2165.	1.7	24
28	Modeling Human Digestive Diseases With CRISPR-Cas9–Modified Organoids. Gastroenterology, 2019, 156, 562-576.	0.6	104
29	Gut pathobionts underlie intestinal barrier dysfunction and liver T helper 17 cell immune response in primary sclerosing cholangitis. Nature Microbiology, 2019, 4, 492-503.	5.9	270
30	Gastroenteropancreatic neuroendocrine neoplasms: genes, therapies and models. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	39
31	Induction of differentiation of intrahepatic cholangiocarcinoma cells to functional hepatocytes using an organoid culture system. Scientific Reports, 2018, 8, 2821.	1.6	30
32	Development of intestinal M cells and follicle-associated epithelium is regulated by TRAF6-mediated NF-κB signaling. Journal of Experimental Medicine, 2018, 215, 501-519.	4.2	69
33	Human Pancreatic Tumor Organoids Reveal Loss of Stem Cell Niche Factor Dependence during Disease Progression. Cell Stem Cell, 2018, 22, 454-467.e6.	5.2	426
34	Reconstruction of the Human Colon Epithelium InÂVivo. Cell Stem Cell, 2018, 22, 171-176.e5.	5.2	146
35	Lectin ZG16p inhibits proliferation of human colorectal cancer cells via its carbohydrate-binding sites. Clycobiology, 2018, 28, 21-31.	1.3	9
36	Expansion of Adult Human Pancreatic Tissue Yields Organoids Harboring Progenitor Cells with Endocrine Differentiation Potential. Stem Cell Reports, 2018, 10, 712-724.	2.3	106

#	Article	IF	CITATIONS
37	Human Intestinal Organoids Maintain Self-Renewal Capacity and Cellular Diversity in Niche-Inspired Culture Condition. Cell Stem Cell, 2018, 23, 787-793.e6.	5.2	334
38	Divergent Routes toward Wnt and R-spondin Niche Independency during Human Gastric Carcinogenesis. Cell, 2018, 174, 856-869.e17.	13.5	222
39	Advancing Intestinal Organoid Technology Toward RegenerativeÂMedicine. Cellular and Molecular Gastroenterology and Hepatology, 2018, 5, 51-60.	2.3	94
40	Cell competition with normal epithelial cells promotes apical extrusion of transformed cells through metabolicÂchanges. Nature Cell Biology, 2017, 19, 530-541.	4.6	172
41	IL-22BP dictates characteristics of Peyer's patch follicle-associated epithelium for antigen uptake. Journal of Experimental Medicine, 2017, 214, 1607-1618.	4.2	51
42	Establishment of 3D Intestinal Organoid Cultures from Intestinal Stem Cells. Methods in Molecular Biology, 2017, 1612, 97-105.	0.4	48
43	Visualization and targeting of LGR5+ human colon cancer stem cells. Nature, 2017, 545, 187-192.	13.7	544
44	Intestinal Dysbiosis and Biotin Deprivation Induce Alopecia through Overgrowth of Lactobacillus murinus in Mice. Cell Reports, 2017, 20, 1513-1524.	2.9	93
45	Intestinal Epithelial Lgr5 + Stem Cell Niche andÂOrganoids. , 2017, , 111-125.		1
46	Defining the role of Lgr5+ stem cells in colorectal cancer: from basic research to clinical applications. Genome Medicine, 2017, 9, 66.	3.6	11
47	Active and water-soluble form of lipidated Wnt protein is maintained by a serum glycoprotein afamin/Î \pm -albumin. ELife, 2016, 5, .	2.8	144
48	Inhibition of DNA Methylation Suppresses Intestinal Tumor Organoids by Inducing an Anti-Viral Response. Scientific Reports, 2016, 6, 25311.	1.6	23
49	SETD7 Controls Intestinal Regeneration and Tumorigenesis by Regulating Wnt/β-Catenin and Hippo/YAP Signaling. Developmental Cell, 2016, 37, 47-57.	3.1	87
