James Durrant

List of Publications by Citations

Source: https://exaly.com/author-pdf/1606717/james-durrant-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

56,085 128 219 503 h-index g-index citations papers 11.6 61,127 7.87 589 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
503	A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. <i>Nature Materials</i> , 2006 , 5, 197-203	27	2097
502	Charge photogeneration in organic solar cells. <i>Chemical Reviews</i> , 2010 , 110, 6736-67	68.1	1760
501	Artificial photosynthesis for solar water-splitting. <i>Nature Photonics</i> , 2012 , 6, 511-518	33.9	1484
500	Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. <i>Journal of the American Chemical Society</i> , 2003 , 125, 475-82	16.4	967
499	High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. <i>Nature Communications</i> , 2016 , 7, 11585	17.4	903
498	Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. <i>Journal of the American Chemical Society</i> , 2011 , 133, 3272-5	16.4	809
497	Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. <i>Nature Materials</i> , 2017 , 16, 363-369	27	807
496	Mechanism of photocatalytic water splitting in TiO2. Reaction of water with photoholes, importance of charge carrier dynamics, and evidence for four-hole chemistry. <i>Journal of the American Chemical Society</i> , 2008 , 130, 13885-91	16.4	743
495	Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 20056-20062		736
494	Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. <i>Energy and Environmental Science</i> , 2016 , 9, 1655-1660	35.4	621
493	Degradation of organic solar cells due to air exposure. <i>Solar Energy Materials and Solar Cells</i> , 2006 , 90, 3520-3530	6.4	593
492	Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 538-547	3.4	582
491	Charge carrier formation in polythiophene/fullerene blend films studied by transient absorption spectroscopy. <i>Journal of the American Chemical Society</i> , 2008 , 130, 3030-42	16.4	576
490	Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. <i>Applied Physics Letters</i> , 2005 , 86, 063502	3.4	543
489	Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2009 , 131, 4808-18	16.4	534
488	Electron Transfer Dynamics in Dye-Sensitized Solar Cells. <i>Chemistry of Materials</i> , 2011 , 23, 3381-3399	9.6	525
487	Hybrid polymer/zinc oxide photovoltaic devices with vertically oriented ZnO nanorods and an amphiphilic molecular interface layer. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 7635-9	3.4	492

(2014-2007)

486	Nanocrystalline dye-sensitized solar cells having maximum performance. <i>Progress in Photovoltaics: Research and Applications</i> , 2007 , 15, 1-18	6.8	479
485	The role of cobalt phosphate in enhancing the photocatalytic activity of Fe2O3 toward water oxidation. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14868-71	16.4	477
484	Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. <i>Journal of the American Chemical Society</i> , 2005 , 127, 3456-62	16.4	456
483	Influence of the TiCl4 Treatment on Nanocrystalline TiO2 Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 14001-14010	3.8	444
482	Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell. <i>Applied Physics Letters</i> , 2008 , 92, 093311	3.4	428
481	Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. <i>Energy and Environmental Science</i> , 2016 , 9, 3783-3793	35.4	425
480	Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. <i>Accounts of Chemical Research</i> , 2009 , 42, 1799-808	24.3	415
479	A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. <i>Journal of the American Chemical Society</i> , 2015 , 137, 898-904	16.4	407
47 ⁸	Electron Injection and Recombination in Dye Sensitized Nanocrystalline Titanium Dioxide Films: A Comparison of Ruthenium Bipyridyl and Porphyrin Sensitizer Dyes. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 1198-1205	3.4	401
477	Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. <i>Chemical Science</i> , 2012 , 3, 485-492	9.4	391
476	Charge transport versus recombination in dye-sensitized solar cells employing nanocrystalline TiO2 and SnO2 films. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 12525-33	3.4	365
475	Bimolecular recombination losses in polythiophene: Fullerene solar cells. <i>Physical Review B</i> , 2008 , 78,	3.3	364
474	Dynamics of photogenerated holes in surface modified Fe2O3 photoanodes for solar water splitting. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 156	5 4 6-₹	362
473	Charge carrier trapping, recombination and transfer in hematite (Fe2O3) water splitting photoanodes. <i>Chemical Science</i> , 2013 , 4, 2724	9.4	362
472	Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. <i>Physical Review B</i> , 2001 , 63,	3.3	357
471	Recombination dynamics as a key determinant of open circuit voltage in organic bulk heterojunction solar cells: a comparison of four different donor polymers. <i>Advanced Materials</i> , 2010 , 22, 4987-92	24	343
470	Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte. <i>Advanced Materials</i> , 2001 , 13, 826-830	24	338
469	Back electron-hole recombination in hematite photoanodes for water splitting. <i>Journal of the American Chemical Society</i> , 2014 , 136, 2564-74	16.4	329

468	Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. <i>Nature Energy</i> , 2019 , 4, 746-760	62.3	326
467	Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 1745-1749	3.4	309
466	Time-Resolved Spectroscopic Investigation of Charge Trapping in Carbon Nitrides Photocatalysts for Hydrogen Generation. <i>Journal of the American Chemical Society</i> , 2017 , 139, 5216-5224	16.4	307
465	Molecular control of recombination dynamics in dye-sensitized nanocrystalline TiO2 films: free energy vs distance dependence. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5225-33	16.4	305
464	Solution-Processed Organic Solar Cells. MRS Bulletin, 2008, 33, 670-675	3.2	303
463	Reversible colorimetric probes for mercury sensing. <i>Journal of the American Chemical Society</i> , 2005 , 127, 12351-6	16.4	298
462	Catalysis of recombination and its limitation on open circuit voltage for dye sensitized photovoltaic cells using phthalocyanine dyes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 2906-7	16.4	296
461	Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. <i>Chemical Society Reviews</i> , 2013 , 42, 2281-93	58.5	260
460	Dynamics of photogenerated holes in undoped BiVO4 photoanodes for solar water oxidation. <i>Chemical Science</i> , 2014 , 5, 2964-2973	9.4	253
459	Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends. <i>Advanced Functional Materials</i> , 2008 , 18, 4029-4	1035 ⁶	247
458	Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. <i>Journal of Electroanalytical Chemistry</i> , 2001 , 517, 20-27	4.1	246
457	Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2088		244
456	Charge-density-based analysis of the current-voltage response of polythiophene/fullerene photovoltaic devices. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 16448-52	11.5	243
455	Alkyl chain barriers for kinetic optimization in dye-sensitized solar cells. <i>Journal of the American Chemical Society</i> , 2006 , 128, 16376-83	16.4	243
454	Dye Dependent Regeneration Dynamics in Dye Sensitized Nanocrystalline Solar Cells: Evidence for the Formation of a Ruthenium Bipyridyl Cation/Iodide Intermediate. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 6561-6567	3.8	241
453	Towards optimisation of electron transfer processes in dye sensitised solar cells. <i>Coordination Chemistry Reviews</i> , 2004 , 248, 1247-1257	23.2	239
452	Dye-sensitised semiconductors modified with molecular catalysts for light-driven H2 production. <i>Chemical Society Reviews</i> , 2016 , 45, 9-23	58.5	238
45 ¹	Dynamics of photogenerated holes in nanocrystalline Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. <i>Chemical Communications</i> , 2011 , 47, 716-8	5.8	234

(2009-1995)

450	A multimer model for P680, the primary electron donor of photosystem II. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1995 , 92, 4798-802	11.5	232
449	A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. <i>Science</i> , 2020 , 369, 96-102	33.3	231
448	Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. <i>Chemical Communications</i> , 2002 , 1464-5	5.8	229
447	Activation energies for the rate-limiting step in water photooxidation by nanostructured Fe2O3 and TiO2. <i>Journal of the American Chemical Society</i> , 2011 , 133, 10134-40	16.4	225
446	Ambipolar Charge Transport in Films of Methanofullerene and Poly(phenylenevinylene)/Methanofullerene Blends. <i>Advanced Functional Materials</i> , 2005 , 15, 1171-1182	15.6	220
445	Structure/function relationships in dyes for solar energy conversion: a two-atom change in dye structure and the mechanism for its effect on cell voltage. <i>Journal of the American Chemical Society</i> , 2009 , 131, 3541-8	16.4	218
444	Insights from Transient Optoelectronic Analyses on the Open-Circuit Voltage of Organic Solar Cells. Journal of Physical Chemistry Letters, 2012 , 3, 1465-78	6.4	216
443	Supermolecular control of charge transfer in dye-sensitized nanocrystalline TiO2 films: towards a quantitative structure-function relationship. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 5740-4	4 ^{16.4}	216
442	Water Splitting by Nanocrystalline TiO2 in a Complete Photoelectrochemical Cell Exhibits Efficiencies Limited by Charge Recombination. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 4208-4214	3.8	212
441	Organic Photovoltaic Devices Based on Blends of Regioregular Poly(3-hexylthiophene) and Poly(9,9-dioctylfluorene-co-benzothiadiazole). <i>Chemistry of Materials</i> , 2004 , 16, 4812-4818	9.6	211
440	Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride-Molecular Ni Catalyst System. <i>Journal of the American Chemical Society</i> , 2016 , 138, 9183-92	16.4	210
439	Supramolecular control of charge-transfer dynamics on dye-sensitized nanocrystalline TiO2 films. <i>Chemistry - A European Journal</i> , 2004 , 10, 595-602	4.8	210
438	Rate law analysis of water oxidation on a hematite surface. <i>Journal of the American Chemical Society</i> , 2015 , 137, 6629-37	16.4	208
437	Iodide Electron Transfer Kinetics in Dye-Sensitized Nanocrystalline TiO2 Films. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 12203-12210	3.4	206
436	Ultrafast charge carrier recombination and trapping in hematite photoanodes under applied bias. <i>Journal of the American Chemical Society</i> , 2014 , 136, 9854-7	16.4	204
435	Materials Design Considerations for Charge Generation in Organic Solar Cells. <i>Chemistry of Materials</i> , 2014 , 26, 616-630	9.6	202
434	Versatile photocatalytic systems for H2 generation in water based on an efficient DuBois-type nickel catalyst. <i>Journal of the American Chemical Society</i> , 2014 , 136, 356-66	16.4	199
433	Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1126-1	- 136	198

