James Durrant

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1606717/publications.pdf

Version: 2024-02-01

		299	1009
553	66,145	139	236
papers	citations	h-index	g-index
589	589	589	38798
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nature Materials, 2006, 5, 197-203.	27.5	2,208
2	Charge Photogeneration in Organic Solar Cells. Chemical Reviews, 2010, 110, 6736-6767.	47.7	2,024
3	Artificial photosynthesis for solar water-splitting. Nature Photonics, 2012, 6, 511-518.	31.4	1,790
4	High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nature Communications, 2016, 7, 11585.	12.8	1,053
5	Control of Charge Recombination Dynamics in Dye Sensitized Solar Cells by the Use of Conformally Deposited Metal Oxide Blocking Layers. Journal of the American Chemical Society, 2003, 125, 475-482.	13.7	1,020
6	Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nature Materials, 2017, 16, 363-369.	27.5	921
7	Thieno[3,2- <i>b</i>]thiopheneâ^'Diketopyrrolopyrrole-Containing Polymers for High-Performance Organic Field-Effect Transistors and Organic Photovoltaic Devices. Journal of the American Chemical Society, 2011, 133, 3272-3275.	13.7	854
8	Mechanism of Photocatalytic Water Splitting in TiO ₂ . Reaction of Water with Photoholes, Importance of Charge Carrier Dynamics, and Evidence for Four-Hole Chemistry. Journal of the American Chemical Society, 2008, 130, 13885-13891.	13.7	850
9	Subpicosecond Interfacial Charge Separation in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. The Journal of Physical Chemistry, 1996, 100, 20056-20062.	2.9	815
10	Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy and Environmental Science, 2016, 9, 1655-1660.	30.8	783
11	Degradation of organic solar cells due to air exposure. Solar Energy Materials and Solar Cells, 2006, 90, 3520-3530.	6.2	660
12	Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nature Energy, 2019, 4, 746-760.	39.5	638
13	Parameters Influencing Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films. Journal of Physical Chemistry B, 2000, 104, 538-547.	2.6	613
14	Charge Carrier Formation in Polythiophene/Fullerene Blend Films Studied by Transient Absorption Spectroscopy. Journal of the American Chemical Society, 2008, 130, 3030-3042.	13.7	602
15	Device annealing effect in organic solar cells with blends of regioregular poly(3-hexylthiophene) and soluble fullerene. Applied Physics Letters, 2005, 86, 063502.	3.3	598
16	Electron Transfer Dynamics in Dye-Sensitized Solar Cells. Chemistry of Materials, 2011, 23, 3381-3399.	6.7	586
17	Parameters Influencing the Efficiency of Electron Injection in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2009, 131, 4808-4818.	13.7	571
18	The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of α-Fe ₂ O ₃ toward Water Oxidation. Journal of the American Chemical Society, 2011, 133, 14868-14871.	13.7	533

#	Article	IF	Citations
19	Nanocrystalline dye-sensitized solar cells having maximum performance. Progress in Photovoltaics: Research and Applications, 2007, 15, 1-18.	8.1	524
20	Hybrid Polymer/Zinc Oxide Photovoltaic Devices with Vertically Oriented ZnO Nanorods and an Amphiphilic Molecular Interface Layer. Journal of Physical Chemistry B, 2006, 110, 7635-7639.	2.6	522
21	Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells:Â the Minimization of Kinetic Redundancy. Journal of the American Chemical Society, 2005, 127, 3456-3462.	13.7	477
22	Reduced voltage losses yield 10% efficient fullerene free organic solar cells with >1 V open circuit voltages. Energy and Environmental Science, 2016, 9, 3783-3793.	30.8	477
23	Influence of the TiCl ₄ Treatment on Nanocrystalline TiO ₂ Films in Dye-Sensitized Solar Cells. 2. Charge Density, Band Edge Shifts, and Quantification of Recombination Losses at Short Circuit. Journal of Physical Chemistry C, 2007, 111, 14001-14010.	3.1	475
24	Experimental determination of the rate law for charge carrier decay in a polythiophene: Fullerene solar cell. Applied Physics Letters, 2008, 92, .	3.3	471
25	A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science, 2020, 369, 96-102.	12.6	461
26	A Rhodanine Flanked Nonfullerene Acceptor for Solution-Processed Organic Photovoltaics. Journal of the American Chemical Society, 2015, 137, 898-904.	13.7	446
27	Kinetic and Energetic Paradigms for Dye-Sensitized Solar Cells: Moving from the Ideal to the Real. Accounts of Chemical Research, 2009, 42, 1799-1808.	15.6	439
28	Electron Injection and Recombination in Dye Sensitized Nanocrystalline Titanium Dioxide Films:  A Comparison of Ruthenium Bipyridyl and Porphyrin Sensitizer Dyes. Journal of Physical Chemistry B, 2000, 104, 1198-1205.	2.6	433
29	Charge carrier trapping, recombination and transfer in hematite (α-Fe2O3) water splitting photoanodes. Chemical Science, 2013, 4, 2724.	7.4	419
30	Fullerenecrystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chemical Science, 2012, 3, 485-492.	7.4	418
31	Dynamics of photogenerated holes in surface modified α-Fe ₂ O ₃ photoanodes for solar water splitting. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 15640-15645.	7.1	413
32	Time-Resolved Spectroscopic Investigation of Charge Trapping in Carbon Nitrides Photocatalysts for Hydrogen Generation. Journal of the American Chemical Society, 2017, 139, 5216-5224.	13.7	397
33	Back Electron–Hole Recombination in Hematite Photoanodes for Water Splitting. Journal of the American Chemical Society, 2014, 136, 2564-2574.	13.7	393
34	Bimolecular recombination losses in polythiophene: Fullerene solar cells. Physical Review B, 2008, 78,	3.2	389
35	Trap-limited recombination in dye-sensitized nanocrystalline metal oxide electrodes. Physical Review B, 2001, 63, .	3.2	378
36	Charge Transport versus Recombination in Dye-Sensitized Solar Cells Employing Nanocrystalline TiO2 and SnO2 Films. Journal of Physical Chemistry B, 2005, 109, 12525-12533.	2.6	377

#	Article	IF	CITATIONS
37	Dye-Sensitized Nanocrystalline Solar Cells Employing a Polymer Electrolyte. Advanced Materials, 2001, 13, 826-830.	21.0	368
38	Recombination Dynamics as a Key Determinant of Open Circuit Voltage in Organic Bulk Heterojunction Solar Cells: A Comparison of Four Different Donor Polymers. Advanced Materials, 2010, 22, 4987-4992.	21.0	368
39	Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles. Nature Materials, 2020, 19, 559-565.	27.5	366
40	Solution-Processed Organic Solar Cells. MRS Bulletin, 2008, 33, 670-675.	3.5	347
41	Charge Recombination Kinetics in Dye-Sensitized Nanocrystalline Titanium Dioxide Films under Externally Applied Bias. Journal of Physical Chemistry B, 1998, 102, 1745-1749.	2.6	334
42	Molecular Control of Recombination Dynamics in Dye-Sensitized Nanocrystalline TiO2Films:Â Free Energy vs Distance Dependence. Journal of the American Chemical Society, 2004, 126, 5225-5233.	13.7	325
43	Reversible Colorimetric Probes for Mercury Sensing. Journal of the American Chemical Society, 2005, 127, 12351-12356.	13.7	318
44	Dynamics of photogenerated holes in undoped BiVO ₄ photoanodes for solar water oxidation. Chemical Science, 2014, 5, 2964-2973.	7.4	317
45	Catalysis of Recombination and Its Limitation on Open Circuit Voltage for Dye Sensitized Photovoltaic Cells Using Phthalocyanine Dyes. Journal of the American Chemical Society, 2008, 130, 2906-2907.	13.7	311
46	Long-lived charge separated states in nanostructured semiconductor photoelectrodes for the production of solar fuels. Chemical Society Reviews, 2013, 42, 2281-2293.	38.1	310
47	Dye-sensitised semiconductors modified with molecular catalysts for light-driven H ₂ production. Chemical Society Reviews, 2016, 45, 9-23.	38.1	298
48	Solar-Driven Reduction of Aqueous Protons Coupled to Selective Alcohol Oxidation with a Carbon Nitride–Molecular Ni Catalyst System. Journal of the American Chemical Society, 2016, 138, 9183-9192.	13.7	285
49	Rate Law Analysis of Water Oxidation on a Hematite Surface. Journal of the American Chemical Society, 2015, 137, 6629-6637.	13.7	273
50	Immobilisation and bioelectrochemistry of proteins on nanoporous TiO2 and ZnO films. Journal of Electroanalytical Chemistry, 2001, 517, 20-27.	3.8	269
51	Dynamics of photogenerated holes in nanocrystalline α-Fe ₂ O ₃ electrodes for water oxidation probed by transient absorption spectroscopy. Chemical Communications, 2011, 47, 716-718.	4.1	261
52	Hybrid polymer/metal oxide solar cells based on ZnO columnar structures. Journal of Materials Chemistry, 2006, 16, 2088.	6.7	259
53	Charge-density-based analysis of the current–voltage response of polythiophene/fullerene photovoltaic devices. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16448-16452.	7.1	259
54	Dye Dependent Regeneration Dynamics in Dye Sensitized Nanocrystalline Solar Cells:  Evidence for the Formation of a Ruthenium Bipyridyl Cation/Iodide Intermediate. Journal of Physical Chemistry C, 2007, 111, 6561-6567.	3.1	257