50	A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. Cell Stem Cell, 2016, 18, 827-838.	5.2	593
51	Mule Regulates the Intestinal Stem Cell Niche via the Wnt Pathway and Targets EphB3 for Proteasomal and Lysosomal Degradation. Cell Stem Cell, 2016, 19, 205-216.	5.2	21
52	Tissue-specific mutation accumulation in human adult stem cells during life. Nature, 2016, 538, 260-264.	13.7	759
53	Dephosphorylated parafibromin is a transcriptional coactivator of the Wnt/Hedgehog/Notch pathways. Nature Communications, 2016, 7, 12887.	5.8	45
54	EHBP1L1 coordinates Rab8 and Bin1 to regulate apical-directed transport in polarized epithelial cells. Journal of Cell Biology, 2016, 212, 297-306.	2.3	44

#	Article	IF	CITATIONS
55	Zinc Transporter SLC39A7/ZIP7 Promotes Intestinal Epithelial Self-Renewal by Resolving ER Stress. PLoS Genetics, 2016, 12, e1006349.	1.5	80
56	<i>Ink4a/Arf</i> -Dependent Loss of Parietal Cells Induced by Oxidative Stress Promotes CD44-Dependent Gastric Tumorigenesis. Cancer Prevention Research, 2015, 8, 492-501.	0.7	12
57	An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium. Integrative Biology (United Kingdom), 2015, 7, 213-228.	0.6	33
58	Suppressing TGFÎ ² Signaling in Regenerating Epithelia in an Inflammatory Microenvironment Is Sufficient to Cause Invasive Intestinal Cancer. Cancer Research, 2015, 75, 766-776.	0.4	80
59	Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nature Medicine, 2015, 21, 256-262.	15.2	887
60	SnapShot: Growing Organoids from Stem Cells. Cell, 2015, 161, 1700-1700.e1.	13.5	123
61	Back to 2D Culture for Ground State of Intestinal Stem Cells. Cell Stem Cell, 2015, 17, 5-7.	5.2	5
62	Combination Therapy with Infliximab and Thiopurine Compared to Infliximab Monotherapy in Maintaining Remission of Postoperative Crohn's Disease. Digestion, 2015, 91, 233-238.	1.2	12
63	Mini-Gut Organoids: Reconstitution of the Stem Cell Niche. Annual Review of Cell and Developmental Biology, 2015, 31, 269-289.	4.0	162
64	Efficient genetic engineering of human intestinal organoids using electroporation. Nature Protocols, 2015, 10, 1474-1485.	5.5	260
65	Intestinal Tumor in a Dish. Frontiers in Medicine, 2014, 1, 14.	1.2	21
66	KLF5 Regulates the Integrity and Oncogenicity of Intestinal Stem Cells. Cancer Research, 2014, 74, 2882-2891.	0.4	66
67	Macrophages and Dendritic Cells Emerge in the Liver during Intestinal Inflammation and Predispose the Liver to Inflammation. PLoS ONE, 2014, 9, e84619.	1.1	18
68	Culturing intestinal stem cells: applications for colorectal cancer research. Frontiers in Genetics, 2014, 5, 169.	1.1	8
69	Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2. Nature Communications, 2014, 5, 5728.	5.8	90
70	Cross-talk Between RORγt+ Innate Lymphoid Cells and Intestinal Macrophages Induces Mucosal IL-22 Production in Crohn's Disease. Inflammatory Bowel Diseases, 2014, 20, 1426-1434.	0.9	53
71	Continuous low-dose irradiation by I-125 seeds induces apoptosis of gastric cancer cells regardless of histological origin. Cancer Biology and Therapy, 2014, 15, 81-88.	1.5	6
72	Classical Th1 Cells Obtain Colitogenicity by Co-existence of RORÎ ³ t-expressing T Cells in Experimental Colitis. Inflammatory Bowel Diseases, 2014, 20, 1820-1827.	0.9	4