432	Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 17155-60	3.4	197
431	Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. <i>Energy and Environmental Science</i> , 2014 , 7, 435-441	35.4	194
430	Synthesis, structure, and properties of [Pt(II)(diimine)(dithiolate)] dyes with 3,3'-, 4,4'-, and 5,5'-disubstituted bipyridyl: applications in dye-sensitized solar cells. <i>Inorganic Chemistry</i> , 2005 , 44, 242-	5 50 ¹	193
429	Quantification of geminate and non-geminate recombination losses within a solution-processed small-molecule bulk heterojunction solar cell. <i>Advanced Materials</i> , 2012 , 24, 2135-41	24	192
428	Charge Recombination in Conjugated Polymer/Fullerene Blended Films Studied by Transient Absorption Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 1567-1573	3.4	190
427	Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: Analysis of the origin of the device dark current. <i>Applied Physics Letters</i> , 2008 , 93, 183501	3.4	182
426	Quantifying Regeneration in Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 2439	-3.\$47	179
425	The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. <i>Journal of Applied Physics</i> , 2004 , 96, 6903-6907	2.5	179
424	Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature. <i>Applied Physics Letters</i> , 2002 , 81, 3001-3003	3.4	179
423	Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells. <i>Journal of the American Chemical Society</i> , 1999 , 121, 7445-7446	16.4	179
422	Optical dynamics of excitons in J aggregates of a carbocyanine dye. <i>Journal of Chemical Physics</i> , 1995 , 102, 6362-6370	3.9	179
421	On the Differences between Dark and Light Ideality Factor in Polymer:Fullerene Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 2371-2376	6.4	178
420	Engineering of a novel ruthenium sensitizer and its application in dye-sensitized solar cells for conversion of sunlight into electricity. <i>Inorganic Chemistry</i> , 2005 , 44, 178-80	5.1	178
419	Protein Adsorption on Nanocrystalline TiO(2) Films: An Immobilization Strategy for Bioanalytical Devices. <i>Analytical Chemistry</i> , 1998 , 70, 5111-3	7.8	178
418	Composition and annealing effects in polythiophene/fullerene solar cells. <i>Journal of Materials Science</i> , 2005 , 40, 1371-1376	4.3	177
417	Effects of Side Chains on Thiazolothiazole-Based Copolymer Semiconductors for High Performance Solar Cells. <i>Advanced Energy Materials</i> , 2011 , 1, 854-860	21.8	174
416	Direct Electrochemistry and Nitric Oxide Interaction of Heme Proteins Adsorbed on Nanocrystalline Tin Oxide Electrodes. <i>Langmuir</i> , 2003 , 19, 6894-6900	4	172
415	Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. <i>Energy and Environmental Science</i> , 2012 , 5, 6304-6312	35.4	171

[2006-2004]

414	Hybrid nanocrystalline TiO2 solar cells with a fluorene t hiophene copolymer as a sensitizer and hole conductor. <i>Journal of Applied Physics</i> , 2004 , 95, 1473-1480	2.5	171
413	Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. <i>Nature Materials</i> , 2020 , 19, 559-565	27	171
412	Silaindacenodithiophene-Based Low Band Gap Polymers IThe Effect of Fluorine Substitution on Device Performances and Film Morphologies. <i>Advanced Functional Materials</i> , 2012 , 22, 1663-1670	15.6	170
411	Factors that Affect Protein Adsorption on Nanostructured Titania Films. A Novel Spectroelectrochemical Application to Sensing. <i>Langmuir</i> , 2001 , 17, 7899-7906	4	164
410	Cyanide sensing with organic dyes: studies in solution and on nanostructured Al2O3 surfaces. <i>Chemistry - A European Journal</i> , 2008 , 14, 3006-12	4.8	163
409	Modulation of the Rate of Electron Injection in Dye-Sensitized Nanocrystalline TiO2Films by Externally Applied Bias. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7424-7431	3.4	162
408	Light-driven oxygen scavenging by titania/polymer nanocomposite films. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2004 , 162, 253-259	4.7	161
407	On the energetic dependence of charge separation in low-band-gap polymer/fullerene blends. <i>Journal of the American Chemical Society</i> , 2012 , 134, 18189-92	16.4	160
406	Enhancing Light Absorption and Charge Transfer Efficiency in Carbon Dots through Graphitization and Core Nitrogen Doping. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 6459-6463	16.4	156
405	Multistep electron transfer processes on dye co-sensitized nanocrystalline TiO2 films. <i>Journal of the American Chemical Society</i> , 2004 , 126, 5670-1	16.4	155
404	The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells. <i>Advanced Functional Materials</i> , 2005 , 15, 609-618	15.6	153
403	Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. <i>Nature Communications</i> , 2018 , 9, 4968	17.4	153
402	Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2007 , 17, 3037-3044		152
401	On the role of intermixed phases in organic photovoltaic blends. <i>Energy and Environmental Science</i> , 2013 , 6, 2756	35.4	150
400	Heterogeneous colorimetric sensor for mercuric salts. <i>Chemical Communications</i> , 2004 , 362-3	5.8	150
399	Electron Transfer Dynamics in Dye Sensitized Nanocrystalline Solar Cells Using a Polymer Electrolyte. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 7517-7524	3.4	148
398	Effect of hydrocarbon chain length of amphiphilic ruthenium dyes on solid-state dye-sensitized photovoltaics. <i>Nano Letters</i> , 2005 , 5, 1315-20	11.5	146
397	Photochemical energy conversion: from molecular dyads to solar cells. <i>Chemical Communications</i> , 2006 , 3279-89	5.8	146

396	Measurement of Charge-Density Dependence of Carrier Mobility in an Organic Semiconductor Blend. <i>Advanced Functional Materials</i> , 2010 , 20, 698-702	15.6	145
395	A photophysical study of PCBM thin films. <i>Chemical Physics Letters</i> , 2007 , 445, 276-280	2.5	144
394	Organic photovoltaic cells [promising indoor light harvesters for self-sustainable electronics. Journal of Materials Chemistry A, 2018 , 6, 5618-5626	13	143
393	Transient Absorption Studies of Bimolecular Recombination Dynamics in Polythiophene/Fullerene Blend Films. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20934-20941	3.8	142
392	Transient Optoelectronic Analysis of Charge Carrier Losses in a Selenophene/Fullerene Blend Solar Cell. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 5947-5957	3.8	141
391	Recombination in Annealed and Nonannealed Polythiophene/Fullerene Solar Cells: Transient Photovoltage Studies versus Numerical Modeling. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 1432-1	43 .4	141
390	Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination. <i>Nature Communications</i> , 2018 , 9, 2059	17.4	141
389	Charge Photogeneration for a Series of Thiazolo-Thiazole Donor Polymers Blended with the Fullerene Electron Acceptors PCBM and ICBA. <i>Advanced Functional Materials</i> , 2013 , 23, 3286-3298	15.6	140
388	Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. <i>Chemical Communications</i> , 2016 , 52, 10008-11	5.8	139
387	Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM. <i>Advanced Energy Materials</i> , 2014 , 4, 140031	1 ^{21.8}	139
386	An Efficient, "Burn in" Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor. <i>Advanced Materials</i> , 2017 , 29, 1701156	24	138
385	Non-Geminate Recombination as the Primary Determinant of Open-Circuit Voltage in Polythiophene:Fullerene Blend Solar Cells: an Analysis of the Influence of Device Processing Conditions. <i>Advanced Functional Materials</i> , 2011 , 21, 2744-2753	15.6	137
384	Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. <i>Applied Physics Letters</i> , 2003 , 83, 3812-3814	3.4	137
383	State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2 films. <i>Chemical Communications</i> , 2004 , 2112-3	5.8	136
382	Fused dithienogermolodithiophene low band gap polymers for high-performance organic solar cells without processing additives. <i>Journal of the American Chemical Society</i> , 2013 , 135, 2040-3	16.4	135
381	Photoinduced Absorption Spectroscopy of CoPi on BiVO4: The Function of CoPi during Water Oxidation. <i>Advanced Functional Materials</i> , 2016 , 26, 4951-4960	15.6	135
380	Hybrid Solar Cells from a Blend of Poly(3-hexylthiophene) and Ligand-Capped TiO2 Nanorods. <i>Advanced Functional Materials</i> , 2008 , 18, 622-633	15.6	132
379	Dynamics of photogenerated charges in the phosphate modified TiO2 and the enhanced activity for photoelectrochemical water splitting. <i>Energy and Environmental Science</i> , 2012 , 5, 6552	35.4	130

378	Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1801509	21.8	128
377	Charge Carrier Dynamics on Mesoporous WO3 during Water Splitting. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 1900-1903	6.4	128
376	Correlating triplet yield, singlet oxygen generation and photochemical stability in polymer/fullerene blend films. <i>Chemical Communications</i> , 2013 , 49, 1291-3	5.8	125
375	Electron Dynamics in Nanocrystalline ZnO and TiO2Films Probed by Potential Step Chronoamperometry and Transient Absorption Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 7605-7613	3.4	123
374	Is organic photovoltaics promising for indoor applications?. <i>Applied Physics Letters</i> , 2016 , 108, 253301	3.4	122
373	An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. <i>Nano Energy</i> , 2018 , 49, 614-624	17.1	119
372	The influence of polymer purification on photovoltaic device performance of a series of indacenodithiophene donor polymers. <i>Advanced Materials</i> , 2013 , 25, 2029-34	24	119
371	Kinetic Competition in a Coumarin Dye-Sensitized Solar Cell: Injection and Recombination Limitations upon Device Performance. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8054-8061	3.8	119
370	Acceptor energy level control of charge photogeneration in organic donor/acceptor blends. <i>Journal of the American Chemical Society</i> , 2010 , 132, 12919-26	16.4	119
369	Slow electron injection on Ru-Phthalocyanine sensitized TiO2. <i>Journal of the American Chemical Society</i> , 2007 , 129, 9250-1	16.4	119
368	DFT-INDO/S modeling of new high molar extinction coefficient charge-transfer sensitizers for solar cell applications. <i>Inorganic Chemistry</i> , 2006 , 45, 787-97	5.1	118
367	Flexible dye sensitised nanocrystalline semiconductor solar cells. <i>Chemical Communications</i> , 2003 , 3008-	- 9 .8	117
366	Molecular Engineering Using an Anthanthrone Dye for Low-Cost Hole Transport Materials: A Strategy for Dopant-Free, High-Efficiency, and Stable Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1703007	21.8	115
365	Improving the photocatalytic reduction of CO2 to CO through immobilisation of a molecular Re catalyst on TiO2. <i>Chemistry - A European Journal</i> , 2015 , 21, 3746-54	4.8	115
364	Understanding the Reduced Efficiencies of Organic Solar Cells Employing Fullerene Multiadducts as Acceptors. <i>Advanced Energy Materials</i> , 2013 , 3, 744-752	21.8	115
363	Photochemical stability of high efficiency PTB7:PC70BM solar cell blends. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 20189-20195	13	114
362	A thieno[3,2-b][1]benzothiophene isoindigo building block for additive- and annealing-free high-performance polymer solar cells. <i>Advanced Materials</i> , 2015 , 27, 4702-7	24	113
361	Morphological stability and performance of polymer-fullerene solar cells under thermal stress: the impact of photoinduced PC60BM oligomerization. <i>ACS Nano</i> , 2014 , 8, 1297-308	16.7	111