#	Article	IF	Citations
55	Free Energy Control of Charge Photogeneration in Polythiophene/Fullerene Solar Cells: The Influence of Thermal Annealing on P3HT/PCBM Blends. Advanced Functional Materials, 2008, 18, 4029-4035.	14.9	256
56	Towards optimisation of electron transfer processes in dye sensitised solar cells. Coordination Chemistry Reviews, 2004, 248, 1247-1257.	18.8	255
57	Slow charge recombination in dye-sensitised solar cells (DSSC) using Al2O3 coated nanoporous TiO2 films. Chemical Communications, 2002, , 1464-1465.	4.1	254
58	Alkyl Chain Barriers for Kinetic Optimization in Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2006, 128, 16376-16383.	13.7	254
59	A multimer model for P680, the primary electron donor of photosystem II Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 4798-4802.	7.1	251
60	Activation Energies for the Rate-Limiting Step in Water Photooxidation by Nanostructured \hat{l}_{\pm} -Fe ₂ O ₃ and TiO ₂ . Journal of the American Chemical Society, 2011, 133, 10134-10140.	13.7	247
61	Understanding structure-activity relationships in linear polymer photocatalysts for hydrogen evolution. Nature Communications, 2018, 9, 4968.	12.8	244
62	Ultrafast Charge Carrier Recombination and Trapping in Hematite Photoanodes under Applied Bias. Journal of the American Chemical Society, 2014, 136, 9854-9857.	13.7	238
63	Insights from Transient Optoelectronic Analyses on the Open-Circuit Voltage of Organic Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 1465-1478.	4.6	237
64	Materials Design Considerations for Charge Generation in Organic Solar Cells. Chemistry of Materials, 2014, 26, 616-630.	6.7	232
65	Ambipolar Charge Transport in Films of Methanofullerene and Poly(phenylenevinylene)/MethanofullereneÂBlends. Advanced Functional Materials, 2005, 15, 1171-1182.	14.9	230
66	Supermolecular Control of Charge Transfer in Dye-Sensitized Nanocrystalline TiO2 Films: Towards a Quantitative Structure-Function Relationship. Angewandte Chemie - International Edition, 2005, 44, 5740-5744.	13.8	228
67	Water Splitting by Nanocrystalline TiO ₂ in a Complete Photoelectrochemical Cell Exhibits Efficiencies Limited by Charge Recombination. Journal of Physical Chemistry C, 2010, 114, 4208-4214.	3.1	228
68	Versatile Photocatalytic Systems for H ₂ Generation in Water Based on an Efficient DuBois-Type Nickel Catalyst. Journal of the American Chemical Society, 2014, 136, 356-366.	13.7	228
69	On the Differences between Dark and Light Ideality Factor in Polymer:Fullerene Solar Cells. Journal of Physical Chemistry Letters, 2013, 4, 2371-2376.	4.6	227
70	Structure/Function Relationships in Dyes for Solar Energy Conversion: A Two-Atom Change in Dye Structure and the Mechanism for Its Effect on Cell Voltage. Journal of the American Chemical Society, 2009, 131, 3541-3548.	13.7	221
71	Supramolecular Control of Charge-Transfer Dynamics on Dye-sensitized Nanocrystalline TiO2 Films. Chemistry - A European Journal, 2004, 10, 595-602.	3.3	219
72	Organic Photovoltaic Devices Based on Blends of Regioregular Poly(3-hexylthiophene) and Poly(9,9-dioctylfluorene-co-benzothiadiazole). Chemistry of Materials, 2004, 16, 4812-4818.	6.7	219

#	Article	IF	CITATIONS
73	Charge generation and transport in efficient organic bulk heterojunction solar cells with a perylene acceptor. Energy and Environmental Science, 2014, 7, 435-441.	30.8	219
74	Measuring Charge Transport from Transient Photovoltage Rise Times. A New Tool To Investigate Electron Transport in Nanoparticle Films. Journal of Physical Chemistry B, 2006, 110, 17155-17160.	2.6	216
75	Iodide Electron Transfer Kinetics in Dye-Sensitized Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2002, 106, 12203-12210.	2.6	213
76	Quantification of Geminate and Nonâ€Geminate Recombination Losses within a Solutionâ€Processed Smallâ€Molecule Bulk Heterojunction Solar Cell. Advanced Materials, 2012, 24, 2135-2141.	21.0	211
77	Solar to fuel. Nature Materials, 2009, 8, 929-930.	27.5	210
78	Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements. Journal of Physical Chemistry C, 2009, 113, 1126-1136.	3.1	205
79	Quantifying Regeneration in Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2011, 115, 2439-2447.	3.1	203
80	Synthesis, Structure, and Properties of [Pt(II)(diimine)(dithiolate)] Dyes with 3,3â€~-, 4,4â€~-, and 5,5â€~-Disubstituted Bipyridyl: Applications in Dye-Sensitized Solar Cells. Inorganic Chemistry, 2005, 44, 242-250.	4.0	201
81	Enhancing Light Absorption and Charge Transfer Efficiency in Carbon Dots through Graphitization and Core Nitrogen Doping. Angewandte Chemie - International Edition, 2017, 56, 6459-6463.	13.8	201
82	Optical dynamics of excitons in J aggregates of a carbocyanine dye. Journal of Chemical Physics, 1995, 102, 6362-6370.	3.0	198
83	Charge Recombination in Conjugated Polymer/Fullerene Blended Films Studied by Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 1567-1573.	2.6	197
84	Composition and annealing effects in polythiophene/fullerene solar cells. Journal of Materials Science, 2005, 40, 1371-1376.	3.7	196
85	Correlating long-lived photogenerated hole populations with photocurrent densities in hematite water oxidation photoanodes. Energy and Environmental Science, 2012, 5, 6304-6312.	30.8	196
86	Protein Adsorption on Nanocrystalline TiO2Films:Â An Immobilization Strategy for Bioanalytical Devices. Analytical Chemistry, 1998, 70, 5111-5113.	6.5	195
87	Charge Separation in Solid-State Dye-Sensitized Heterojunction Solar Cells. Journal of the American Chemical Society, 1999, 121, 7445-7446.	13.7	195
88	Charge extraction analysis of charge carrier densities in a polythiophene/fullerene solar cell: Analysis of the origin of the device dark current. Applied Physics Letters, 2008, 93, .	3.3	193
89	The origin of slow electron recombination processes in dye-sensitized solar cells with alumina barrier coatings. Journal of Applied Physics, 2004, 96, 6903-6907.	2.5	190
90	Transient optical studies of charge recombination dynamics in a polymer/fullerene composite at room temperature. Applied Physics Letters, 2002, 81, 3001-3003.	3.3	189

#	Article	IF	Citations
91	Engineering of a Novel Ruthenium Sensitizer and Its Application in Dye-Sensitized Solar Cells for Conversion of Sunlight into Electricity. Inorganic Chemistry, 2005, 44, 178-180.	4.0	189
92	Organic photovoltaic cells – promising indoor light harvesters for self-sustainable electronics. Journal of Materials Chemistry A, 2018, 6, 5618-5626.	10.3	189
93	Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nature Chemistry, 2020, 12, 82-89.	13.6	189
94	Hybrid nanocrystalline TiO2 solar cells with a fluorene–thiophene copolymer as a sensitizer and hole conductor. Journal of Applied Physics, 2004, 95, 1473-1480.	2.5	185
95	Interface Modification by Ionic Liquid: A Promising Candidate for Indoor Light Harvesting and Stability Improvement of Planar Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1801509.	19.5	184
96	Effects of Side Chains on Thiazolothiazoleâ€Based Copolymer Semiconductors for High Performance Solar Cells. Advanced Energy Materials, 2011, 1, 854-860.	19.5	183
97	On the Energetic Dependence of Charge Separation in Low-Band-Gap Polymer/Fullerene Blends. Journal of the American Chemical Society, 2012, 134, 18189-18192.	13.7	180
98	Factors that Affect Protein Adsorption on Nanostructured Titania Films. A Novel Spectroelectrochemical Application to Sensing. Langmuir, 2001, 17, 7899-7906.	3.5	179
99	Direct Electrochemistry and Nitric Oxide Interaction of Heme Proteins Adsorbed on Nanocrystalline Tin Oxide Electrodes. Langmuir, 2003, 19, 6894-6900.	3.5	179
100	Cyanide Sensing with Organic Dyes: Studies in Solution and on Nanostructured Al ₂ O ₃ Surfaces. Chemistry - A European Journal, 2008, 14, 3006-3012.	3.3	177
101	Silaindacenodithiopheneâ€Based Low Band Gap Polymers – The Effect of Fluorine Substitution on Device Performances and Film Morphologies. Advanced Functional Materials, 2012, 22, 1663-1670.	14.9	177
102	Electron Accumulation Induces Efficiency Bottleneck for Hydrogen Production in Carbon Nitride Photocatalysts. Journal of the American Chemical Society, 2019, 141, 11219-11229.	13.7	177
103	Extended conjugated microporous polymers for photocatalytic hydrogen evolution from water. Chemical Communications, 2016, 52, 10008-10011.	4.1	175
104	An Efficient, "Burn in―Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor. Advanced Materials, 2017, 29, 1701156.	21.0	175
105	Light-driven oxygen scavenging by titania/polymer nanocomposite films. Journal of Photochemistry and Photobiology A: Chemistry, 2004, 162, 253-259.	3.9	174
106	Modulation of the Rate of Electron Injection in Dye-Sensitized Nanocrystalline TiO2Films by Externally Applied Bias. Journal of Physical Chemistry B, 2001, 105, 7424-7431.	2.6	171
107	Transient Optoelectronic Analysis of Charge Carrier Losses in a Selenophene/Fullerene Blend Solar Cell. Journal of Physical Chemistry C, 2011, 115, 5947-5957.	3.1	170
108	Photoinduced Absorption Spectroscopy of CoPi on BiVO ₄ : The Function of CoPi during Water Oxidation. Advanced Functional Materials, 2016, 26, 4951-4960.	14.9	169

#	Article	lF	Citations
109	An effective approach of vapour assisted morphological tailoring for reducing metal defect sites in lead-free, (CH3NH3)3Bi2I9 bismuth-based perovskite solar cells for improved performance and long-term stability. Nano Energy, 2018, 49, 614-624.	16.0	169
110	Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO2 photoreduction. Nature Communications, 2018, 9, 4986.	12.8	168
111	Unique hole-accepting carbon-dots promoting selective carbon dioxide reduction nearly 100% to methanol by pure water. Nature Communications, 2020, 11, 2531.	12.8	168
112	The Effect of Polymer Optoelectronic Properties on the Performance of Multilayer Hybrid Polymer/TiO2 Solar Cells. Advanced Functional Materials, 2005, 15, 609-618.	14.9	166
113	Is organic photovoltaics promising for indoor applications?. Applied Physics Letters, 2016, 108, .	3.3	166
114	Multistep Electron Transfer Processes on Dye Co-sensitized Nanocrystalline TiO2Films. Journal of the American Chemical Society, 2004, 126, 5670-5671.	13.7	164
115	Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination. Nature Communications, 2018, 9, 2059.	12.8	164
116	Generation of long-lived charges in organic semiconductor heterojunction nanoparticles for efficient photocatalytic hydrogen evolution. Nature Energy, 2022, 7, 340-351.	39.5	164
117	From fullerene acceptors to non-fullerene acceptors: prospects and challenges in the stability of organic solar cells. Journal of Materials Chemistry A, 2019, 7, 23361-23377.	10.3	163
118	The kinetics of metal oxide photoanodes from charge generation to catalysis. Nature Reviews Materials, 2021, 6, 1136-1155.	48.7	161
119	Heterogeneous colorimetric sensor for mercuric saltsElectronic supplementary information (ESI) available: Materials and methods. See http://www.rsc.org/suppdata/cc/b3/b314138a/. Chemical Communications, 2004, , 362.	4.1	159
120	On the role of intermixed phases in organic photovoltaic blends. Energy and Environmental Science, 2013, 6, 2756.	30.8	157
121	Kinetic competition in liquid electrolyte and solid-state cyanine dye sensitized solar cells. Journal of Materials Chemistry, 2007, 17, 3037-3044.	6.7	156
122	A photophysical study of PCBM thin films. Chemical Physics Letters, 2007, 445, 276-280.	2.6	156
123	Transient Absorption Studies of Bimolecular Recombination Dynamics in Polythiophene/Fullerene Blend Films. Journal of Physical Chemistry C, 2009, 113, 20934-20941.	3.1	156
124	Electron Transfer Dynamics in Dye Sensitized Nanocrystalline Solar Cells Using a Polymer Electrolyte. Journal of Physical Chemistry B, 2001, 105, 7517-7524.	2.6	155
125	Charge Photogeneration for a Series of Thiazoloâ€Thiazole Donor Polymers Blended with the Fullerene Electron Acceptors PCBM and ICBA. Advanced Functional Materials, 2013, 23, 3286-3298.	14.9	155
126	Photochemical energy conversion: from molecular dyads to solar cells. Chemical Communications, 2006, , 3279.	4.1	154