#	Article	IF	CITATIONS
73	Dendritic cells administered intrarectally penetrate the intestinal barrier to break intestinal tolerance via Th2-medeiated colitis in mice. Immunology Letters, 2013, 150, 123-129.	1.1	0
74	Growing Self-Organizing Mini-Guts from a Single Intestinal Stem Cell: Mechanism and Applications. Science, 2013, 340, 1190-1194.	6.0	954
75	Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO Journal, 2013, 32, 2708-2721.	3.5	562
76	Mucosal healing with oral tacrolimus is associated with favorable medium- and long-term prognosis in steroid-refractory/dependent ulcerative colitis patients. Journal of Crohn's and Colitis, 2013, 7, e609-e614.	0.6	47
77	In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature, 2013, 494, 247-250.	13.7	1,239
78	A Single Strain of Clostridium butyricum Induces Intestinal IL-10-Producing Macrophages to Suppress Acute Experimental Colitis in Mice. Cell Host and Microbe, 2013, 13, 711-722.	5.1	241
79	Establishment of Gastrointestinal Epithelial Organoids. Current Protocols in Mouse Biology, 2013, 3, 217-240.	1.2	253
80	<scp>TGR</scp> 5 signalling inhibits the production of proâ€inflammatory cytokines by <i>in vitro</i> differentiated inflammatory and intestinal macrophages in Crohn's disease. Immunology, 2013, 139, 19-29.	2.0	156
81	Establishment of Novel Prediction System of Intestinal Absorption in Humans Using Human Intestinal Tissues. Journal of Pharmaceutical Sciences, 2013, 102, 2564-2571.	1.6	29
82	IL-22-Producing RORγt-Dependent Innate Lymphoid Cells Play a Novel Protective Role in Murine Acute Hepatitis. PLoS ONE, 2013, 8, e62853.	1.1	30
83	Cdx2 determines the fate of postnatal intestinal endoderm. Development (Cambridge), 2012, 139, 465-474.	1.2	85
84	Dysregulated balance of retinoid-related orphan receptor Î ³ t-dependent innate lymphoid cells is involved in the pathogenesis of chronic DSS-induced colitis. Biochemical and Biophysical Research Communications, 2012, 427, 694-700.	1.0	16
85	Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nature Cell Biology, 2012, 14, 1099-1104.	4.6	647
86	CCR9+ macrophages are required for eradication of peritoneal bacterial infections and prevention of polymicrobial sepsis. Immunology Letters, 2012, 147, 75-79.	1.1	6
87	Primary Mouse Small Intestinal Epithelial Cell Cultures. Methods in Molecular Biology, 2012, 945, 319-328.	0.4	215
88	Controlled gene expression in primary Lgr5 organoid cultures. Nature Methods, 2012, 9, 81-83.	9.0	295
89	Functional engraftment of colon epithelium expanded in vitro from a single adult Lgr5+ stem cell. Nature Medicine, 2012, 18, 618-623.	15.2	681
90	The use of infliximab in the prevention of postsurgical recurrence in polysurgery Crohn's disease patients: a pilot open-labeled prospective study. International Journal of Colorectal Disease, 2012, 27, 947-952.	1.0	20

#	Article	IF	CITATIONS
91	On the biomechanics of stem cell niche formation in the gut – modelling growing organoids. FEBS Journal, 2012, 279, 3475-3487.	2.2	83
92	Intermittent Granulocyte and Monocyte Apheresis Versus Mercaptopurine for Maintaining Remission of Ulcerative Colitis: A Pilot Study. Therapeutic Apheresis and Dialysis, 2012, 16, 213-218.	0.4	11
93	Novel intestinal stem cell culture system. Inflammation and Regeneration, 2012, 32, 043-047.	1.5	4