360	Mechanism of O2 Production from Water Splitting: Nature of Charge Carriers in Nitrogen Doped Nanocrystalline TiO2 Films and Factors Limiting O2 Production. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 3143-3150	3.8	111
359	Performance enhancement of fullerene-based solar cells by light processing. <i>Nature Communications</i> , 2013 , 4, 2227	17.4	110
358	Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 209-15	6.4	110
357	Electron Diffusion Length in Mesoporous Nanocrystalline TiO2 Photoelectrodes during Water Oxidation. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 967-972	6.4	109
356	Transient Absorption Spectroscopy of Anatase and Rutile: The Impact of Morphology and Phase on Photocatalytic Activity. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 10439-10447	3.8	107
355	Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 5798-816	3.6	107
354	From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 23361-23377	13	105
353	Electron transfer in dye-sensitised semiconductors modified with molecular cobalt catalysts: photoreduction of aqueous protons. <i>Chemistry - A European Journal</i> , 2012 , 18, 15464-75	4.8	104
352	Comment on Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored RuDye Molecules into Empty Electronic States in a Colloidal Anatase TiO2 Film Journal of Physical Chemistry B, 1998, 102, 3649-3650	3.4	104
351	Subpicosecond equilibration of excitation energy in isolated photosystem II reaction centers. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1992 , 89, 11632-6	11.5	103
350	Efficient suppression of back electron/hole recombination in cobalt phosphate surface-modified undoped bismuth vanadate photoanodes. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 20649-20657	13	101
349	Where Do Photogenerated Holes Go in Anatase:Rutile TiO2? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime. <i>Journal of Physical Chemistry A</i> , 2016 , 120, 715-23	2.8	101
348	Photochemical reduction of oxygen adsorbed to nanocrystalline TiO(2) films: a transient absorption and oxygen scavenging study of different TiO(2) preparations. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 23255-63	3.4	101
347	Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 films. <i>Chemical Communications</i> , 2002 , 1260-1	5.8	101
346	Photochemistry and spectroscopy of a five-chlorophyll reaction center of photosystem II isolated by using a Cu affinity column. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1995 , 92, 2929-33	11.5	101
345	Electron Accumulation Induces Efficiency Bottleneck for Hydrogen Production in Carbon Nitride Photocatalysts. <i>Journal of the American Chemical Society</i> , 2019 , 141, 11219-11229	16.4	100
344	High-rate solar-light photoconversion of CO2 to fuel: controllable transformation from C1 to C2 products. <i>Energy and Environmental Science</i> , 2018 , 11, 3183-3193	35.4	100
343	Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO2. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 7219-7223	13	99

(2009-2003)

342	Preparation and characterisation of novel thick sol-gel titania film photocatalysts. <i>Photochemical and Photobiological Sciences</i> , 2003 , 2, 591-6	4.2	99
341	Dependence of Charge Separation Efficiency on Film Microstructure in Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl-C61 Butyric Acid Methyl Ester Blend Films. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 734-738	6.4	98
340	Local energetic disorder in molecular aggregates probed by the one-exciton to two-exciton transition. <i>Chemical Physics Letters</i> , 1994 , 222, 450-456	2.5	98
339	A new ruthenium polypyridyl dye, TG6, whose performance in dye-sensitized solar cells is surprisingly close to that of N719, the dye to beatlfor 17 years. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4246		96
338	Parameters affecting electron transfer dynamics from semiconductors to molecular catalysts for the photochemical reduction of protons. <i>Energy and Environmental Science</i> , 2013 , 6, 3291	35.4	95
337	Exciton Equilibration Induced by Phonons: Theory and Application to PS II Reaction Centers. Journal of Physical Chemistry B, 1997 , 101, 7205-7210	3.4	95
336	Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO photoreduction. <i>Nature Communications</i> , 2018 , 9, 4986	17.4	94
335	Calculation of activation energies for transport and recombination in mesoporous TiO2/dye/electrolyte filmstaking into account surface charge shifts with temperature. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 8544-7	3.4	93
334	Observation of pheophytin reduction in photosystem two reaction centers using femtosecond transient absorption spectroscopy. <i>Biochemistry</i> , 1992 , 31, 7638-47	3.2	93
333	Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. <i>Nature Chemistry</i> , 2020 , 12, 82-89	17.6	93
332	Observable Hysteresis at Low Temperature in Hysteresis FreeDrganicIhorganic Lead Halide Perovskite Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 3190-3194	6.4	92
331	Multifunctional P-Doped TiO2 Films: A New Approach to Self-Cleaning, Transparent Conducting Oxide Materials. <i>Chemistry of Materials</i> , 2015 , 27, 3234-3242	9.6	92
330	Performance and stability of lead perovskite/TiO2, polymer/PCBM, and dye sensitized solar cells at light intensities up to 70 suns. <i>Advanced Materials</i> , 2014 , 26, 6268-73	24	92
329	Enhanced Open Circuit Voltage and Efficiency of DonorAcceptor Copolymer Solar Cells by Using Indene-C60 Bisadduct. <i>Chemistry of Materials</i> , 2012 , 24, 1995-2001	9.6	92
328	Limits on the Fill Factor in Organic Photovoltaics: Distinguishing Nongeminate and Geminate Recombination Mechanisms. <i>Journal of Physical Chemistry Letters</i> , 2013 , 4, 803-8	6.4	91
327	Effect of Systematically Tuning Conjugated Donor Polymer Lowest Unoccupied Molecular Orbital Levels via Cyano Substitution on Organic Photovoltaic Device Performance. <i>Chemistry of Materials</i> , 2016 , 28, 5110-5120	9.6	91
326	Photovoltaic and field effect transistor performance of selenophene and thiophene diketopyrrolopyrrole co-polymers with dithienothiophene. <i>Journal of Materials Chemistry</i> , 2012 , 22, 128	317	90
325	Ru(II)-phthalocyanine sensitized solar cells: the influence of co-adsorbents upon interfacial electron transfer kinetics. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5016		90

324	Effect of Internal Electric Fields on Charge Carrier Dynamics in a Ferroelectric Material for Solar Energy Conversion. <i>Advanced Materials</i> , 2016 , 28, 7123-8	24	90
323	The Effect of Residual Palladium Catalyst Contamination on the Photocatalytic Hydrogen Evolution Activity of Conjugated Polymers. <i>Advanced Energy Materials</i> , 2018 , 8, 1802181	21.8	89
322	Hybrid Bulk Heterojunction Solar Cells Based on P3HT and Porphyrin-Modified ZnO Nanorods. Journal of Physical Chemistry C, 2010 , 114, 11273-11278	3.8	87
321	Effect of the End Group of Regioregular Poly(3-hexylthiophene) Polymers on the Performance of Polymer/Fullerene Solar Cells. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 8137-8141	3.8	87
320	Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production. <i>Nano Energy</i> , 2018 , 50, 468-478	17.1	87
319	Exceptionally low charge trapping enables highly efficient organic bulk heterojunction solar cells. Energy and Environmental Science, 2020 , 13, 2422-2430	35.4	86
318	Understanding the Influence of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells. <i>Macromolecules</i> , 2010 , 43, 1169-1174	5.5	86
317	Titanium dioxide/carbon nitride nanosheet nanocomposites for gas phase CO2 photoreduction under UV-visible irradiation. <i>Applied Catalysis B: Environmental</i> , 2019 , 242, 369-378	21.8	86
316	Evaluation of Surface State Mediated Charge Recombination in Anatase and Rutile TiO. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 3742-3746	6.4	85
315	Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO Photoanodes. <i>Journal of the American Chemical Society</i> , 2019 , 141, 18791-18798	16.4	85
314	Re-evaluation of recombination losses in dye-sensitized cells: the failure of dynamic relaxation methods to correctly predict diffusion length in nanoporous photoelectrodes. <i>Nano Letters</i> , 2009 , 9, 3532-8	11.5	85
313	Impact of Hydrothermal Processing Conditions on High Aspect Ratio Titanate Nanostructures. <i>Chemistry of Materials</i> , 2006 , 18, 6059-6068	9.6	85
312	Electron injection kinetics for the nanocrystalline TiO2 films sensitised with the dye (Bu4N)2Ru(dcbpyH)2(NCS)2. <i>Chemical Physics</i> , 2002 , 285, 127-132	2.3	85
311	Field-Independent Charge Photogeneration in PCPDTBT/PC70BM Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 3306-3310	6.4	84
310	Transient absorption studies and numerical modeling of iodine photoreduction by nanocrystalline TiO2 films. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 142-50	3.4	83
309	Injection Limitations in a Series of Porphyrin Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 3276-3279	3.8	82
308	Relating Recombination, Density of States, and Device Performance in an Efficient Polymer:Fullerene Organic Solar Cell Blend. <i>Advanced Energy Materials</i> , 2013 , 3, 1201-1209	21.8	81
307	Simultaneous Transient Absorption and Transient Electrical Measurements on Operating Dye-Sensitized Solar Cells: Elucidating the Intermediates in Iodide Oxidation. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 1953-1958	3.8	81