#	Article	IF	CITATIONS
127	Measurement of Chargeâ€Density Dependence of Carrier Mobility in an Organic Semiconductor Blend. Advanced Functional Materials, 2010, 20, 698-702.	14.9	154
128	Molecular Engineering Using an Anthanthrone Dye for Low ost Hole Transport Materials: A Strategy for Dopantâ€Free, Highâ€Efficiency, and Stable Perovskite Solar Cells. Advanced Energy Materials, 2018, 8, 1703007.	19.5	154
129	Effect of Hydrocarbon Chain Length of Amphiphilic Ruthenium Dyes on Solid-State Dye-Sensitized Photovoltaics. Nano Letters, 2005, 5, 1315-1320.	9.1	152
130	Exceptionally low charge trapping enables highly efficient organic bulk heterojunction solar cells. Energy and Environmental Science, 2020, 13, 2422-2430.	30.8	152
131	Electron Collection as a Limit to Polymer:PCBM Solar Cell Efficiency: Effect of Blend Microstructure on Carrier Mobility and Device Performance in PTB7:PCBM. Advanced Energy Materials, 2014, 4, 1400311.	19.5	151
132	Impact of Oxygen Vacancy Occupancy on Charge Carrier Dynamics in BiVO (sub) 4 (sub) Photoanodes. Journal of the American Chemical Society, 2019, 141, 18791-18798.	13.7	147
133	State selective electron injection in non-aggregated titanium phthalocyanine sensitised nanocrystalline TiO2films. Chemical Communications, 2004, , 2112-2113.	4.1	146
134	Recombination in Annealed and Nonannealed Polythiophene/Fullerene Solar Cells: Transient Photovoltage Studies versus Numerical Modeling. Journal of Physical Chemistry Letters, 2010, 1, 1432-1436.	4.6	146
135	Investigation of transport properties in polymer/fullerene blends using time-of-flight photocurrent measurements. Applied Physics Letters, 2003, 83, 3812-3814.	3.3	145
136	Fused Dithienogermolodithiophene Low Band Gap Polymers for High-Performance Organic Solar Cells without Processing Additives. Journal of the American Chemical Society, 2013, 135, 2040-2043.	13.7	145
137	Nonâ€Geminate Recombination as the Primary Determinant of Openâ€Circuit Voltage in Polythiophene:Fullerene Blend Solar Cells: an Analysis of the Influence of Device Processing Conditions. Advanced Functional Materials, 2011, 21, 2744-2753.	14.9	143
138	Dynamics of photogenerated charges in the phosphate modified TiO2 and the enhanced activity for photoelectrochemical water splitting. Energy and Environmental Science, 2012, 5, 6552.	30.8	143
139	Charge Carrier Dynamics on Mesoporous WO ₃ during Water Splitting. Journal of Physical Chemistry Letters, 2011, 2, 1900-1903.	4.6	142
140	Hybrid Solar Cells from a Blend of Poly(3â€hexylthiophene) and Ligand apped TiO ₂ Nanorods. Advanced Functional Materials, 2008, 18, 622-633.	14.9	141
141	Improving the Photocatalytic Reduction of CO ₂ to CO through Immobilisation of a Molecular Re Catalyst on TiO ₂ . Chemistry - A European Journal, 2015, 21, 3746-3754.	3.3	141
142	The Effect of Residual Palladium Catalyst Contamination on the Photocatalytic Hydrogen Evolution Activity of Conjugated Polymers. Advanced Energy Materials, 2018, 8, 1802181.	19.5	138
143	Flexible dye sensitised nanocrystalline semiconductor solar cells. Chemical Communications, 2003, , 3008.	4.1	137
144	Correlating triplet yield, singlet oxygen generation and photochemical stability in polymer/fullerene blend films. Chemical Communications, 2013, 49, 1291.	4.1	136

#	Article	IF	CITATIONS
145	High-rate solar-light photoconversion of CO ₂ to fuel: controllable transformation from C ₁ to C ₂ products. Energy and Environmental Science, 2018, 11, 3183-3193.	30.8	136
146	Transient Absorption Spectroscopy of Anatase and Rutile: The Impact of Morphology and Phase on Photocatalytic Activity. Journal of Physical Chemistry C, 2015, 119, 10439-10447.	3.1	135
147	Organic Photovoltaics. Accounts of Chemical Research, 2009, 42, 1689-1690.	15.6	134
148	Photochemical stability of high efficiency PTB7:PC ₇₀ BM solar cell blends. Journal of Materials Chemistry A, 2014, 2, 20189-20195.	10.3	134
149	Metal-free dual-phase full organic carbon nanotubes/g-C3N4 heteroarchitectures for photocatalytic hydrogen production. Nano Energy, 2018, 50, 468-478.	16.0	133
150	Electron Dynamics in Nanocrystalline ZnO and TiO2Films Probed by Potential Step Chronoamperometry and Transient Absorption Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 7605-7613.	2.6	131
151	The Influence of Polymer Purification on Photovoltaic Device Performance of a Series of Indacenodithiophene Donor Polymers. Advanced Materials, 2013, 25, 2029-2034.	21.0	129
152	Electronic defects in metal oxide photocatalysts. Nature Reviews Materials, 2022, 7, 503-521.	48.7	129
153	Acceptor Energy Level Control of Charge Photogeneration in Organic Donor/Acceptor Blends. Journal of the American Chemical Society, 2010, 132, 12919-12926.	13.7	128
154	Effect of Internal Electric Fields on Charge Carrier Dynamics in a Ferroelectric Material for Solar Energy Conversion. Advanced Materials, 2016, 28, 7123-7128.	21.0	128
155	Where Do Photogenerated Holes Go in Anatase:Rutile TiO ₂ ? A Transient Absorption Spectroscopy Study of Charge Transfer and Lifetime. Journal of Physical Chemistry A, 2016, 120, 715-723.	2.5	128
156	DFT-INDO/S Modeling of New High Molar Extinction Coefficient Charge-Transfer Sensitizers for Solar Cell Applications. Inorganic Chemistry, 2006, 45, 787-797.	4.0	126
157	Kinetic Competition in a Coumarin Dye-Sensitized Solar Cell: Injection and Recombination Limitations upon Device Performance. Journal of Physical Chemistry C, 2010, 114, 8054-8061.	3.1	126
158	Determining the role of oxygen vacancies in the photoelectrocatalytic performance of WO ₃ for water oxidation. Chemical Science, 2020, 11, 2907-2914.	7.4	126
159	Efficient Hole Trapping in Carbon Dot/Oxygenâ€Modified Carbon Nitride Heterojunction Photocatalysts for Enhanced Methanol Production from CO ₂ under Neutral Conditions. Angewandte Chemie - International Edition, 2021, 60, 20811-20816.	13.8	126
160	Electron Diffusion Length in Mesoporous Nanocrystalline TiO ₂ Photoelectrodes during Water Oxidation. Journal of Physical Chemistry Letters, 2010, 1, 967-972.	4.6	125
161	Understanding the Reduced Efficiencies of Organic Solar Cells Employing Fullerene Multiadducts as Acceptors. Advanced Energy Materials, 2013, 3, 744-752.	19.5	125
162	Kinetics of Photoelectrochemical Oxidation of Methanol on Hematite Photoanodes. Journal of the American Chemical Society, 2017, 139, 11537-11543.	13.7	125

#	Article	IF	Citations
163	Slow Electron Injection on Ruâ^'Phthalocyanine Sensitized TiO2. Journal of the American Chemical Society, 2007, 129, 9250-9251.	13.7	123
164	Mechanism of O ₂ Production from Water Splitting: Nature of Charge Carriers in Nitrogen Doped Nanocrystalline TiO ₂ Films and Factors Limiting O ₂ Production. Journal of Physical Chemistry C, 2011, 115, 3143-3150.	3.1	123
165	Morphological Stability and Performance of Polymer–Fullerene Solar Cells under Thermal Stress: The Impact of Photoinduced PC ₆₀ BM Oligomerization. ACS Nano, 2014, 8, 1297-1308.	14.6	122
166	Charge-Transfer State Dynamics Following Hole and Electron Transfer in Organic Photovoltaic Devices. Journal of Physical Chemistry Letters, 2013, 4, 209-215.	4.6	120
167	A Thieno[3,2â€ <i>b</i>][1]benzothiophene Isoindigo Building Block for Additive†and Annealingâ€Free Highâ€Performance Polymer Solar Cells. Advanced Materials, 2015, 27, 4702-4707.	21.0	120
168	Performance enhancement of fullerene-based solar cells by light processing. Nature Communications, 2013, 4, 2227.	12.8	119
169	Green fabrication of stable lead-free bismuth based perovskite solar cells using a non-toxic solvent. Communications Chemistry, 2019, 2, .	4.5	119
170	Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nature Communications, 2019, 10, 5208.	12.8	118
171	Tracking Charge Transfer to Residual Metal Clusters in Conjugated Polymers for Photocatalytic Hydrogen Evolution. Journal of the American Chemical Society, 2020, 142, 14574-14587.	13.7	118
172	Efficient suppression of back electron/hole recombination in cobalt phosphate surface-modified undoped bismuth vanadate photoanodes. Journal of Materials Chemistry A, 2015, 3, 20649-20657.	10.3	117
173	The role of fullerenes in the environmental stability of polymer:fullerene solar cells. Energy and Environmental Science, 2018, 11, 417-428.	30.8	117
174	Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour. Physical Chemistry Chemical Physics, 2011, 13, 5798.	2.8	115
175	Effect of Systematically Tuning Conjugated Donor Polymer Lowest Unoccupied Molecular Orbital Levels via Cyano Substitution on Organic Photovoltaic Device Performance. Chemistry of Materials, 2016, 28, 5110-5120.	6.7	115
176	Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO ₃ /TiO ₂ Heterojunction Films: A Computational and Experimental Study. Advanced Functional Materials, 2017, 27, 1605413.	14.9	115
177	Comment on "Measurement of Ultrafast Photoinduced Electron Transfer from Chemically Anchored Ruâ~Dye Molecules into Empty Electronic States in a Colloidal Anatase TiO2Film― Journal of Physical Chemistry B, 1998, 102, 3649-3650.	2.6	114
178	Preparation and characterisation of novel thick sol–gel titania film photocatalysts. Photochemical and Photobiological Sciences, 2003, 2, 591-596.	2.9	114
179	Multifunctional P-Doped TiO ₂ Films: A New Approach to Self-Cleaning, Transparent Conducting Oxide Materials. Chemistry of Materials, 2015, 27, 3234-3242.	6.7	113
180	Subpicosecond equilibration of excitation energy in isolated photosystem II reaction centers Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 11632-11636.	7.1	112