94	Long-term Expansion of Epithelial Organoids From Human Colon, Adenoma, Adenocarcinoma, and Barrett's Epithelium. Gastroenterology, 2011, 141, 1762-1772.	0.6	2,835
95	Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature, 2011, 469, 415-418.	13.7	2,054
96	Isolation and in vitro expansion of human colonic stem cells. Nature Medicine, 2011, 17, 1225-1227.	15.2	616
97	PS18 - 88. Expansion of human beta cell progenitors using a three-dimensional culture system. Nederlands Tijdschrift Voor Diabetologie, 2011, 9, 151-152.	0.0	0
98	Intestinal Crypt Homeostasis Results from Neutral Competition between Symmetrically Dividing Lgr5 Stem Cells. Cell, 2010, 143, 134-144.	13.5	1,679
99	Lgr5+ve Stem Cells Drive Self-Renewal in the Stomach and Build Long-Lived Gastric Units In Vitro. Cell Stem Cell, 2010, 6, 25-36.	5.2	1,315
100	Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature, 2009, 459, 262-265.	13.7	5,339
101	Granulocyte and Monocyte Adsorption Apheresis Therapy Modulates Monocyteâ€Derived Dendritic Cell Function in Patients With Ulcerative Colitis. Therapeutic Apheresis and Dialysis, 2009, 13, 138-146.	0.4	14
102	Th1/Th17 Immune Response Is Induced by Mesenteric Lymph Node Dendritic Cells in Crohn's Disease. Gastroenterology, 2009, 137, 1736-1745.	0.6	211
103	A pilot open-labeled prospective randomized study between weekly and intensive treatment of granulocyte and monocyte adsorption apheresis for active ulcerative colitis. Journal of Gastroenterology, 2008, 43, 51-56.	2.3	34
104	Current View: Intestinal Stem Cells and Signaling. Gastroenterology, 2008, 134, 849-864.	0.6	365
105	Unique CD14+ intestinal macrophages contribute to the pathogenesis of Crohn disease via IL-23/IFN-Î ³ axis. Journal of Clinical Investigation, 2008, 118, 2269-80.	3.9	559
106	Cytomegalovirus Is Frequently Reactivated and Disappears Without Antiviral Agents in Ulcerative Colitis Patients. American Journal of Gastroenterology, 2007, 102, 331-337.	0.2	183
107	Lamina Propria c-kit+ Immune Precursors Reside in Human Adult Intestine and Differentiate Into Natural Killer Cells. Gastroenterology, 2007, 133, 559-573.	0.6	77
108	PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nature Genetics, 2007, 39, 189-198.	9.4	391

#	Article	IF	CITATIONS
109	Inhibition of neutrophil elastase prevents the development of murine dextran sulfate sodium-induced colitis. Journal of Gastroenterology, 2006, 41, 318-324.	2.3	67
110	Nonpathogenic Escherichia coli Strain Nissle1917 Prevents Murine Acute and Chronic Colitis. Inflammatory Bowel Diseases, 2005, 11, 455-463.	0.9	62
111	Osteopontin/Eta-1 upregulated in Crohn's disease regulates the Th1 immune response. Gut, 2005, 54, 1254-1262.	6.1	113
112	Abnormally Differentiated Subsets of Intestinal Macrophage Play a Key Role in Th1-Dominant Chronic Colitis through Excess Production of IL-12 and IL-23 in Response to Bacteria. Journal of Immunology, 2005, 175, 6900-6908.	0.4	192
113	Dysregulated Immune Response in Mesenteric Lymph Nodes of Crohn's Disease. American Journal of Gastroenterology, 2005, 100, S321.	0.2	1
114	T-bet upregulation and subsequent interleukin 12 stimulation are essential for induction of Th1 mediated immunopathology in Crohn's disease. Gut, 2004, 53, 1303-1308.	6.1	125