306	Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells. <i>Polymers</i> , 2016 , 8,	4.5	81
305	Enhancing fullerene-based solar cell lifetimes by addition of a fullerene dumbbell. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 12870-5	16.4	80
304	The role of fullerenes in the environmental stability of polymer:fullerene solar cells. <i>Energy and Environmental Science</i> , 2018 , 11, 417-428	35.4	79
303	Reducing charge recombination losses in solid state dye sensitized solar cells: the use of donor-acceptor sensitizer dyes. <i>Chemical Communications</i> , 2007 , 1725-7	5.8	79
302	Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. <i>Nature Communications</i> , 2020 , 11, 2531	17.4	78
301	Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector. <i>Applied Physics Letters</i> , 2005 , 86, 143101	3.4	78
300	Protein adsorption on nanoporous TiO2 films: a novel approach to studying photoinduced protein/electrode transfer reactions. <i>Faraday Discussions</i> , 2000 , 35-46; discussion 67-75	3.6	78
299	Transient luminescence studies of electron injection in dye sensitised nanocrystalline TiO2 films. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2001 , 142, 215-220	4.7	77
298	Water Oxidation Kinetics of Accumulated Holes on the Surface of a TiO2 Photoanode: A Rate Law Analysis. <i>ACS Catalysis</i> , 2017 , 7, 4896-4903	13.1	76
297	Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study. <i>Advanced Functional Materials</i> , 2017 , 27, 1605413	15.6	76
296	Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes. <i>Journal of the American Chemical Society</i> , 2017 , 139, 11537-11543	16.4	76
295	Synthesis, structure and properties of [Pt(2,2?-bipyridyl-5,5?-dicarboxylic acid)(3,4-toluenedithiolate)]: tuning molecular properties for application in dye-sensitised solar cells. <i>Dalton Transactions</i> , 2003 , 3757-3762	4.3	75
294	Modulation of quantum yield of primary radical pair formation in photosystem II by site-directed mutagenesis affecting radical cations and anions. <i>Biochemistry</i> , 1998 , 37, 17439-47	3.2	75
293	Formation, location and beneficial role of PbI2 in lead halide perovskite solar cells. <i>Sustainable Energy and Fuels</i> , 2017 , 1, 119-126	5.8	74
292	Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents. <i>ACS Energy Letters</i> , 2017 , 2, 1494-1500	20.1	74
291	Transient emission studies of electron injection in dye sensitised solar cells. <i>Inorganica Chimica Acta</i> , 2008 , 361, 663-670	2.7	74
290	Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 2608-16	3.6	73
289	Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 16168-16177	16.4	73

288	Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells. <i>Journal of Materials Chemistry</i> , 2005 , 15, 412		72
287	Thieno[3,2-b]thiophene-diketopyrrolopyrrole Containing Polymers for Inverted Solar Cells Devices with High Short Circuit Currents. <i>Advanced Functional Materials</i> , 2013 , 23, 5647-5654	15.6	71
286	The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:Fullerene solar cells. <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 717-724	2.6	71
285	Influence of Surface Recombination on Charge-Carrier Kinetics in Organic Bulk Heterojunction Solar Cells with Nickel Oxide Interlayers. <i>Physical Review Applied</i> , 2015 , 4,	4.3	70
284	Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent. <i>Communications Chemistry</i> , 2019 , 2,	6.3	69
283	A quantitative structure-function relationship for the Photosystem II reaction center: supermolecular behavior in natural photosynthesis. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 946-51	11.5	69
282	Natures of optical absorption transitions and excitation energy dependent photostability of diketopyrrolopyrrole (DPP)-based photovoltaic copolymers. <i>Energy and Environmental Science</i> , 2015 , 8, 3222-3232	35.4	68
281	Enhanced photocatalytic activity of nc-TiO2 by promoting photogenerated electrons captured by the adsorbed oxygen. <i>Physical Chemistry Chemical Physics</i> , 2012 , 14, 8530-6	3.6	68
280	The mechanism behind the beneficial effect of light soaking on injection efficiency and photocurrent in dye sensitized solar cells. <i>Energy and Environmental Science</i> , 2011 , 4, 3494	35.4	68
279	Analysis of the Relationship between Linearity of Corrected Photocurrent and the Order of Recombination in Organic Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2407-2411	6.4	68
278	Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. <i>Advanced Functional Materials</i> , 2018 , 28, 1704389	15.6	68
277	Comparison of primary charge separation in the photosystem II reaction center complex isolated from wild-type and D1-130 mutants of the cyanobacterium Synechocystis PCC 6803. <i>Journal of Biological Chemistry</i> , 1996 , 271, 2093-101	5.4	67
276	Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. <i>Nature Communications</i> , 2017 , 8, 14280	17.4	66
275	A polymer gel electrolyte composed of a poly(ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells. <i>Journal of Power Sources</i> , 2010 , 195, 1246-1255	8.9	66
274	Proton-coupled electron transfer of flavodoxin immobilized on nanostructured tin dioxide electrodes: thermodynamics versus kinetics control of protein redox function. <i>Journal of the American Chemical Society</i> , 2004 , 126, 8001-9	16.4	66
273	Polaron pair mediated triplet generation in polymer/fullerene blends. <i>Nature Communications</i> , 2015 , 6, 6501	17.4	65
272	Acoustic enhancement of polymer/ZnO nanorod photovoltaic device performance. <i>Advanced Materials</i> , 2014 , 26, 263-8	24	64
271	Twist and DegradeImpact of Molecular Structure on the Photostability of Nonfullerene Acceptors and Their Photovoltaic Blends. <i>Advanced Energy Materials</i> , 2019 , 9, 1803755	21.8	62

(1995-2019)

270	Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. <i>Nature Communications</i> , 2019 , 10, 5208	17.4	62	
269	Charge photogeneration in polythiophene-perylene diimide blend films. <i>Chemical Communications</i> , 2009 , 5445-7	5.8	62	
268	Singlet exciton transfer and fullerene triplet formation in polymer-fullerene blend films. <i>Applied Physics Letters</i> , 2006 , 89, 101128	3.4	62	
267	Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics. <i>Chemical Communications</i> , 2012 , 48, 7699-701	5.8	60	
266	Solar H evolution in water with modified diketopyrrolopyrrole dyes immobilised on molecular Co and Ni catalyst-TiO hybrids. <i>Chemical Science</i> , 2017 , 8, 3070-3079	9.4	59	
265	Control of Photocurrent Generation in Polymer/ZnO Nanorod Solar Cells by Using a Solution-Processed TiO2 Overlayer. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 708-713	6.4	59	
264	Transient optical studies of interfacial energetic disorder at nanostructured dye-sensitised inorganic/organic semiconductor heterojunctions. <i>ChemPhysChem</i> , 2003 , 4, 89-93	3.2	59	
263	BPTs: thiophene-flanked benzodipyrrolidone conjugated polymers for ambipolar organic transistors. <i>Chemical Communications</i> , 2013 , 49, 4465-7	5.8	58	
262	Elucidating the Origins of Subgap Tail States and Open-Circuit Voltage in Methylammonium Lead Triiodide Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1801808	15.6	58	
261	Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO for water oxidation. <i>Chemical Science</i> , 2020 , 11, 2907-2914	9.4	57	
260	Influence of doping on charge carrier collection in normal and inverted geometry polymer:fullerene solar cells. <i>Scientific Reports</i> , 2013 , 3,	4.9	57	
259	Transient Optoelectronic Analysis of the Impact of Material Energetics and Recombination Kinetics on the Open-Circuit Voltage of Hybrid Perovskite Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 13496-13506	3.8	56	
258	Effect of oxygen deficiency on the excited state kinetics of WO and implications for photocatalysis. <i>Chemical Science</i> , 2019 , 10, 5667-5677	9.4	56	
257	Understanding the Apparent Charge Density Dependence of Mobility and Lifetime in Organic Bulk Heterojunction Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 8837-8842	3.8	56	
256	Material Crystallinity as a Determinant of Triplet Dynamics and Oxygen Quenching in Donor Polymers for Organic Photovoltaic Devices. <i>Advanced Functional Materials</i> , 2014 , 24, 1474-1482	15.6	56	
255	Effect of multiple adduct fullerenes on charge generation and transport in photovoltaic blends with poly(3-hexylthiophene-2,5-diyl). <i>Journal of Polymer Science, Part B: Polymer Physics</i> , 2011 , 49, 45-5	1 2.6	56	
254	Influence of nanoscale phase separation on geminate versus bimolecular recombination in P3HT:fullerene blend films. <i>Energy and Environmental Science</i> , 2010 , 3, 971	35.4	56	
253	Primary processes in isolated Photosystem II reaction centres probed by magic angle transient absorption spectroscopy. <i>Chemical Physics</i> , 1995 , 194, 433-442	2.3	56	

252	Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution. <i>Journal of the American Chemical Society</i> , 2020 , 142, 14574-14587	16.4	56
251	Charge Photogeneration in Low Band Gap Polyselenophene/Fullerene Blend Films. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 8068-8075	3.8	55
250	The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells. <i>Electrochimica Acta</i> , 2008 , 53, 7166-7172	6.7	55
249	Dopant-free novel hole-transporting materials based on quinacridone dye for high-performance and humidity-stable mesoporous perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 5315-5	5323	55
248	Tuning CH3NH3Pb(I1⊠Brx)3 perovskite oxygen stability in thin films and solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9553-9560	13	54
247	Rate Law Analysis of Water Oxidation and Hole Scavenging on a BiVO4 Photoanode. <i>ACS Energy Letters</i> , 2016 , 1, 618-623	20.1	54
246	Acceleration effects of phosphate modification on the decay dynamics of photo-generated electrons of TiO2 and its photocatalytic activity. <i>Chemical Communications</i> , 2012 , 48, 10775-7	5.8	54
245	Efficient Charge Photogeneration by the Dissociation of PC70BM Excitons in Polymer/Fullerene Solar Cells. <i>Journal of Physical Chemistry Letters</i> , 2012 , 3, 140-144	6.4	54
244	Analysis of charge photogeneration as a key determinant of photocurrent density in polymer: fullerene solar cells. <i>Advanced Materials</i> , 2010 , 22, 5287-91	24	54
243	Impedance spectroscopy study of dye-sensitized solar cells with undoped spiro-OMeTAD as hole conductor. <i>Journal of Applied Physics</i> , 2006 , 100, 034510	2.5	54
242	Additive-assisted supramolecular manipulation of polymer:fullerene blend phase morphologies and its influence on photophysical processes. <i>Materials Horizons</i> , 2014 , 1, 270-279	14.4	53
241	Distorted asymmetric cubic nanostructure of soluble fullerene crystals in efficient polymer:fullerene solar cells. <i>ACS Nano</i> , 2009 , 3, 2557-62	16.7	53
240	In situ observation of picosecond polaron self-localisation in ⊞eO photoelectrochemical cells. <i>Nature Communications</i> , 2019 , 10, 3962	17.4	52
239	Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. <i>Energy and Environmental Science</i> , 2020 , 13, 1843-1855	35.4	51
238	A functionalised nickel cyclam catalyst for COI eduction: electrocatalysis, semiconductor surface immobilisation and light-driven electron transfer. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 1562-6	3.6	50
237	Isostructural, Deeper Highest Occupied Molecular Orbital Analogues of Poly(3-hexylthiophene) for High-Open Circuit Voltage Organic Solar Cells. <i>Chemistry of Materials</i> , 2013 , 25, 4239-4249	9.6	50
236	Benzotrithiophene Co-polymers with High Charge Carrier Mobilities in Field-Effect Transistors. <i>Chemistry of Materials</i> , 2011 , 23, 4025-4031	9.6	50
235	Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2006 , 177, 328-331	4.7	50