#	Article	IF	Citations
181	Photochemical Reduction of Oxygen Adsorbed to Nanocrystalline TiO2Films:Â A Transient Absorption and Oxygen Scavenging Study of Different TiO2Preparations. Journal of Physical Chemistry B, 2006, 110, 23255-23263.	2.6	112
182	Electron Transfer in Dyeâ€Sensitised Semiconductors Modified with Molecular Cobalt Catalysts: Photoreduction of Aqueous Protons. Chemistry - A European Journal, 2012, 18, 15464-15475.	3.3	112
183	Improved environmental stability of organic lead trihalide perovskite-based photoactive-layers in the presence of mesoporous TiO ₂ . Journal of Materials Chemistry A, 2015, 3, 7219-7223.	10.3	112
184	Singlet Exciton Lifetimes in Conjugated Polymer Films for Organic Solar Cells. Polymers, 2016, 8, 14.	4.5	111
185	Titanium dioxide/carbon nitride nanosheet nanocomposites for gas phase CO2 photoreduction under UV-visible irradiation. Applied Catalysis B: Environmental, 2019, 242, 369-378.	20.2	111
186	Parameters affecting electron transfer dynamics from semiconductors to molecular catalysts for the photochemical reduction of protons. Energy and Environmental Science, 2013, 6, 3291.	30.8	108
187	Evaluation of Surface State Mediated Charge Recombination in Anatase and Rutile TiO ₂ . Journal of Physical Chemistry Letters, 2016, 7, 3742-3746.	4.6	107
188	Molecular control of recombination dynamics in dye sensitised nanocrystalline TiO2 filmsElectronic supplementary information (ESI) available: synthesis and characterisation data for dye 2. See http://www.rsc.org/suppdata/cc/b2/b201855a/. Chemical Communications, 2002, , 1260-1261.	4.1	106
189	Local energetic disorder in molecular aggregates probed by the one-exciton to two-exciton transition. Chemical Physics Letters, 1994, 222, 450-456.	2.6	105
190	Water Oxidation Kinetics of Accumulated Holes on the Surface of a TiO ₂ Photoanode: A Rate Law Analysis. ACS Catalysis, 2017, 7, 4896-4903.	11.2	105
191	Water Oxidation and Electron Extraction Kinetics in Nanostructured Tungsten Trioxide Photoanodes. Journal of the American Chemical Society, 2018, 140, 16168-16177.	13.7	105
192	Photochemistry and spectroscopy of a five-chlorophyll reaction center of photosystem II isolated by using a Cu affinity column Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2929-2933.	7.1	103
193	Performance and Stability of Lead Perovskite/TiO ₂ , Polymer/PCBM, and Dye Sensitized Solar Cells at Light Intensities up to 70 Suns. Advanced Materials, 2014, 26, 6268-6273.	21.0	103
194	A new ruthenium polypyridyl dye, TG6, whose performance in dye-sensitized solar cells is surprisingly close to that of N719, the †dye to beat' for 17 years. Journal of Materials Chemistry, 2008, 18, 4246.	6.7	102
195	Dependence of Charge Separation Efficiency on Film Microstructure in Poly(3-hexylthiophene-2,5-diyl):[6,6]-Phenyl-C $<$ sub $>61sub> Butyric Acid Methyl Ester Blend Films. Journal of Physical Chemistry Letters, 2010, 1, 734-738.$	4.6	102
196	Limits on the Fill Factor in Organic Photovoltaics: Distinguishing Nongeminate and Geminate Recombination Mechanisms. Journal of Physical Chemistry Letters, 2013, 4, 803-808.	4.6	102
197	Exciton Equilibration Induced by Phonons:  Theory and Application to PS II Reaction Centers. Journal of Physical Chemistry B, 1997, 101, 7205-7210.	2.6	101
198	Observation of pheophytin reduction in photosystem two reaction centers using femtosecond transient absorption spectroscopy. Biochemistry, 1992, 31, 7638-7647.	2.5	100

#	Article	IF	Citations
199	Enhanced Open Circuit Voltage and Efficiency of Donor–Acceptor Copolymer Solar Cells by Using Indene-C60 Bisadduct. Chemistry of Materials, 2012, 24, 1995-2001.	6.7	100
200	Observable Hysteresis at Low Temperature in "Hysteresis Free―Organic–Inorganic Lead Halide Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2015, 6, 3190-3194.	4.6	99
201	Formation, location and beneficial role of Pbl ₂ in lead halide perovskite solar cells. Sustainable Energy and Fuels, 2017, 1, 119-126.	4.9	99
202	Calculation of Activation Energies for Transport and Recombination in Mesoporous TiO2/Dye/Electrolyte FilmsTaking into Account Surface Charge Shifts with Temperature. Journal of Physical Chemistry B, 2006, 110, 8544-8547.	2.6	97
203	Effect of oxygen deficiency on the excited state kinetics of WO ₃ and implications for photocatalysis. Chemical Science, 2019, 10, 5667-5677.	7.4	97
204	Effect of the End Group of Regioregular Poly(3-hexylthiophene) Polymers on the Performance of Polymer/Fullerene Solar Cells. Journal of Physical Chemistry C, 2007, 111, 8137-8141.	3.1	96
205	Electron injection kinetics for the nanocrystalline TiO2 films sensitised with the dye (Bu4N)2Ru(dcbpyH)2(NCS)2. Chemical Physics, 2002, 285, 127-132.	1.9	95
206	Ru(II)-phthalocyanine sensitized solar cells: the influence of co-adsorbents upon interfacial electron transfer kinetics. Journal of Materials Chemistry, 2009, 19, 5016.	6.7	95
207	Twist and Degradeâ€"Impact of Molecular Structure on the Photostability of Nonfullerene Acceptors and Their Photovoltaic Blends. Advanced Energy Materials, 2019, 9, 1803755.	19.5	95
208	Injection Limitations in a Series of Porphyrin Dye-Sensitized Solar Cells. Journal of Physical Chemistry C, 2010, 114, 3276-3279.	3.1	94
209	Impact of Hydrothermal Processing Conditions on High Aspect Ratio Titanate Nanostructures. Chemistry of Materials, 2006, 18, 6059-6068.	6.7	93
210	In situ observation of picosecond polaron self-localisation in \hat{l} ±-Fe2O3 photoelectrochemical cells. Nature Communications, 2019, 10, 3962.	12.8	93
211	Understanding the Influence of Morphology on Poly(3-hexylselenothiophene):PCBM Solar Cells. Macromolecules, 2010, 43, 1169-1174.	4.8	92
212	Photovoltaic and field effect transistor performance of selenophene and thiophene diketopyrrolopyrrole co-polymers with dithienothiophene. Journal of Materials Chemistry, 2012, 22, 12817.	6.7	92
213	Side-chain tuning in conjugated polymer photocatalysts for improved hydrogen production from water. Energy and Environmental Science, 2020, 13, 1843-1855.	30.8	92
214	Hybrid Bulk Heterojunction Solar Cells Based on P3HT and Porphyrin-Modified ZnO Nanorods. Journal of Physical Chemistry C, 2010, 114, 11273-11278.	3.1	91
215	Natures of optical absorption transitions and excitation energy dependent photostability of diketopyrrolopyrrole (DPP)-based photovoltaic copolymers. Energy and Environmental Science, 2015, 8, 3222-3232.	30.8	90
216	Relating Recombination, Density of States, and Device Performance in an Efficient Polymer:Fullerene Organic Solar Cell Blend. Advanced Energy Materials, 2013, 3, 1201-1209.	19.5	89

#	Article	lF	Citations
217	Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents. ACS Energy Letters, 2017, 2, 1494-1500.	17.4	89
218	Re-evaluation of Recombination Losses in Dye-Sensitized Cells: The Failure of Dynamic Relaxation Methods to Correctly Predict Diffusion Length in Nanoporous Photoelectrodes. Nano Letters, 2009, 9, 3532-3538.	9.1	88
219	Field-Independent Charge Photogeneration in PCPDTBT/PC ₇₀ BM Solar Cells. Journal of Physical Chemistry Letters, 2010, 1, 3306-3310.	4.6	88
220	Modulation of Quantum Yield of Primary Radical Pair Formation in Photosystem II by Site-Directed Mutagenesis Affecting Radical Cations and Anions. Biochemistry, 1998, 37, 17439-17447.	2.5	87
221	Protein adsorption on nanoporous TiO2 films: a novel approach to studying photoinduced protein/electrode transfer reactions. Faraday Discussions, 2000, 116, 35-46.	3.2	87
222	Transient Absorption Studies and Numerical Modeling of Iodine Photoreduction by Nanocrystalline TiO2Films. Journal of Physical Chemistry B, 2005, 109, 142-150.	2.6	87
223	Influence of Surface Recombination on Charge-Carrier Kinetics in Organic Bulk Heterojunction Solar Cells with Nickel Oxide Interlayers. Physical Review Applied, 2015, 4, .	3.8	87
224	Enhancing Fullereneâ€Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell. Angewandte Chemie - International Edition, 2014, 53, 12870-12875.	13.8	86
225	Reducing charge recombination losses in solid state dye sensitized solar cells: the use of donor–acceptor sensitizer dyes. Chemical Communications, 2007, , 1725-1727.	4.1	85
226	Simultaneous Transient Absorption and Transient Electrical Measurements on Operating Dye-Sensitized Solar Cells: Elucidating the Intermediates in Iodide Oxidation. Journal of Physical Chemistry C, 2010, 114, 1953-1958.	3.1	85
227	Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. Advanced Functional Materials, 2018, 28, 1704389.	14.9	84
228	Efficient charge collection in hybrid polymer/TiO2 solar cells using poly(ethylenedioxythiophene)/polystyrene sulphonate as hole collector. Applied Physics Letters, 2005, 86, 143101.	3.3	83
229	Nanocrystalline anatase TiO ₂ /reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide. Physical Chemistry Chemical Physics, 2016, 18, 2608-2616.	2.8	83
230	Spectroelectrochemical analysis of the mechanism of (photo)electrochemical hydrogen evolution at a catalytic interface. Nature Communications, 2017, 8, 14280.	12.8	83
231	Transient luminescence studies of electron injection in dye sensitised nanocrystalline TiO2 films. Journal of Photochemistry and Photobiology A: Chemistry, 2001, 142, 215-220.	3.9	82
232	Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nature Materials, 2021, 20, 511-517.	27.5	82
233	Synthesis, structure and properties of [Pt(2,2′-bipyridyl-5,5′-dicarboxylic acid)(3,4-toluenedithiolate)]: tuning molecular properties for application in dye-sensitised solar cells. Dalton Transactions, 2003, , 3757-3762.	3.3	79
234	Thieno[3,2â€ <i>b</i>]thiopheneâ€diketopyrrolopyrrole Containing Polymers for Inverted Solar Cells Devices with High Short Circuit Currents. Advanced Functional Materials, 2013, 23, 5647-5654.	14.9	78