115	Human intestinal epithelial cell-derived interleukin (IL)-18, along with IL-2, IL-7 and IL-15, is a potent synergistic factor for the proliferation of intraepithelial lymphocytes. Clinical and Experimental Immunology, 2004, 136, 269-276.	1.1	52
116	Hyperexpression of inducible costimulator and its contribution on lamina propria T cells in inflammatory bowel disease. Gastroenterology, 2004, 126, 829-839.	0.6	52
117	Contrasting Action of IL-12 and IL-18 in the Development of Dextran Sodium Sulphate Colitis in Mice. Scandinavian Journal of Gastroenterology, 2003, 38, 837-844.	0.6	142
118	Restricted VH Gene Usage in Lamina Propria B Cells Producing Anticolon Antibody From Patients With Ulcerative Colitis. Gastroenterology, 2001, 121, 15-23.	0.6	19
119	Macrophage-derived IL-18–mediated intestinal inflammation in the murine model of Crohn's disease. Gastroenterology, 2001, 121, 875-888.	0.6	182
120	Interleukin-18 and Crohn's Disease. Digestion, 2001, 63, 37-42.	1.2	29
121	A case of ileal anisakiasis removed by colonoscopy. Progress of Digestive Endoscopy, 2001, 58, 112-113.	0.0	1
122	Macrophage-derived IL-18 mediated colitis in the murine model of Crohn's disease. Gastroenterology, 2000, 118, A110.	0.6	0
123	The role of IL-18 on the pathogenesis of Crohn's disease. Japanese Journal of Clinical Immunology, 2000, 23, 607-610.	0.0	Ο
124	Contribution of the cAMPâ€Ðependent Signal Pathway to Circadian Synchrony of Motility and Resting Membrane Potential in <i>Paramecium</i> . Photochemistry and Photobiology, 1998, 67, 256-262.	1.3	0
125	Mathematical model of cardiovascular mechanics for diagnostic analysis and treatment of heart failure: Part 1 model description and theoretical analysis. Medical and Biological Engineering and Computing, 1994, 32, 3-11.	1.6	27
126	Mathematical model of cardiovascular mechanics for diagnostic analysis and treatment of heart failure: Part 2 analysis of vasodilator therapy and planning of optimal drug therapy. Medical and Biological Engineering and Computing, 1994, 32, 12-18.	1.6	10

#	Article	IF	CITATIONS
127	Reentrant arrhythmias generated by a computer-based model of the modulated parasystole in an open-chest dog International Heart Journal, 1989, 30, 885-894.	0.6	2
128	Comparison of the effects of calcium channel blockers and antiarrhythmic drugs on digitalis-induced oscillatory afterpotentials on canine purkinje fiber International Heart Journal, 1987, 28, 719-735.	0.6	0
129	Computer assisted instruction for therapy of heart failure based on simulation of cardiovascular system. ACM SIGBIO Newsletter, 1987, 9, 57-61.	0.1	1
130	Difference equation model of the entrainment of myocardial pacemaker cells based on the phase response curve. Biological Cybernetics, 1981, 42, 117-128.	0.6	21
131	Hemodynamic Parameters of the Isolated Dog Kidney as Determined by a Frequency Response Method. The Japanese Journal of Physiology, 1980, 30, 393-413.	0.9	2
132	Estimation of Body Water and Salt Contents from Plasma Sodium, Protein Concentrations, and Hematocrit. International Heart Journal, 1979, 20, 853-866.	0.6	2
133	A CRITICAL STUDY OF HAMILTON-STEWART'S PRINCIPLE FOR THE ANALYSIS OF HEMODYNAMICS. The Japanese Journal of Physiology, 1963, 13, 260-286.	0.9	2
134	Balneotherapy for Hypertension with Special Reference to the Factor Analysis of the Effects of Spa Treatment on Hypertensive Patients. International Heart Journal, 1960, 1, 361-374.	0.6	0