234	Radical ion pair mediated triplet formation in polymer-fullerene blend films. <i>Chemical Communications</i> , 2006 , 3939-41	5.8	50
233	Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation. <i>ACS Energy Letters</i> , 2019 , 4, 846-852	20.1	49
232	Germaindacenodithiophene based low band gap polymers for organic solar cells. <i>Chemical Communications</i> , 2012 , 48, 2955-7	5.8	49
231	Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting. <i>Physical Chemistry Chemical Physics</i> , 2013 , 15, 8772-8	3.6	49
230	A nickel-complex sensitiser for dye-sensitised solar cells. <i>Solar Energy</i> , 2011 , 85, 1195-1203	6.8	49
229	One step facile synthesis of a novel anthanthrone dye-based, dopant-free hole transporting material for efficient and stable perovskite solar cells. <i>Journal of Materials Chemistry C</i> , 2018 , 6, 3699-3	708	48
228	Pyrroloindacenodithiophene containing polymers for organic field effect transistors and organic photovoltaics. <i>Journal of Materials Chemistry</i> , 2011 , 21, 18744		48
227	Spectroelectrochemical characterization of a pentaheme cytochrome in solution and as electrocatalytically active films on nanocrystalline metal-oxide electrodes. <i>Journal of the American Chemical Society</i> , 2008 , 130, 8588-9	16.4	48
226	Functionalizing nanocrystalline metal oxide electrodes with robust synthetic redox proteins. <i>ChemBioChem</i> , 2003 , 4, 1332-9	3.8	47
225	Does slow energy transfer limit the observed time constant for radical pair formation in photosystem II reaction centers?. <i>Biochemistry</i> , 1994 , 33, 14768-74	3.2	47
224	Interfacial charge separation in Cu2O/RuO(x) as a visible light driven CO2 reduction catalyst. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 5922-6	3.6	46
223	Novel ruthenium bipyridyl dyes with S-donor ligands and their application in dye-sensitized solar cells. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2009 , 202, 196-204	4.7	46
222	Rate of oxidation of P680 in isolated photosystem 2 reaction centers monitored by loss of chlorophyll stimulated emission. <i>Biochemistry</i> , 1993 , 32, 8259-67	3.2	46
221	Unraveling Charge Transfer in CoFe Prussian Blue Modified BiVO4 Photoanodes. <i>ACS Energy Letters</i> , 2019 , 4, 337-342	20.1	46
220	Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility. <i>Chemistry of Materials</i> , 2016 , 28, 8366-8378	9.6	45
219	Sub-picosecond Equilibration of Excitation Energy in Isolated Photosystem II Reaction Centers Revisited: Time-Dependent Anisotropy. <i>The Journal of Physical Chemistry</i> , 1996 , 100, 10469-10478		45
218	One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells. <i>Chemistry of Materials</i> , 2016 , 28, 2515-2518	9.6	45
217	Evidence for surface defect passivation as the origin of the remarkable photostability of unencapsulated perovskite solar cells employing aminovaleric acid as a processing additive. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 3006-3011	13	44

216	Distance dependent charge separation and recombination in semiconductor/molecular catalyst systems for water splitting. <i>Chemical Communications</i> , 2014 , 50, 12768-71	5.8	44
215	Charge recombination in polymer/fullerene photovoltaic devices. <i>Thin Solid Films</i> , 2004 , 451-452, 508-5	1 <u>4</u> 2	44
214	Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices. <i>Scientific Reports</i> , 2015 , 5, 15149	4.9	43
213	Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity. <i>Advanced Energy Materials</i> , 2019 , 9, 1901254	21.8	42
212	Energy versus electron transfer in organic solar cells: a comparison of the photophysics of two indenofluorene: fullerene blend films. <i>Chemical Science</i> , 2011 , 2, 1111	9.4	42
211	Concentration-Dependent Hole Mobility and Recombination Coefficient in Bulk Heterojunctions Determined from Transient Absorption Spectroscopy. <i>Journal of Physical Chemistry Letters</i> , 2010 , 1, 309	6 .4 10	0 ⁴²
210	Photoelectrochemical study of Zn cytochrome-c immobilised on a nanoporous metal oxide electrode. <i>Chemical Communications</i> , 2002 , 1518-9	5.8	42
209	Determination of P680 singlet state lifetimes in photosystem two reaction centres. <i>Chemical Physics Letters</i> , 1992 , 188, 54-60	2.5	42
208	Tail state limited photocurrent collection of thick photoactive layers in organic solar cells. <i>Nature Communications</i> , 2019 , 10, 5159	17.4	41
207	Transient absorption spectroscopy of charge photogeneration yields and lifetimes in a low bandgap polymer/fullerene film. <i>Chemical Communications</i> , 2009 , 89-91	5.8	41
206	Outstanding Indoor Performance of Perovskite Photovoltaic Cells Effect of Device Architectures and Interlayers. <i>Solar Rrl</i> , 2019 , 3, 1800207	7.1	41
205	Interfacial Engineering of a Carbon Nitride©raphene OxideMolecular Ni Catalyst Hybrid for Enhanced Photocatalytic Activity. <i>ACS Catalysis</i> , 2018 , 8, 6914-6926	13.1	40
204	New Fused Bis-Thienobenzothienothiophene Copolymers and Their Use in Organic Solar Cells and Transistors. <i>Macromolecules</i> , 2013 , 46, 727-735	5.5	40
203	WO/BiVO: impact of charge separation at the timescale of water oxidation. <i>Chemical Science</i> , 2019 , 10, 2643-2652	9.4	39
202	Increased Exciton Dipole Moment Translates into Charge-Transfer Excitons in Thiophene-Fluorinated Low-Bandgap Polymers for Organic Photovoltaic Applications. <i>Chemistry of Materials</i> , 2015 , 27, 7934-7944	9.6	39
201	Analysis of Recombination Losses in a Pentacene/C60 Organic Bilayer Solar Cell. <i>Journal of Physical Chemistry Letters</i> , 2011 , 2, 2759-2763	6.4	39
200	Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers. <i>Journal of the American Chemical Society</i> , 2015 , 137, 10383-90	16.4	38
199	Zn(II) versus Ru(II) phthalocyanine-sensitised solar cells. A comparison between singlet and triplet electron injectors. <i>Energy and Environmental Science</i> , 2010 , 3, 1573	35.4	38

(2019-2001)

198	Relationship between excitation energy transfer, trapping, and antenna size in photosystem II. <i>Biochemistry</i> , 2001 , 40, 4026-34	3.2	38	
197	Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO. <i>Scientific Reports</i> , 2017 , 7, 2938	4.9	37	
196	Charge separation and fullerene triplet formation in blend films of polyfluorene polymers with [6,6]-phenyl C61 butyric acid methyl ester. <i>Dalton Transactions</i> , 2009 , 10000-5	4.3	37	
195	Towards optimisation of photocurrent from fullerene excitons in organic solar cells. <i>Energy and Environmental Science</i> , 2014 , 7, 1037	35.4	36	
194	Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production. <i>Chemical Science</i> , 2015 , 6, 4855-4859	9.4	36	
193	Cyclic voltammetry and voltabsorptometry studies of redox proteins immobilised on nanocrystalline tin dioxide electrodes. <i>Bioelectrochemistry</i> , 2004 , 63, 55-9	5.6	36	
192	A supramolecular approach to lithium ion solvation at nanostructured dye sensitised inorganic/organic heterojunctions. <i>Chemical Communications</i> , 2003 , 2878-9	5.8	36	
191	The Excitation Wavelength and Solvent Dependance of the Kinetics of Electron Injection in Ru(dcbpy)2(NCS)2 Sensitized Nanocrystalline TiO2 Films. <i>Zeitschrift Fur Physikalische Chemie</i> , 1999 , 212, 93-98	3.1	36	
190	Excitation Density Dependent Photoluminescence Quenching and Charge Transfer Efficiencies in Hybrid Perovskite/Organic Semiconductor Bilayers. <i>Advanced Energy Materials</i> , 2018 , 8, 1802474	21.8	36	
189	The kinetics of metal oxide photoanodes from charge generation to catalysis. <i>Nature Reviews Materials</i> ,	73.3	36	
188	Strongly oxidizing perylene-3,4-dicarboximides for use in water oxidation photoelectrochemical cells. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 2880-2893	13	35	
187	All-Rounder Low-Cost Dopant-Free D-A-D Hole-Transporting Materials for Efficient Indoor and Outdoor Performance of Perovskite Solar Cells. <i>Advanced Electronic Materials</i> , 2020 , 6, 1900884	6.4	35	
186	Polymer chain/nanocrystal ordering in thin films of regioregular poly(3-hexylthiophene) and blends with a soluble fullerene. <i>Soft Matter</i> , 2006 , 3, 117-121	3.6	35	
185	Triplet state photosensitization of nanocrystalline metal oxide electrodes by zinc-substituted cytochrome c: application to hydrogen evolution. <i>Journal of the American Chemical Society</i> , 2005 , 127, 15120-6	16.4	35	
184	Origin of Open-Circuit Voltage Enhancements in Planar Perovskite Solar Cells Induced by Addition of Bulky Organic Cations. <i>Advanced Functional Materials</i> , 2020 , 30, 1906763	15.6	35	
183	Enhancing Light Absorption and Charge Transfer Efficiency in Carbon Dots through Graphitization and Core Nitrogen Doping. <i>Angewandte Chemie</i> , 2017 , 129, 6559-6563	3.6	34	
182	p-Doping of organic hole transport layers in plb perovskite solar cells: correlating open-circuit voltage and photoluminescence quenching. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18971-18979	13	34	
181	Origin of Open-Circuit Voltage Losses in Perovskite Solar Cells Investigated by Surface Photovoltage Measurement. <i>ACS Applied Materials & Description</i> (11, 46808-46817)	9.5	34	