#	Article	IF	Citations
235	Elucidating the Origins of Subgap Tail States and Openâ€Circuit Voltage in Methylammonium Lead Triiodide Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1801808.	14.9	78
236	Transient emission studies of electron injection in dye sensitised solar cells. Inorganica Chimica Acta, 2008, 361, 663-670.	2.4	77
237	The mechanism behind the beneficial effect of light soaking on injection efficiency and photocurrent in dye sensitized solar cells. Energy and Environmental Science, 2011, 4, 3494.	30.8	77
238	Rate Law Analysis of Water Oxidation and Hole Scavenging on a BiVO ₄ Photoanode. ACS Energy Letters, 2016, 1, 618-623.	17.4	76
239	Transient Optoelectronic Analysis of the Impact of Material Energetics and Recombination Kinetics on the Open-Circuit Voltage of Hybrid Perovskite Solar Cells. Journal of Physical Chemistry C, 2017, 121, 13496-13506.	3.1	76
240	A quantitative structure-function relationship for the Photosystem II reaction center: Supermolecular behavior in natural photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 946-951.	7.1	75
241	Acid versus base peptization of mesoporous nanocrystalline TiO2 films: functional studies in dye sensitized solar cells. Journal of Materials Chemistry, 2005, 15, 412.	6.7	7 5
242	Comparison of Primary Charge Separation in the Photosystem II Reaction Center Complex Isolated from Wild-type and D1-130 Mutants of the Cyanobacterium Synechocystis PCC 6803. Journal of Biological Chemistry, 1996, 271, 2093-2101.	3.4	74
243	Analysis of the Relationship between Linearity of Corrected Photocurrent and the Order of Recombination in Organic Solar Cells. Journal of Physical Chemistry Letters, 2011, 2, 2407-2411.	4.6	74
244	Polaron pair mediated triplet generation in polymer/fullerene blends. Nature Communications, 2015, 6, 6501.	12.8	74
245	A solid compromise. Nature Materials, 2003, 2, 362-363.	27.5	7 3
246	The role of alkane dithiols in controlling polymer crystallization in small band gap polymer:Fullerene solar cells. Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 717-724.	2.1	73
247	Enhanced photocatalytic activity of nc-TiO2 by promoting photogenerated electrons captured by the adsorbed oxygen. Physical Chemistry Chemical Physics, 2012, 14, 8530.	2.8	73
248	Solar H ₂ evolution in water with modified diketopyrrolopyrrole dyes immobilised on molecular Co and Ni catalyst–TiO ₂ hybrids. Chemical Science, 2017, 8, 3070-3079.	7.4	73
249	Fluorine doped tin oxide as an alternative of indium tin oxide for bottom electrode of semi-transparent organic photovoltaic devices. AIP Advances, 2019, 9, .	1.3	73
250	Proton-Coupled Electron Transfer of Flavodoxin Immobilized on Nanostructured Tin Dioxide Electrodes:  Thermodynamics versus Kinetics Control of Protein Redox Function. Journal of the American Chemical Society, 2004, 126, 8001-8009.	13.7	72
251	Tuning CH ₃ NH ₃ Pb(I _{1â^'x} Br _x) ₃ perovskite oxygen stability in thin films and solar cells. Journal of Materials Chemistry A, 2017, 5, 9553-9560.	10.3	72
252	Allâ€Rounder Lowâ€Cost Dopantâ€Free Dâ€Aâ€D Holeâ€Transporting Materials for Efficient Indoor and Outdoor Performance of Perovskite Solar Cells. Advanced Electronic Materials, 2020, 6, 1900884.	5.1	72

#	Article	IF	Citations
253	A polymer gel electrolyte composed of a poly(ethylene oxide) copolymer and the influence of its composition on the dynamics and performance of dye-sensitized solar cells. Journal of Power Sources, 2010, 195, 1246-1255.	7.8	71
254	Material Crystallinity as a Determinant of Triplet Dynamics and Oxygen Quenching in Donor Polymers for Organic Photovoltaic Devices. Advanced Functional Materials, 2014, 24, 1474-1482.	14.9	71
255	Toward Improved Environmental Stability of Polymer:Fullerene and Polymer:Nonfullerene Organic Solar Cells: A Common Energetic Origin of Light- and Oxygen-Induced Degradation. ACS Energy Letters, 2019, 4, 846-852.	17.4	71
256	Additiveâ€Free, Lowâ€Temperature Crystallization of Stable αâ€FAPbl ₃ Perovskite. Advanced Materials, 2022, 34, e2107850.	21.0	71
257	Singlet exciton transfer and fullerene triplet formation in polymer-fullerene blend films. Applied Physics Letters, 2006, 89, 101128.	3.3	70
258	Evidence for surface defect passivation as the origin of the remarkable photostability of unencapsulated perovskite solar cells employing aminovaleric acid as a processing additive. Journal of Materials Chemistry A, 2019, 7, 3006-3011.	10.3	70
259	Solar Reforming of Biomass with Homogeneous Carbon Dots. Angewandte Chemie - International Edition, 2020, 59, 18184-18188.	13.8	70
260	Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination <i>versus</i> extraction. Journal of Materials Chemistry C, 2020, 8, 12648-12655.	5.5	70
261	Dopant-free novel hole-transporting materials based on quinacridone dye for high-performance and humidity-stable mesoporous perovskite solar cells. Journal of Materials Chemistry A, 2019, 7, 5315-5323.	10.3	70
262	Acoustic Enhancement of Polymer/ZnO Nanorod Photovoltaic Device Performance. Advanced Materials, 2014, 26, 263-268.	21.0	67
263	Origin of Open-Circuit Voltage Losses in Perovskite Solar Cells Investigated by Surface Photovoltage Measurement. ACS Applied Materials & Samp; Interfaces, 2019, 11, 46808-46817.	8.0	66
264	Spectroelectrochemical Analysis of the Water Oxidation Mechanism on Doped Nickel Oxides. Journal of the American Chemical Society, 2022, 144, 7622-7633.	13.7	66
265	Transient Optical Studies of Interfacial Energetic Disorder at Nanostructured Dye-Sensitised Inorganic/Organic Semiconductor Heterojunctions. ChemPhysChem, 2003, 4, 89-93.	2.1	65
266	Influence of doping on charge carrier collection in normal and inverted geometry polymer:fullerene solar cells. Scientific Reports, 2013, 3, .	3.3	65
267	Tail state limited photocurrent collection of thick photoactive layers in organic solar cells. Nature Communications, 2019, 10, 5159.	12.8	65
268	Charge photogeneration in polythiophene–perylene diimide blend films. Chemical Communications, 2009, , 5445.	4.1	64
269	Control of Photocurrent Generation in Polymer/ZnO Nanorod Solar Cells by Using a Solution-Processed TiO ₂ Overlayer. Journal of Physical Chemistry Letters, 2010, 1, 708-713.	4.6	63
270	Synthesis of novel thieno[3,2-b]thienobis(silolothiophene) based low bandgap polymers for organic photovoltaics. Chemical Communications, 2012, 48, 7699.	4.1	63

#	Article	IF	Citations
271	BPTs: thiophene-flanked benzodipyrrolidone conjugated polymers for ambipolar organic transistors. Chemical Communications, 2013, 49, 4465.	4.1	63
272	Outstanding Indoor Performance of Perovskite Photovoltaic Cells – Effect of Device Architectures and Interlayers. Solar Rrl, 2019, 3, 1800207.	5.8	63
273	Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 177, 328-331.	3.9	62
274	Influence of nanoscale phase separation on geminate versus bimolecular recombination in P3HT:fullerene blend films. Energy and Environmental Science, 2010, 3, 971.	30.8	61
275	One step facile synthesis of a novel anthanthrone dye-based, dopant-free hole transporting material for efficient and stable perovskite solar cells. Journal of Materials Chemistry C, 2018, 6, 3699-3708.	5.5	61
276	Unraveling Charge Transfer in CoFe Prussian Blue Modified BiVO ₄ Photoanodes. ACS Energy Letters, 2019, 4, 337-342.	17.4	61
277	Primary processes in isolated Photosystem II reaction centres probed by magic angle transient absorption spectroscopy. Chemical Physics, 1995, 194, 433-442.	1.9	60
278	The role of gel electrolyte composition in the kinetics and performance of dye-sensitized solar cells. Electrochimica Acta, 2008, 53, 7166-7172.	5.2	60
279	Orientation dependent molecular electrostatics drives efficient charge generation in homojunction organic solar cells. Nature Communications, 2020, 11, 4617.	12.8	60
280	Impedance spectroscopy study of dye-sensitized solar cells with undoped spiro-OMeTAD as hole conductor. Journal of Applied Physics, 2006, 100, 034510.	2.5	59
281	Effect of multiple adduct fullerenes on charge generation and transport in photovoltaic blends with poly(3â€hexylthiopheneâ€2,5â€diyl). Journal of Polymer Science, Part B: Polymer Physics, 2011, 49, 45-51.	2.1	59
282	A nickel-complex sensitiser for dye-sensitised solar cells. Solar Energy, 2011, 85, 1195-1203.	6.1	59
283	Excitation Density Dependent Photoluminescence Quenching and Charge Transfer Efficiencies in Hybrid Perovskite/Organic Semiconductor Bilayers. Advanced Energy Materials, 2018, 8, 1802474.	19.5	59
284	WO ₃ /BiVO ₄ : impact of charge separation at the timescale of water oxidation. Chemical Science, 2019, 10, 2643-2652.	7.4	59
285	Correlating Charge-Transfer State Lifetimes with Material Energetics in Polymer:Non-Fullerene Acceptor Organic Solar Cells. Journal of the American Chemical Society, 2021, 143, 7599-7603.	13.7	59
286	Charge Photogeneration in Low Band Gap Polyselenophene/Fullerene Blend Films. Journal of Physical Chemistry C, 2010, 114, 8068-8075.	3.1	58
287	Acceleration effects of phosphate modification on the decay dynamics of photo-generated electrons of TiO2 and its photocatalytic activity. Chemical Communications, 2012, 48, 10775.	4.1	58
288	Charge carrier separation in nanostructured TiO2 photoelectrodes for water splitting. Physical Chemistry Chemical Physics, 2013, 15, 8772.	2.8	58