180	Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols. <i>ACS Applied Materials & District Access Applied Materials & Distri</i>	1 ² 9·5	33
179	End Group Tuning in Acceptor Donor Acceptor Nonfullerene Small Molecules for High Fill Factor Organic Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1808429	15.6	33
178	Modulating interfacial electron transfer dynamics in dye sensitised nanocrystalline metal oxide films. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2002 , 148, 5-10	4.7	33
177	Highly stable inverted methylammonium lead tri-iodide perovskite solar cells achieved by surface re-crystallization. <i>Energy and Environmental Science</i> , 2020 , 13, 840-847	35.4	32
176	Hybrid polymerthetal oxide solar cells by in situ chemical polymerization. <i>Journal of Materials Chemistry</i> , 2009 , 19, 5377		32
175	Interface engineering for solid-state dye-sensitised nanocrystalline solar cells: the use of an organic redox cascade. <i>Chemical Communications</i> , 2006 , 535-7	5.8	32
174	Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO2 films: a comparison of two different ruthenium complexes. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 1575-	.8 ² 4 ⁶	31
173	Practical challenges in the development of photoelectrochemical solar fuels production. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 985-995	5.8	31
172	Electron transfer dynamics in fuel producing photosystems. <i>Current Opinion in Electrochemistry</i> , 2017 , 2, 136-143	7.2	30
171	Interplay Between Triplet-, Singlet-Charge Transfer States and Free Charge Carriers Defining Bimolecular Recombination Rate Constant of Organic Solar Cells. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 13969-13976	3.8	30
170	Understanding the visible-light photocatalytic activity of GaN:ZnO solid solution: the role of Rh Cr O cocatalyst and charge carrier lifetimes over tens of seconds. <i>Chemical Science</i> , 2018 , 9, 7546-7555	9.4	30
169	Solid film versus solution-phase charge-recombination dynamics of exTTF-bridge-C60 dyads. <i>Chemistry - A European Journal</i> , 2005 , 11, 7440-7	4.8	30
168	New peripherally-substituted naphthalocyanines: synthesis, characterisation and evaluation in dye-sensitised photoelectrochemical solar cells. <i>New Journal of Chemistry</i> , 2002 , 26, 1076-1080	3.6	30
167	Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination versus extraction. <i>Journal of Materials Chemistry C</i> , 2020 , 8, 12648-12655	7.1	30
166	Efficient Hole Trapping in Carbon Dot/Oxygen-Modified Carbon Nitride Heterojunction Photocatalysts for Enhanced Methanol Production from CO under Neutral Conditions. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 20811-20816	16.4	30
165	Kinetic Analysis of an Efficient Molecular Light-Driven Water Oxidation System. <i>ACS Catalysis</i> , 2017 , 7, 5142-5150	13.1	29
164	A Comparison of Charge Separation Dynamics in Organic Blend Films Employing Fullerene and Perylene Diimide Electron Acceptors. <i>Journal of Physical Chemistry Letters</i> , 2015 , 6, 201-5	6.4	29
163	Solar Reforming of Biomass with Homogeneous Carbon Dots. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18184-18188	16.4	29

162	Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices. <i>AIP Advances</i> , 2019 , 9, 085220	1.5	28	
161	Hybrid Heterojunction Nanorods for Nanoscale Controlled Morphology in Bulk Heterojunction Solar Cells. <i>Journal of Physical Chemistry C</i> , 2011 , 115, 10881-10888	3.8	28	
160	Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT. <i>Comptes Rendus Physique</i> , 2008 , 9, 110-118	1.4	27	
159	Origin of Performance Enhancement in TiO2-Carbon Nanotube Composite Perovskite Solar Cells. <i>Small Methods</i> , 2019 , 3, 1900164	12.8	26	
158	The binding energy and dynamics of charge-transfer states in organic photovoltaics with low driving force for charge separation. <i>Journal of Chemical Physics</i> , 2019 , 150, 104704	3.9	26	
157	Spectroscopic Investigation of the Effect of Microstructure and Energetic Offset on the Nature of Interfacial Charge Transfer States in Polymer: Fullerene Blends. <i>Journal of the American Chemical Society</i> , 2019 , 141, 4634-4643	16.4	26	
156	Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 2016 , 1857, 1497-1505	4.6	26	
155	Charge Separation, Band-Bending, and Recombination in WO Photoanodes. <i>Journal of Physical Chemistry Letters</i> , 2019 , 10, 5395-5401	6.4	26	
154	Characterisation of a ruthenium bipyridyl dye showing a long-lived charge-separated state on TiO2 in the presence of I-/I3 <i>Dalton Transactions</i> , 2010 , 39, 4138-45	4.3	26	
153	Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized solar cells. <i>Dalton Transactions</i> , 2008 , 1487-91	4.3	25	
152	Ultrasmall Co3O4 Nanocrystals Strongly Enhance Solar Water Splitting on Mesoporous Hematite. <i>Advanced Materials Interfaces</i> , 2015 , 2, 1500358	4.6	24	
151	Optical sensing of cyanide using hybrid biomolecular films. <i>Inorganic Chemistry Communication</i> , 2006 , 9, 1239-1242	3.1	24	
150	Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 2001149	21.8	24	
149	Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells. <i>Nature Communications</i> , 2020 , 11, 4617	17.4	24	
148	Linking in situ charge accumulation to electronic structure in doped SrTiO reveals design principles for hydrogen-evolving photocatalysts. <i>Nature Materials</i> , 2021 , 20, 511-517	27	24	
147	Efficient and photostable ternary organic solar cells with a narrow band gap non-fullerene acceptor and fullerene additive. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 6682-6691	13	23	
146	Barbiturate end-capped non-fullerene acceptors for organic solar cells: tuning acceptor energetics to suppress geminate recombination losses. <i>Chemical Communications</i> , 2018 , 54, 2966-2969	5.8	23	
145	Optimisation of diketopyrrolopyrrole:fullerene solar cell performance through control of polymer molecular weight and thermal annealing. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 19282-19289	13	23	

144	The effect of temperature on the charge transport and transient absorption properties of K27 sensitized DSSC. <i>Solar Energy Materials and Solar Cells</i> , 2008 , 92, 1047-1053	6.4	23
143	Supermolecular Control of Charge Transfer in Dye-Sensitized Nanocrystalline TiO2 Films: Towards a Quantitative Structure f lunction Relationship. <i>Angewandte Chemie</i> , 2005 , 117, 5886-5890	3.6	23
142	Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses. <i>Advanced Functional Materials</i> , 2020 , 30, 2001482	15.6	22
141	All-Small-Molecule Solar Cells Incorporating NDI-Based Acceptors: Synthesis and Full Characterization. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 44667-44677	9.5	22
140	Opportunities for mesoporous nanocrystalline SnO2 electrodes in kinetic and catalytic analyses of redox proteins. <i>Biochemical Society Transactions</i> , 2009 , 37, 368-72	5.1	22
139	Rational design of a neutral pH functional and stable organic photocathode. <i>Chemical Communications</i> , 2018 , 54, 5732-5735	5.8	22
138	Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. <i>Nature Energy</i> ,	62.3	22
137	Toward Visibly Transparent Organic Photovoltaic Cells Based on a Near-Infrared Harvesting Bulk Heterojunction Blend. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 32764-32770	9.5	21
136	ZnO-PCBM bilayers as electron transport layers in low-temperature processed perovskite solar cells. <i>Science Bulletin</i> , 2018 , 63, 343-348	10.6	21
135	Stability of Polymer:PCBM Thin Films under Competitive Illumination and Thermal Stress. <i>Advanced Functional Materials</i> , 2018 , 28, 1802520	15.6	21
134	Passivation against oxygen and light induced degradation by the PCBM electron transport layer in planar perovskite solar cells. <i>Sustainable Energy and Fuels</i> , 2018 , 2, 1686-1692	5.8	21
133	Direct spectroelectrochemistry of peroxidases immobilised on mesoporous metal oxide electrodes: Towards reagentless hydrogen peroxide sensing. <i>Analytica Chimica Acta</i> , 2009 , 648, 2-6	6.6	21
132	Interfacial electron transfer on cytochrome-c sensitised conformally coated mesoporous TiO2 films. <i>Bioelectrochemistry</i> , 2008 , 74, 142-8	5.6	21
131	The entanglement of excitation energy transfer and electron transfer in the reaction centre of photosystem II. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 1998 , 356, 449-464	3	21
130	Structure Ectivity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. <i>Chemical Science</i> , 2020 , 11, 8744-8756	9.4	21
129	Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance. <i>Advanced Functional Materials</i> , 2020 , 30, 2004563	15.6	21
128	Charge Separation in Intermixed Polymer:PC70BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 9790-9801	3.8	20
127	Impact of Aggregation on the Photochemistry of Fullerene Films: Correlating Stability to Triplet Exciton Kinetics. <i>ACS Applied Materials & Amp; Interfaces</i> , 2017 , 9, 22739-22747	9.5	20

126	DYE-SENSITISED MESOSCOPIC SOLAR CELLS. Series on Photoconversion of Solar Energy, 2008 , 503-536		20
125	Room Temperature Synthesis of Phosphine-Capped Lead Bromide Perovskite Nanocrystals without Coordinating Solvents. <i>Particle and Particle Systems Characterization</i> , 2020 , 37, 1900391	3.1	20
124	An Analysis of the Factors Determining the Efficiency of Photocurrent Generation in Polymer:Nonfullerene Acceptor Solar Cells. <i>Advanced Energy Materials</i> , 2018 , 8, 1801537	21.8	20
123	Manipulating the Optical Properties of Carbon Dots by Fine-Tuning their Structural Features. <i>ChemSusChem</i> , 2019 , 12, 4432-4441	8.3	19
122	The effect of thiadiazole out-backbone displacement in indacenodithiophene semiconductor polymers. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8789-8795	7.1	19
121	Dihydropyrroloindoledione-based copolymers for organic electronics. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 2711	7.1	19
120	Correlating Charge-Transfer State Lifetimes with Material Energetics in Polymer:Non-Fullerene Acceptor Organic Solar Cells. <i>Journal of the American Chemical Society</i> , 2021 , 143, 7599-7603	16.4	19
119	Bi2Fe4O9 thin films as novel visible-light-active photoanodes for solar water splitting. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9537-9541	13	18
118	Influence of Polymer Aggregation and Liquid Immiscibility on Morphology Tuning by Varying Composition in PffBT4T-2DT/Nonfullerene Organic Solar Cells. <i>Advanced Energy Materials</i> , 2020 , 10, 1903248	21.8	18
117	Fused Cyclopentadithienothiophene Acceptor Enables Ultrahigh Short-Circuit Current and High Efficiency >11% in As-Cast Organic Solar Cells. <i>Advanced Functional Materials</i> , 2019 , 29, 1904956	15.6	18
116	Use of microperoxidase-11 to functionalize tin dioxide electrodes for the optical and electrochemical sensing of hydrogen peroxide. <i>Analytica Chimica Acta</i> , 2011 , 686, 126-32	6.6	18
115	Synthesis and properties of [Pt(4-CO(2)CH(3)-py)(2)(mnt)]: comparison of pyridyl and bipyridyl-based dyes for solar cells. <i>Dalton Transactions</i> , 2008 , 6940-7	4.3	18
114	Additive-free, Low-temperature Crystallization of Stable & APbI Perovskite. <i>Advanced Materials</i> , 2021 , e2107850	24	18
113	Interlaboratory indoor ageing of roll-to-roll and spin coated organic photovoltaic devices: Testing the ISOS tests. <i>Polymer Degradation and Stability</i> , 2014 , 109, 162-170	4.7	17
112	Exciton and Charge Generation in PC60BM Thin Films. Journal of Physical Chemistry C, 2017, 121, 14470)-3,4847!	5 17
111	Freestanding Polymer M etal Oxide Nanocomposite Films for Light-Driven Oxygen Scavenging. <i>Advanced Materials</i> , 2005 , 17, 2365-2368	24	17
110	Impact of the Synthesis Route on the Water Oxidation Kinetics of Hematite Photoanodes. <i>Journal of Physical Chemistry Letters</i> , 2020 , 11, 7285-7290	6.4	17
109	Ultra-thin Al2O3 coatings on BiVO4 photoanodes: Impact on performance and charge carrier dynamics. <i>Catalysis Today</i> , 2019 , 321-322, 59-66	5.3	17

108	P450 versus P420: correlation between cyclic voltammetry and visible absorption spectroscopy of the immobilized heme domain of cytochrome P450 BM3. <i>Journal of Physical Chemistry B</i> , 2008 , 112, 140	<i>∂</i> 3 ⁴ 8	16
107	Understanding Structure-Property Relationships in All-Small-Molecule Solar Cells Incorporating a Fullerene or Nonfullerene Acceptor. <i>ACS Applied Materials & Description of Materials </i>	9.5	16
106	Enhancing Light Absorption and Prolonging Charge Separation in Carbon Quantum Dots Cl-Doping for Visible-Light-Driven Photocharge-Transfer Reactions. <i>ACS Applied Materials & Document Communication</i> , 13, 34648-34657	9.5	16
105	In Situ Measurement of Energy Level Shifts and Recombination Rates in Subphthalocyanine/C60 Bilayer Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 22858-22864	3.8	15
104	Kinetic competition in flexible dye sensitised solar cells employing a series of polymer electrolytes. <i>Chemical Communications</i> , 2006 , 877-9	5.8	15
103	Tuning Charge Carrier Dynamics and Surface Passivation in Organolead Halide Perovskites with Capping Ligands and Metal Oxide Interfaces. <i>Advanced Optical Materials</i> , 2018 , 6, 1701203	8.1	14
102	Round robin performance testing of organic photovoltaic devices. <i>Renewable Energy</i> , 2014 , 63, 376-387	8.1	14
101	Power conversion efficiency enhancement in diketopyrrolopyrrole based solar cells through polymer fractionation. <i>Journal of Materials Chemistry C</i> , 2014 , 2, 8593-8598	7.1	14
100	Intercalated vs Nonintercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited. <i>Journal of Physical Chemistry Letters</i> , 2017 , 8, 4061-4068	6.4	14
99	Enhancing the operational stability of unencapsulated perovskite solar cells through CuAg bilayer electrode incorporation. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 8684-8691	13	14
98	Probing and Controlling Intragrain Crystallinity for Improved Low Temperature Processed Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2018 , 28, 1803943	15.6	14
97	Ultraviolet Radiation Induced Dopant Loss in a TiO2 Photocatalyst. <i>ACS Catalysis</i> , 2017 , 7, 1485-1490	13.1	13
96	Synergetic enhancement of organic solar cell thermal stability by wire bar coating and light processing. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9551-9558	7.1	13
95	Understanding the Effect of Unintentional Doping on Transport Optimization and Analysis in Efficient Organic Bulk-Heterojunction Solar Cells. <i>Physical Review X</i> , 2015 , 5,	9.1	13
94	Dinuclear Ru L u Complexes: Electronic Characterisation and Application to Dye-Sensitised Solar Cells. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 589-596	2.3	13
93	Impact of concentration self-quenching on the charge generation yield of fullerene based donor-bridge-acceptor compounds in the solid state. <i>Physical Chemistry Chemical Physics</i> , 2011 , 13, 3721	1396	13
92	Photophysical Study of DPPTT-T/PC70BM Blends and Solar Devices as a Function of Fullerene Loading: An Insight into EQE Limitations of DPP-Based Polymers. <i>Advanced Functional Materials</i> , 2017 , 27, 1604426	15.6	12
91	Oxygen diffusion dynamics in organic semiconductor films. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 10079-10084	7.1	12

90	Polaron stability in semiconducting polymer neat films. Chemical Communications, 2014, 50, 14425-8	5.8	12
89	Charge Carrier Dynamics in Metal Oxide Photoelectrodes for Water Oxidation. <i>Semiconductors and Semimetals</i> , 2017 , 3-46	0.6	12
88	Functionalized titania nanoparticles for mercury scavenging. <i>Journal of Materials Chemistry</i> , 2007 , 17, 2028-2032		12
87	Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states. <i>Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences</i> , 2013 , 371, 20120195	3	11
86	Inter versus intra-molecular photoinduced charge separation in solid films of donor-acceptor molecules. <i>Chemical Communications</i> , 2008 , 4915-7	5.8	11
85	Solar Reforming of Biomass with Homogeneous Carbon Dots. <i>Angewandte Chemie</i> , 2020 , 132, 18341-1	83,45	11
84	Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction <i>Journal of the American Chemical Society</i> , 2021 , 143, 21549-21559	16.4	11
83	Artificial photosynthesis - concluding remarks. <i>Faraday Discussions</i> , 2019 , 215, 439-451	3.6	10
82	Stability study of thermal cycling on organic solar cells. <i>Journal of Materials Research</i> , 2018 , 33, 1902-19	90:8 5	10
81	Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy. <i>Journal of Chemical Physics</i> , 2015 , 142, 244904	3.9	10
80	Synthesis and photo-induced charge separation of confined conjugation length phenylene vinylene-based polymers. <i>Polymer Chemistry</i> , 2013 , 4, 5305	4.9	10
79	Comparison of primary electron transfer in Photosystem II reaction centres isolated from the higher plant Pisum sativum and the green alga Chlamydomonas reinhardtii. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1994 , 1186, 247-251	4.6	10
78	Combined Precursor Engineering and Grain Anchoring Leading to MA-Free, Phase-Pure, and Stable Formamidinium Lead Iodide Perovskites for Efficient Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 27299	16.4	10
77	Electronic defects in metal oxide photocatalysts. Nature Reviews Materials,	73.3	10
76	Impact of Initial Bulk-Heterojunction Morphology on Operational Stability of Polymer:Fullerene Photovoltaic Cells. <i>Advanced Materials Interfaces</i> , 2019 , 6, 1801763	4.6	9
75	Morphology-performance relationships in polymer/fullerene blends probed by complementary characterisation techniques leffects of nanowire formation and subsequent thermal annealing. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 9224-9232	7.1	9
74	Correlating Non-Geminate Recombination with Film Structure: A Comparison of Polythiophene: Fullerene Bilayer and Blend Films. <i>Journal of Physical Chemistry Letters</i> , 2014 , 5, 3669-76	6.4	9
73	Transient absorption spectroscopy of the primary electron donor, P680, in the isolated photosystem II reaction centre. <i>Biochimica Et Biophysica Acta - Bioenergetics</i> , 1990 , 1018, 168-172	4.6	9

72	A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells. <i>Advanced Materials</i> , 2021 , e2101833	24	9
71	Covalent grafting of molecular catalysts on CN H as robust, efficient and well-defined photocatalysts for solar fuel synthesis. <i>Chemical Science</i> , 2020 , 11, 8425-8432	9.4	9
70	Aerosol Assisted Solvent Treatment: A Universal Method for Performance and Stability Enhancements in Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2101420	21.8	9
69	Non-fullerene acceptor photostability and its impact on organic solar cell lifetime. <i>Cell Reports Physical Science</i> , 2021 , 2, 100498	6.1	9
68	TOF mobility measurements in pristine films of P3HT: control of hole injection and influence of film thickness 2006 , 6334, 16		8
67	Excited state spectroscopy in polymer fullerene photovoltaic devices under operation conditions. <i>Synthetic Metals</i> , 2003 , 139, 577-580	3.6	8
66	Charge recombination in CuPc/PTCDA thin films. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 11693-6	3.4	8
65	Separating bulk and surface processes in NiOx electrocatalysts for water oxidation. <i>Sustainable Energy and Fuels</i> , 2020 , 4, 5024-5030	5.8	8
64	Dithieno[3,2-b:2',3'-d]arsole-containing conjugated polymers in organic photovoltaic devices. <i>Dalton Transactions</i> , 2019 , 48, 6676-6679	4.3	7
63	Evidence for Strong and Weak Phenyl-C61-Butyric Acid Methyl Ester Photodimer Populations in Organic Solar Cells. <i>Chemistry of Materials</i> , 2019 , 31, 6076-6083	9.6	7
62	Chapter 5:Rate Law Analysis of Water Splitting Photoelectrodes. <i>RSC Energy and Environment Series</i> , 2018 , 128-162	0.6	7
61	Long-lived primary radical pair state detected by time-resolved fluorescence and absorption spectroscopy in an isolated Photosystem two core. <i>Photosynthesis Research</i> , 1992 , 34, 419-31	3.7	7
60	Identifying the Molecular Origins of High-Performance in Organic Photodetectors Based on Highly Intermixed Bulk Heterojunction Blends. <i>ACS Nano</i> , 2021 , 15, 1217-1228	16.7	7
59	Organic cathode interfacial materials for non-fullerene organic solar cells. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 13506-13514	13	7
58	Solvothermal Synthesis of Ferroelectric BaTiO3 Nanoparticles and Their Application to Dye-sensitized Solar Cells. <i>Journal of the Korean Physical Society</i> , 2018 , 73, 627-631	0.6	7
57	Dynamic PCBM:Dimer Population in Solar Cells under Light and Temperature Fluctuations. <i>Advanced Energy Materials</i> , 2019 , 9, 1803948	21.8	6
56	Reply to: Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. <i>Nature Chemistry</i> , 2020 , 12, 1099-1101	17.6	6
55	Field Effect versus Driving Force: Charge Generation in Small-Molecule Organic Solar Cells. Advanced Energy Materials, 2020 , 10, 2002124	21.8	6