#	Article	IF	Citations
289	Additive-assisted supramolecular manipulation of polymer:fullerene blend phase morphologies and its influence on photophysical processes. Materials Horizons, 2014, 1, 270-279.	12.2	58
290	A functionalised nickel cyclam catalyst for CO ₂ reduction: electrocatalysis, semiconductor surface immobilisation and light-driven electron transfer. Physical Chemistry Chemical Physics, 2015, 17, 1562-1566.	2.8	58
291	Practical challenges in the development of photoelectrochemical solar fuels production. Sustainable Energy and Fuels, 2020, 4, 985-995.	4.9	58
292	Understanding the Apparent Charge Density Dependence of Mobility and Lifetime in Organic Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2014, 118, 8837-8842.	3.1	57
293	Analysis of Charge Photogeneration as a Key Determinant of Photocurrent Density in Polymer: Fullerene Solar Cells. Advanced Materials, 2010, 22, 5287-5291.	21.0	56
294	Benzotrithiophene Co-polymers with High Charge Carrier Mobilities in Field-Effect Transistors. Chemistry of Materials, 2011, 23, 4025-4031.	6.7	56
295	Efficient Charge Photogeneration by the Dissociation of PC70BM Excitons in Polymer/Fullerene Solar Cells. Journal of Physical Chemistry Letters, 2012, 3, 140-144.	4.6	56
296	Isostructural, Deeper Highest Occupied Molecular Orbital Analogues of Poly(3-hexylthiophene) for High-Open Circuit Voltage Organic Solar Cells. Chemistry of Materials, 2013, 25, 4239-4249.	6.7	55
297	Interfacial charge separation in Cu ₂ O/RuO _x as a visible light driven CO ₂ reduction catalyst. Physical Chemistry Chemical Physics, 2014, 16, 5922-5926.	2.8	55
298	p-Doping of organic hole transport layers in p–i–n perovskite solar cells: correlating open-circuit voltage and photoluminescence quenching. Journal of Materials Chemistry A, 2019, 7, 18971-18979.	10.3	55
299	A Comparison of Charge Carrier Dynamics in Organic and Perovskite Solar Cells. Advanced Materials, 2022, 34, e2101833.	21.0	55
300	Distorted Asymmetric Cubic Nanostructure of Soluble Fullerene Crystals in Efficient Polymer:Fullerene Solar Cells. ACS Nano, 2009, 3, 2557-2562.	14.6	54
301	Suppression of Recombination Losses in Polymer:Nonfullerene Acceptor Organic Solar Cells due to Aggregation Dependence of Acceptor Electron Affinity. Advanced Energy Materials, 2019, 9, 1901254.	19.5	54
302	Transient absorption spectroscopy of charge photogeneration yields and lifetimes in a low bandgap polymer/fullerenefilm. Chemical Communications, 2008, , 89-91.	4.1	53
303	Germaindacenodithiophene based low band gap polymers for organic solar cells. Chemical Communications, 2012, 48, 2955.	4.1	53
304	Distance dependent charge separation and recombination in semiconductor/molecular catalyst systems for water splitting. Chemical Communications, 2014, 50, 12768-12771.	4.1	53
305	Spectroelectrochemical Characterization of a Pentaheme Cytochrome in Solution and as Electrocatalytically Active Films on Nanocrystalline Metal-Oxide Electrodes. Journal of the American Chemical Society, 2008, 130, 8588-8589.	13.7	52
306	Indolo-naphthyridine-6,13-dione Thiophene Building Block for Conjugated Polymer Electronics: Molecular Origin of Ultrahigh n-Type Mobility. Chemistry of Materials, 2016, 28, 8366-8378.	6.7	52

#	Article	IF	Citations
307	Interfacial Engineering of a Carbon Nitride–Graphene Oxide–Molecular Ni Catalyst Hybrid for Enhanced Photocatalytic Activity. ACS Catalysis, 2018, 8, 6914-6926.	11.2	52
308	Functionalizing Nanocrystalline Metal Oxide Electrodes With Robust Synthetic Redox Proteins. ChemBioChem, 2003, 4, 1332-1339.	2.6	51
309	Radical ion pair mediated triplet formation in polymer–fullerene blend films. Chemical Communications, 2006, , 3939-3941.	4.1	51
310	Toward Improved Lifetimes of Organic Solar Cells under Thermal Stress: Substrate-Dependent Morphological Stability of PCDTBT:PCBM Films and Devices. Scientific Reports, 2015, 5, 15149.	3.3	51
311	One-Step Facile Synthesis of a Simple Hole Transport Material for Efficient Perovskite Solar Cells. Chemistry of Materials, 2016, 28, 2515-2518.	6.7	51
312	Enhancing Light Absorption and Charge Transfer Efficiency in Carbon Dots through Graphitization and Core Nitrogen Doping. Angewandte Chemie, 2017, 129, 6559-6563.	2.0	51
313	Rate of oxidation of P680 in isolated photosystem 2 reaction centers monitored by loss of chlorophyll stimulated emission. Biochemistry, 1993, 32, 8259-8267.	2.5	50
314	Novel ruthenium bipyridyl dyes with S-donor ligands and their application in dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 202, 196-204.	3.9	50
315	Pyrroloindacenodithiophene containing polymers for organic field effect transistors and organic photovoltaics. Journal of Materials Chemistry, 2011, 21, 18744.	6.7	50
316	Unravelling the pH-dependence of a molecular photocatalytic system for hydrogen production. Chemical Science, 2015, 6, 4855-4859.	7.4	50
317	Does Slow Energy Transfer Limit the Observed Time Constant for Radical Pair Formation in Photosystem II Reaction Centers?. Biochemistry, 1994, 33, 14768-14774.	2.5	48
318	Analysis of Recombination Losses in a Pentacene/C ₆₀ Organic Bilayer Solar Cell. Journal of Physical Chemistry Letters, 2011, 2, 2759-2763.	4.6	47
319	Origin of Open ircuit Voltage Enhancements in Planar Perovskite Solar Cells Induced by Addition of Bulky Organic Cations. Advanced Functional Materials, 2020, 30, 1906763.	14.9	47
320	Charge recombination in polymer/fullerene photovoltaic devices. Thin Solid Films, 2004, 451-452, 508-514.	1.8	46
321	Increased Exciton Dipole Moment Translates into Charge-Transfer Excitons in Thiophene-Fluorinated Low-Bandgap Polymers for Organic Photovoltaic Applications. Chemistry of Materials, 2015, 27, 7934-7944.	6.7	46
322	Comparing photoelectrochemical water oxidation, recombination kinetics and charge trapping in the three polymorphs of TiO2. Scientific Reports, 2017, 7, 2938.	3.3	46
323	Combined Precursor Engineering and Grain Anchoring Leading to MAâ€Free, Phaseâ€Pure, and Stable αâ€Formamidinium Lead Iodide Perovskites for Efficient Solar Cells. Angewandte Chemie - International Edition, 2021, 60, 27299-27306.	13.8	46
324	Determination of P680 singlet state lifetimes in photosystem two reaction centres. Chemical Physics Letters, 1992, 188, 54-60.	2.6	45

#	Article	IF	CITATIONS
325	Sub-picosecond Equilibration of Excitation Energy in Isolated Photosystem II Reaction Centers Revisited:  Time-Dependent Anisotropy. The Journal of Physical Chemistry, 1996, 100, 10469-10478.	2.9	45
326	Concentration-Dependent Hole Mobility and Recombination Coefficient in Bulk Heterojunctions Determined from Transient Absorption Spectroscopy. Journal of Physical Chemistry Letters, 2010, 1, 3096-3100.	4.6	45
327	Energy versuselectron transfer in organic solar cells: a comparison of the photophysics of two indenofluorene: fullerene blend films. Chemical Science, 2011, 2, 1111.	7.4	45
328	Origin of Performance Enhancement in TiO ₂ â€Carbon Nanotube Composite Perovskite Solar Cells. Small Methods, 2019, 3, 1900164.	8.6	45
329	The Excitation Wavelength and Solvent Dependance of the Kinetics of Electron Injection in Ru(dcbpy) ₂ (NCS) ₂ Sensitized Nanocrystalline TiO ₂ Films. Zeitschrift Fur Physikalische Chemie, 1999, 212, 93-98.	2.8	44
330	Photoelectrochemical study of Zn cytochrome-c immobilised on a nanoporous metal oxide electrode. Chemical Communications, 2002, , 1518-1519.	4.1	44
331	Charge Separation, Band-Bending, and Recombination in WO ₃ Photoanodes. Journal of Physical Chemistry Letters, 2019, 10, 5395-5401.	4.6	44
332	Highly stable inverted methylammonium lead tri-iodide perovskite solar cells achieved by surface re-crystallization. Energy and Environmental Science, 2020, 13, 840-847.	30.8	44
333	Phosphorene Nanoribbon-Augmented Optoelectronics for Enhanced Hole Extraction. Journal of the American Chemical Society, 2021, 143, 21549-21559.	13.7	44
334	New Fused Bis-Thienobenzothienothiophene Copolymers and Their Use in Organic Solar Cells and Transistors. Macromolecules, 2013, 46, 727-735.	4.8	43
335	Strongly oxidizing perylene-3,4-dicarboximides for use in water oxidation photoelectrochemical cells. Journal of Materials Chemistry A, 2016, 4, 2880-2893.	10.3	43
336	Influence of the Hole Transporting Layer on the Thermal Stability of Inverted Organic Photovoltaics Using Accelerated-Heat Lifetime Protocols. ACS Applied Materials & Samp; Interfaces, 2017, 9, 14136-14144.	8.0	43
337	Towards Efficient Integrated Perovskite/Organic Bulk Heterojunction Solar Cells: Interfacial Energetic Requirement to Reduce Charge Carrier Recombination Losses. Advanced Functional Materials, 2020, 30, 2001482.	14.9	43
338	Towards optimisation of photocurrent from fullerene excitons in organic solar cells. Energy and Environmental Science, 2014, 7, 1037.	30.8	42
339	Synthesis and Exciton Dynamics of Triplet Sensitized Conjugated Polymers. Journal of the American Chemical Society, 2015, 137, 10383-10390.	13.7	41
340	End Group Tuning in Acceptor–Donor–Acceptor Nonfullerene Small Molecules for High Fill Factor Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1808429.	14.9	41
341	Structure–activity relationships in well-defined conjugated oligomer photocatalysts for hydrogen production from water. Chemical Science, 2020, 11, 8744-8756.	7.4	41
342	Charge separation and fullerene triplet formation in blend films of polyfluorene polymers with [6,6]-phenyl C61 butyric acid methyl ester. Dalton Transactions, 2009, , 10000.	3.3	40

#	Article	IF	CITATIONS
343	Zn(ii) versus Ru(ii) phthalocyanine-sensitised solar cells. A comparison between singlet and triplet electron injectors. Energy and Environmental Science, 2010, 3, 1573.	30.8	40
344	Electron transfer dynamics in fuel producing photosystems. Current Opinion in Electrochemistry, 2017, 2, 136-143.	4.8	40
345	Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2001149.	19.5	40
346	Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance. Advanced Functional Materials, 2020, 30, 2004563.	14.9	40
347	Toward Visibly Transparent Organic Photovoltaic Cells Based on a Near-Infrared Harvesting Bulk Heterojunction Blend. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32764-32770.	8.0	40
348	Relationship between Excitation Energy Transfer, Trapping, and Antenna Size in Photosystem II. Biochemistry, 2001, 40, 4026-4034.	2.5	39
349	A supramolecular approach to lithium ion solvation at nanostructured dye sensitised inorganic/organic heterojunctionsElectronic Supplementary Information (ESI) available: experimental details and absorption spectra. See http://www.rsc.org/suppdata/cc/b3/b306604e/. Chemical Communications. 2003 2878.	4.1	39
350	Cyclic voltammetry and voltabsorptometry studies of redox proteins immobilised on nanocrystalline tin dioxide electrodes. Bioelectrochemistry, 2004, 63, 55-59.	4.6	39
351	Enhancing Light Absorption and Prolonging Charge Separation in Carbon Quantum Dots <i>via</i> Cl-Doping for Visible-Light-Driven Photocharge-Transfer Reactions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 34648-34657.	8.0	39
352	Interface engineering for solid-state dye-sensitised nanocrystalline solar cells: the use of an organic redox cascade. Chemical Communications, 2006, , 535-537.	4.1	38
353	Understanding the visible-light photocatalytic activity of GaN:ZnO solid solution: the role of Rh _{2â^'y} Cr _y O ₃ cocatalyst and charge carrier lifetimes over tens of seconds. Chemical Science, 2018, 9, 7546-7555.	7.4	38
354	Polymer chain/nanocrystal ordering in thin films of regionegular poly(3-hexylthiophene) and blends with a soluble fullerene. Soft Matter, 2007, 3, 117-121.	2.7	37
355	Efficient and photostable ternary organic solar cells with a narrow band gap non-fullerene acceptor and fullerene additive. Journal of Materials Chemistry A, 2020, 8, 6682-6691.	10.3	37
356	Triplet State Photosensitization of Nanocrystalline Metal Oxide Electrodes by Zinc-Substituted Cytochromec:Â Application to Hydrogen Evolution. Journal of the American Chemical Society, 2005, 127, 15120-15126.	13.7	36
357	Interplay Between Triplet-, Singlet-Charge Transfer States and Free Charge Carriers Defining Bimolecular Recombination Rate Constant of Organic Solar Cells. Journal of Physical Chemistry C, 2017, 121, 13969-13976.	3.1	36
358	Hybrid polymer–metal oxide solar cells by in situ chemical polymerization. Journal of Materials Chemistry, 2009, 19, 5377.	6.7	35
359	Spectroelectrochemical studies of hole percolation on functionalised nanocrystalline TiO ₂ films: a comparison of two different ruthenium complexes. Physical Chemistry Chemical Physics, 2011, 13, 1575-1584.	2.8	35
360	Kinetic Analysis of an Efficient Molecular Light-Driven Water Oxidation System. ACS Catalysis, 2017, 7, 5142-5150.	11.2	35

#	Article	IF	Citations
361	Bi ₂ Fe ₄ O ₉ thin films as novel visible-light-active photoanodes for solar water splitting. Journal of Materials Chemistry A, 2019, 7, 9537-9541.	10.3	35
362	Non-fullerene acceptor photostability and its impact on organic solar cell lifetime. Cell Reports Physical Science, 2021, 2, 100498.	5.6	35
363	Photocurrents from photosystem II in a metal oxide hybrid system: Electron transfer pathways. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 1497-1505.	1.0	34
364	Stability of Polymer:PCBM Thin Films under Competitive Illumination and Thermal Stress. Advanced Functional Materials, 2018, 28, 1802520.	14.9	34
365	Spectroscopic Investigation of the Effect of Microstructure and Energetic Offset on the Nature of Interfacial Charge Transfer States in Polymer: Fullerene Blends. Journal of the American Chemical Society, 2019, 141, 4634-4643.	13.7	34
366	Impact of the Synthesis Route on the Water Oxidation Kinetics of Hematite Photoanodes. Journal of Physical Chemistry Letters, 2020, 11, 7285-7290.	4.6	34
367	Enhancing the operational stability of unencapsulated perovskite solar cells through Cu–Ag bilayer electrode incorporation. Journal of Materials Chemistry A, 2020, 8, 8684-8691.	10.3	34
368	Modulating interfacial electron transfer dynamics in dye sensitised nanocrystalline metal oxide films. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 5-10.	3.9	33
369	Hybrid bulk heterojunction solar cells based on blends of TiO2 nanorods and P3HT. Comptes Rendus Physique, 2008, 9, 110-118.	0.9	33
370	ZnO-PCBM bilayers as electron transport layers in low-temperature processed perovskite solar cells. Science Bulletin, 2018, 63, 343-348.	9.0	33
371	Manipulating the Optical Properties of Carbon Dots by Fine‶uning their Structural Features. ChemSusChem, 2019, 12, 4432-4441.	6.8	33
372	Oligoethylene Glycol Side Chains Increase Charge Generation in Organic Semiconductor Nanoparticles for Enhanced Photocatalytic Hydrogen Evolution. Advanced Materials, 2022, 34, e2105007.	21.0	33
373	A Comparison of Charge Separation Dynamics in Organic Blend Films Employing Fullerene and Perylene Diimide Electron Acceptors. Journal of Physical Chemistry Letters, 2015, 6, 201-205.	4.6	32
374	The binding energy and dynamics of charge-transfer states in organic photovoltaics with low driving force for charge separation. Journal of Chemical Physics, 2019, 150, 104704.	3.0	32
375	Water oxidation kinetics of nanoporous BiVO ₄ photoanodes functionalised with nickel/iron oxyhydroxide electrocatalysts. Chemical Science, 2021, 12, 7442-7452.	7.4	32
376	Light-intensity-dependent photoresponse time of organic photodetectors and its molecular origin. Nature Communications, 2022, 13, .	12.8	31
377	New peripherally-substituted naphthalocyanines: synthesis, characterisation and evaluation in dye-sensitised photoelectrochemical solar cells. New Journal of Chemistry, 2002, 26, 1076-1080.	2.8	30
378	Solid Film versus Solution-Phase Charge-Recombination Dynamics of exTTF–Bridge–C60 Dyads. Chemistry - A European Journal, 2005, 11, 7440-7447.	3.3	30

#	Article	IF	Citations
379	Ultrasmall Co ₃ O ₄ Nanocrystals Strongly Enhance Solar Water Splitting on Mesoporous Hematite. Advanced Materials Interfaces, 2015, 2, 1500358.	3.7	30
380	All-Small-Molecule Solar Cells Incorporating NDI-Based Acceptors: Synthesis and Full Characterization. ACS Applied Materials & Samp; Interfaces, 2017, 9, 44667-44677.	8.0	29
381	Barbiturate end-capped non-fullerene acceptors for organic solar cells: tuning acceptor energetics to suppress geminate recombination losses. Chemical Communications, 2018, 54, 2966-2969.	4.1	29
382	Characterisation of a ruthenium bipyridyl dye showing a long-lived charge-separated state on TiO2 in the presence of lâ^'/l3â^'. Dalton Transactions, 2010, 39, 4138.	3.3	28
383	Hybrid Heterojunction Nanorods for Nanoscale Controlled Morphology in Bulk Heterojunction Solar Cells. Journal of Physical Chemistry C, 2011, 115, 10881-10888.	3.1	28
384	Ultra-thin Al2O3 coatings on BiVO4 photoanodes: Impact on performance and charge carrier dynamics. Catalysis Today, 2019, 321-322, 59-66.	4.4	28
385	Impact of Aggregation on the Photochemistry of Fullerene Films: Correlating Stability to Triplet Exciton Kinetics. ACS Applied Materials & Samp; Interfaces, 2017, 9, 22739-22747.	8.0	27
386	Passivation against oxygen and light induced degradation by the PCBM electron transport layerÂin planar perovskite solar cells. Sustainable Energy and Fuels, 2018, 2, 1686-1692.	4.9	27
387	Room Temperature Synthesis of Phosphineâ€Capped Lead Bromide Perovskite Nanocrystals without Coordinating Solvents. Particle and Particle Systems Characterization, 2020, 37, 1900391.	2.3	27
388	Synthesis and characterization of ZnO and ZnO:Ga films and their application in dye-sensitized solar cells. Dalton Transactions, 2008, , 1487.	3.3	26
389	Fused Cyclopentadithienothiophene Acceptor Enables Ultrahigh Shortâ€Circuit Current and High Efficiency >11% in Asâ€Cast Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1904956.	14.9	26
390	Separating bulk and surface processes in NiO $<$ sub $>$ x $<$ /sub $>$ electrocatalysts for water oxidation. Sustainable Energy and Fuels, 2020, 4, 5024-5030.	4.9	26
391	Homologous Bromides Treatment for Improving the Openâ€Circuit Voltage of Perovskite Solar Cells. Advanced Materials, 2022, 34, e2106280.	21.0	26
392	Optical sensing of cyanide using hybrid biomolecular films. Inorganic Chemistry Communication, 2006, 9, 1239-1242.	3.9	25
393	The effect of temperature on the charge transport and transient absorption properties of K27 sensitized DSSC. Solar Energy Materials and Solar Cells, 2008, 92, 1047-1053.	6.2	25
394	DYE-SENSITISED MESOSCOPIC SOLAR CELLS. Series on Photoconversion of Solar Energy, 2008, , 503-536.	0.2	25
395	Optimisation of diketopyrrolopyrrole:fullerene solar cell performance through control of polymer molecular weight and thermal annealing. Journal of Materials Chemistry A, 2014, 2, 19282-19289.	10.3	25
396	Photodoping and Fast Charge Extraction in Ionic Carbon Nitride Photoanodes. Advanced Functional Materials, 2021, 31, 2105369.	14.9	25

#	Article	IF	Citations
397	Spectroelectrochemistry of Water Oxidation Kinetics in Molecular versus Heterogeneous Oxide Iridium Electrocatalysts. Journal of the American Chemical Society, 2022, 144, 8454-8459.	13.7	25
398	The entanglement of excitation energy transfer and electron transfer in the reaction centre of photosystem II. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 1998, 356, 449-464.	3.4	24
399	Rational design of a neutral pH functional and stable organic photocathode. Chemical Communications, 2018, 54, 5732-5735.	4.1	24
400	Direct spectroelectrochemistry of peroxidases immobilised on mesoporous metal oxide electrodes: Towards reagentless hydrogen peroxide sensing. Analytica Chimica Acta, 2009, 648, 2-6.	5.4	23
401	Opportunities for mesoporous nanocrystalline SnO2 electrodes in kinetic and catalytic analyses of redox proteins. Biochemical Society Transactions, 2009, 37, 368-372.	3.4	23
402	The effect of thiadiazole out-backbone displacement in indacenodithiophene semiconductor polymers. Journal of Materials Chemistry C, 2014, 2, 8789-8795.	5.5	23
403	Influence of Polymer Aggregation and Liquid Immiscibility on Morphology Tuning by Varying Composition in PffBT4Tâ€2DT/Nonfullerene Organic Solar Cells. Advanced Energy Materials, 2020, 10, 1903248.	19.5	23
404	Redox-State Kinetics in Water-Oxidation IrO _{<i>x</i>} Electrocatalysts Measured by <i>Operando</i> Spectroelectrochemistry. ACS Catalysis, 2021, 11, 15013-15025.	11.2	23
405	Synthesis and properties of [Pt(4-CO2CH3-py)2(mnt)]: comparison of pyridyl and bipyridyl-based dyes for solar cells. Dalton Transactions, 2008, , 6940.	3.3	22
406	Exciton and Charge Generation in PC ₆₀ BM Thin Films. Journal of Physical Chemistry C, 2017, 121, 14470-14475.	3.1	22
407	An Analysis of the Factors Determining the Efficiency of Photocurrent Generation in Polymer:Nonfullerene Acceptor Solar Cells. Advanced Energy Materials, 2018, 8, 1801537.	19.5	22
408	Interfacial electron transfer on cytochrome-c sensitised conformally coated mesoporous TiO2 films. Bioelectrochemistry, 2008, 74, 142-148.	4.6	21
409	Understanding Structure–Property Relationships in All-Small-Molecule Solar Cells Incorporating a Fullerene or Nonfullerene Acceptor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 36037-36046.	8.0	21
410	Organic cathode interfacial materials for non-fullerene organic solar cells. Journal of Materials Chemistry A, 2021, 9, 13506-13514.	10.3	21
411	Aerosol Assisted Solvent Treatment: A Universal Method for Performance and Stability Enhancements in Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101420.	19.5	21
412	Freestanding Polymer-Metal Oxide Nanocomposite Films for Light-Driven Oxygen Scavenging. Advanced Materials, 2005, 17, 2365-2368.	21.0	20
413	Use of microperoxidase- 11 to functionalize tin dioxide electrodes for the optical and electrochemical sensing of hydrogen peroxide. Analytica Chimica Acta, 2011, 686, 126-132.	5.4	20
414	Charge Separation in Intermixed Polymer:PC ₇₀ BM Photovoltaic Blends: Correlating Structural and Photophysical Length Scales as a Function of Blend Composition. Journal of Physical Chemistry C, 2017, 121, 9790-9801.	3.1	20