(2021-2014)

54	Enhancing Fullerene-Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell. <i>Angewandte Chemie</i> , 2014 , 126, 13084-13089	3.6	6	
53	Homologous Bromides Treatment for Improving the Open-circuit Voltage of Perovskite Solar Cells. <i>Advanced Materials</i> , 2021 , e2106280	24	6	
52	Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2021 , e2105007	24	6	
51	Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO. <i>Chemical Science</i> , 2020 , 12, 946-959	9.4	6	
50	Understanding What Controls the Rate of Electrochemical Oxygen Evolution. <i>Joule</i> , 2021 , 5, 16-18	27.8	6	
49	Impact of Fullerene Intercalation on Structural and Thermal Properties of Organic Photovoltaic Blends. <i>Journal of Physical Chemistry C</i> , 2017 , 121, 20976-20985	3.8	5	
48	Use of gas cluster ion source depth profiling to study the oxidation of fullerene thin films by XPS. <i>Organic Electronics</i> , 2017 , 49, 85-93	3.5	5	
47	A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells 2010 , 63-69		5	
46	Picosecond time-resolved absorption and emission studies of pyrazolotriazole azomethine dyes. <i>Journal of the Chemical Society, Faraday Transactions</i> , 1991 , 87, 3479		5	
45	Experimental observation of multiple trapping/charge separation steps in the isolated PS2 reaction centre 1995 , 883-886		5	
44	Excitation Wavelength-Dependent Internal Quantum Efficiencies in a P3HT/Nonfullerene Acceptor Solar Cell. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 5826-5832	3.8	5	
43	Photodoping and Fast Charge Extraction in Ionic Carbon Nitride Photoanodes. <i>Advanced Functional Materials</i> ,2105369	15.6	5	
42	Water oxidation kinetics of nanoporous BiVO photoanodes functionalised with nickel/iron oxyhydroxide electrocatalysts. <i>Chemical Science</i> , 2021 , 12, 7442-7452	9.4	5	
41	Nanoscale Structure P roperty Relationships in Low-Temperature Solution-Processed Electron Transport Layers for Organic Photovoltaics. <i>Crystal Growth and Design</i> , 2017 , 17, 6559-6564	3.5	4	
40	Synthetic approaches to artificial photosynthesis: general discussion. <i>Faraday Discussions</i> , 2019 , 215, 242-281	3.6	4	
39	Mutation of the Chlamydomonas reinhardtii analogue of residue M210 of the Rhodobacter sphaeroides reaction center slows primary electron transfer in Photosystem II. <i>Photosynthesis Research</i> , 1999 , 62, 205-217	3.7	4	
38	Rational Design of DonorAcceptor Based Semiconducting Copolymers with High Dielectric Constants. <i>Journal of Physical Chemistry C</i> , 2021 , 125, 6886-6896	3.8	4	
37	Correlating the Active Layer Structure and Composition with the Device Performance and Lifetime of Amino-Acid-Modified Perovskite Solar Cells. <i>ACS Applied Materials & Device Performance and Lifetime</i>	-43515	4	

36	The effect of zinc oxide nanostructure on the performance of hybrid polymer/zinc oxide solar cells 2005 ,		3
35	Redox-State Kinetics in Water-Oxidation IrOx Electrocatalysts Measured by Operando Spectroelectrochemistry. <i>ACS Catalysis</i> ,15013-15025	13.1	3
34	Combined Precursor Engineering and Grain Anchoring Leading to MA-Free, Phase-Pure, and Stable Formamidinium Lead Iodide Perovskites for Efficient Solar Cells. <i>Angewandte Chemie</i> ,	3.6	3
33	Anisotropic Electron Transport Limits Performance of Bi2WO6 Photoanodes. <i>Journal of Physical Chemistry C</i> , 2020 , 124, 18859-18867	3.8	3
32	Insights from Transient Absorption Spectroscopy into Electron Dynamics Along the Ga-Gradient in Cu(In,Ga)Se2 Solar Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2003446	21.8	3
31	Efficient Hole Trapping in Carbon Dot/Oxygen-Modified Carbon Nitride Heterojunction Photocatalysts for Enhanced Methanol Production from CO2 under Neutral Conditions. <i>Angewandte Chemie</i> , 2021 , 133, 20979-20984	3.6	3
30	The effect of nanoparticulate PdO co-catalysts on the faradaic and light conversion efficiency of WO photoanodes for water oxidation. <i>Physical Chemistry Chemical Physics</i> , 2021 , 23, 1285-1291	3.6	3
29	Acene-Modified Small-Molecule Donors for Organic Photovoltaics. <i>Chemistry - A European Journal</i> , 2019 , 25, 12316-12324	4.8	2
28	ZnO Nanostructured Diodes - Enhancing Energy Generation through Scavenging Vibration. <i>Materials Research Society Symposia Proceedings</i> , 2013 , 1556, 1		2
27	Transient absorption and photovoltage characterization of dye-sensitized solar cells 2004,		2
26	Trapping of excitation energy by photosystem two reaction centres: Is P680 a multimer?. <i>Solar Energy Materials and Solar Cells</i> , 1995 , 38, 135-138	6.4	2
25	The Influence of Energy Level Disorder on the Charge Separation / Trapping Kinetics in Photosystem Two 1995 , 611-614		2
24	Identification of Chlorophyll Anion States During Charge Separation in Mutant Photosystem II Reaction Centres 1998 , 1041-1044		2
23	Impact of RbF and NaF Postdeposition Treatments on Charge Carrier Transport and Recombination in Ga-Graded Cu(In,Ga)Se2 Solar Cells. <i>Advanced Functional Materials</i> , 2021 , 31, 2103663	15.6	2
22	Photocatalysis: Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO3/TiO2 Heterojunction Films: A Computational and Experimental Study (Adv. Funct. Mater. 18/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1
21	Demonstrator devices for artificial photosynthesis: general discussion. <i>Faraday Discussions</i> , 2019 , 215, 345-363	3.6	1
20	DYE- AND PEROVSKITE-SENSITISED MESOSCOPIC SOLAR CELLS. <i>Series on Photoconversion of Solar Energy</i> , 2014 , 413-452		1
19	Piezoelectric Enhancement of Hybrid Organic/Inorganic Photovoltaic Device. <i>Journal of Physics:</i> Conference Series, 2013 , 476, 012009	0.3	1

18	Interfacial Electron Transfer in Dye Sensitised Nanocrystalline TiO2 Films. <i>Springer Series in Chemical Physics</i> , 1996 , 433-434	0.3	1
17	Interfacial electron transfer in dye sensitised nanocrystalline TiO2 films. <i>Journal of Chemical Sciences</i> , 1997 , 109, 411-414	1.8	1
16	Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. <i>Chemical Society Reviews</i> , 2021 , 50, 13372-13409	58.5	1
15	A Dual Functional Polymer Interlayer Enables Near-Infrared Absorbing Organic Photoanodes for Solar Water Oxidation. <i>Advanced Energy Materials</i> ,2103698	21.8	1
14	Asymmetric charge carrier transfer and transport in planar lead halide perovskite solar cells. <i>Cell Reports Physical Science</i> , 2022 , 100890	6.1	1
13	Organic Solar Cells: Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells (Adv. Energy Mater. 38/2020). <i>Advanced Energy Materials</i> , 2020 , 10, 2070158	21.8	О
12	Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 3084-3091	5.8	0
11	Acene-Modified Small-Molecule Donors for Organic Photovoltaics. <i>Chemistry - A European Journal</i> , 2019 , 25, 12233-12233	4.8	
10	Comparison of the field and Fermi level dependence of transport and recombination in polymer/C60 cells and solid state dye-sensitized cells 2006 , 6334, 5		
9	PROTEIN ADSORPTION ON NANOCRYSTALLINE Ti02 FILMS: A NOVEL IMMOBILISATION STRATEGY FOR BIOELECTROCHEMISTRY AND BIOANALYTICAL DEVICES. <i>Biochemical Society Transactions</i> , 2000 , 28, A44-A44	5.1	
8	Primary Radical Pair Formation in Photosystem-Two Reaction Centres. <i>Springer Series in Chemical Physics</i> , 1993 , 546-548	0.3	
7	Distinguishing Between Energy- and Electron-Transfer Processes in Photosystem II Reaction Centres. <i>Springer Series in Chemical Physics</i> , 1994 , 468-469	0.3	
6	Photoselective Excitation of P680 ? 1995 , 607-610		
5	Comparison of PS II Primary Photochemistry in Higher Plant, Synechocystis and Synechocystis Mutants 1995 , 615-618		
4	Construction and Initial Characterisation of a D2-LEU205TYR Mutant of Chlamydomonas Reinhardtii 1995 , 839-842		
3	Observation of an Intermediate Step During Primary Charge Separation by Photosystem Two. <i>Springer Series in Chemical Physics</i> , 1996 , 342-343	0.3	
2	Titelbild: Solar Reforming of Biomass with Homogeneous Carbon Dots (Angew. Chem. 41/2020). <i>Angewandte Chemie</i> , 2020 , 132, 17913-17913	3.6	
1	A Dual Functional Polymer Interlayer Enables Near-Infrared Absorbing Organic Photoanodes for Solar Water Oxidation (Adv. Energy Mater. 18/2022). <i>Advanced Energy Materials</i> , 2022 , 12, 2270073	21.8	