#	Article	IF	Citations
415	Dihydropyrroloindoledione-based copolymers for organic electronics. Journal of Materials Chemistry C, 2013, 1, 2711.	5.5	19
416	Solar Reforming of Biomass with Homogeneous Carbon Dots. Angewandte Chemie, 2020, 132, 18341-18345.	2.0	19
417	Field Effect versus Driving Force: Charge Generation in Smallâ€Molecule Organic Solar Cells. Advanced Energy Materials, 2020, 10, 2002124.	19.5	19
418	Identifying the Molecular Origins of High-Performance in Organic Photodetectors Based on Highly Intermixed Bulk Heterojunction Blends. ACS Nano, 2021, 15, 1217-1228.	14.6	19
419	P450 versus P420: Correlation between Cyclic Voltammetry and Visible Absorption Spectroscopy of the Immobilized Heme Domain of Cytochrome P450 BM3. Journal of Physical Chemistry B, 2008, 112, 14063-14068.	2.6	18
420	In Situ Measurement of Energy Level Shifts and Recombination Rates in Subphthalocyanine/C ₆₀ Bilayer Solar Cells. Journal of Physical Chemistry C, 2014, 118, 22858-22864.	3.1	18
421	Understanding the Effect of Unintentional Doping on Transport Optimization and Analysis in Efficient Organic Bulk-Heterojunction Solar Cells. Physical Review X, 2015, 5, .	8.9	18
422	Ultraviolet Radiation Induced Dopant Loss in a TiO ₂ Photocatalyst. ACS Catalysis, 2017, 7, 1485-1490.	11.2	18
423	Tuning Charge Carrier Dynamics and Surface Passivation in Organolead Halide Perovskites with Capping Ligands and Metal Oxide Interfaces. Advanced Optical Materials, 2018, 6, 1701203.	7.3	18
424	Probing and Controlling Intragrain Crystallinity for Improved Low Temperature–Processed Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1803943.	14.9	18
425	Interlaboratory indoor ageing of roll-to-roll and spin coated organic photovoltaic devices: Testing the ISOS tests. Polymer Degradation and Stability, 2014, 109, 162-170.	5.8	17
426	Correlating the Active Layer Structure and Composition with the Device Performance and Lifetime of Amino-Acid-Modified Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2021, 13, 43505-43515.	8.0	17
427	Kinetic competition in flexible dye sensitised solar cells employing a series of polymer electrolytes. Chemical Communications, 2006, , 877.	4.1	16
428	Charge Carrier Dynamics in Metal Oxide Photoelectrodes for Water Oxidation. Semiconductors and Semimetals, 2017, , 3-46.	0.7	16
429	Round robin performance testing of organic photovoltaic devices. Renewable Energy, 2014, 63, 376-387.	8.9	15
430	Intercalated vs Nonintercalated Morphologies in Donor–Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited. Journal of Physical Chemistry Letters, 2017, 8, 4061-4068.	4.6	15
431	Stability study of thermal cycling on organic solar cells. Journal of Materials Research, 2018, 33, 1902-1908.	2.6	15
432	Dynamic PCBM:Dimer Population in Solar Cells under Light and Temperature Fluctuations. Advanced Energy Materials, 2019, 9, 1803948.	19.5	15

#	Article	IF	CITATIONS
433	Impact of concentration self-quenching on the charge generation yield of fullerene based donor–bridge–acceptor compounds in the solid state. Physical Chemistry Chemical Physics, 2011, 13, 3721-3729.	2.8	14
434	Polaron stability in semiconducting polymer neat films. Chemical Communications, 2014, 50, 14425-14428.	4.1	14
435	Power conversion efficiency enhancement in diketopyrrolopyrrole based solar cells through polymer fractionation. Journal of Materials Chemistry C, 2014, 2, 8593-8598.	5.5	14
436	Operational electrochemical stability of thiophene-thiazole copolymers probed by resonant Raman spectroscopy. Journal of Chemical Physics, 2015, 142, 244904.	3.0	14
437	Artificial photosynthesis – concluding remarks. Faraday Discussions, 2019, 215, 439-451.	3.2	14
438	Covalent grafting of molecular catalysts on C ₃ N _x H _y as robust, efficient and well-defined photocatalysts for solar fuel synthesis. Chemical Science, 2020, 11, 8425-8432.	7.4	14
439	Self-supported ultra-active NiO-based electrocatalysts for the oxygen evolution reaction by solution combustion. Journal of Materials Chemistry A, 2021, 9, 12700-12710.	10.3	14
440	Insights from Transient Absorption Spectroscopy into Electron Dynamics Along the Gaâ€Gradient in Cu(In,Ga)Se ₂ Solar Cells. Advanced Energy Materials, 2021, 11, 2003446.	19.5	14
441	Understanding What Controls the Rate of Electrochemical Oxygen Evolution. Joule, 2021, 5, 16-18.	24.0	14
442	Dinuclear Ru-Cu Complexes: Electronic Characterisation and Application to Dye-Sensitised Solar Cells. European Journal of Inorganic Chemistry, 2011, 2011, 589-596.	2.0	13
443	Synergetic enhancement of organic solar cell thermal stability by wire bar coating and light processing. Journal of Materials Chemistry C, 2015, 3, 9551-9558.	5.5	13
444	Photophysical Study of DPPTTâ€T/PC ₇₀ BM Blends and Solar Devices as a Function of Fullerene Loading: An Insight into EQE Limitations of DPPâ€Based Polymers. Advanced Functional Materials, 2017, 27, 1604426.	14.9	13
445	Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]arsole-containing conjugated polymers in organic photovoltaic devices. Dalton Transactions, 2019, 48, 6676-6679.	3.3	13
446	Comparison of primary electron transfer in Photosystem II reaction centres isolated from the higher plant Pisum sativum and the green alga Chlamydomonas reinhardtii. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1186, 247-251.	1.0	12
447	Functionalized titania nanoparticles for mercury scavenging. Journal of Materials Chemistry, 2007, 17, 2028-2032.	6.7	12
448	Molecular approaches to solar energy conversion: the energetic cost of charge separation from molecular-excited states. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120195.	3.4	12
449	Oxygen diffusion dynamics in organic semiconductor films. Journal of Materials Chemistry C, 2015, 3, 10079-10084.	5.5	12
450	Impact of Initial Bulkâ€Heterojunction Morphology on Operational Stability of Polymer:Fullerene Photovoltaic Cells. Advanced Materials Interfaces, 2019, 6, 1801763.	3.7	12

#	Article	IF	Citations
451	Charge accumulation kinetics in multi-redox molecular catalysts immobilised on TiO ₂ . Chemical Science, 2021, 12, 946-959.	7.4	12
452	Inter versus intra-molecular photoinduced charge separation in solid films of donor–acceptor molecules. Chemical Communications, 2008, , 4915.	4.1	11
453	Evidence for Strong and Weak Phenyl-C ₆₁ -Butyric Acid Methyl Ester Photodimer Populations in Organic Solar Cells. Chemistry of Materials, 2019, 31, 6076-6083.	6.7	11
454	Combined precursor engineering and grain anchoring leading to MAâ€free, phaseâ€pure and stable αâ€formamidinium lead iodide perovskites for efficient solar cells. Angewandte Chemie, 0, , .	2.0	11
455	Picosecond time-resolved absorption and emission studies of pyrazolotriazole azomethine dyes. Journal of the Chemical Society, Faraday Transactions, 1991, 87, 3479.	1.7	10
456	TOF mobility measurements in pristine films of P3HT: control of hole injection and influence of film thickness. , 2006, 6334, 16.		10
457	Synthesis and photo-induced charge separation of confined conjugation length phenylene vinylene-based polymers. Polymer Chemistry, 2013, 4, 5305.	3.9	10
458	Morphology-performance relationships in polymer/fullerene blends probed by complementary characterisation techniques – effects of nanowire formation and subsequent thermal annealing. Journal of Materials Chemistry C, 2015, 3, 9224-9232.	5.5	10
459	Dynamics of photoconversion processes: the energetic cost of lifetime gain in photosynthetic and photovoltaic systems. Chemical Society Reviews, 2021, 50, 13372-13409.	38.1	10
460	A Dual Functional Polymer Interlayer Enables Nearâ€Infrared Absorbing Organic Photoanodes for Solar Water Oxidation. Advanced Energy Materials, 2022, 12, .	19.5	10
461	Transient absorption spectroscopy of the primary electron donor, P680, in the isolated photosystem II reaction centre. Biochimica Et Biophysica Acta - Bioenergetics, 1990, 1018, 168-172.	1.0	9
462	Excited state spectroscopy in polymer fullerene photovoltaic devices under operation conditions. Synthetic Metals, 2003, 139, 577-580.	3.9	9
463	Correlating Non-Geminate Recombination with Film Structure: A Comparison of Polythiophene: Fullerene Bilayer and Blend Films. Journal of Physical Chemistry Letters, 2014, 5, 3669-3676.	4.6	9
464	Solvothermal Synthesis of Ferroelectric BaTiO3 Nanoparticles and Their Application to Dye-sensitized Solar Cells. Journal of the Korean Physical Society, 2018, 73, 627-631.	0.7	9
465	Anisotropic Electron Transport Limits Performance of Bi ₂ WO ₆ Photoanodes. Journal of Physical Chemistry C, 2020, 124, 18859-18867.	3.1	9
466	Reply to: Questioning the rate law in the analysis of water oxidation catalysis on haematite photoanodes. Nature Chemistry, 2020, 12, 1099-1101.	13.6	9
467	Photoelectrochemical concurrent hydrogen generation and heavy metal recovery from polluted acidic mine water. Sustainable Energy and Fuels, 2021, 5, 3084-3091.	4.9	9
468	Overcoming Nanoscale Inhomogeneities in Thin-Film Perovskites via Exceptional Post-annealing Grain Growth for Enhanced Photodetection. Nano Letters, 2022, 22, 979-988.	9.1	9

#	Article	IF	Citations
469	Asymmetric charge carrier transfer and transport in planar lead halide perovskite solar cells. Cell Reports Physical Science, 2022, 3, 100890.	5.6	9
470	Charge Recombination in CuPc/PTCDA Thin Films. Journal of Physical Chemistry B, 2005, 109, 11693-11696.	2.6	8
471	Enhancing Fullereneâ€Based Solar Cell Lifetimes by Addition of a Fullerene Dumbbell. Angewandte Chemie, 2014, 126, 13084-13089.	2.0	8
472	Chapter 5. Rate Law Analysis of Water Splitting Photoelectrodes. RSC Energy and Environment Series, 2018, , 128-162.	0.5	8
473	Rational Design of Donor–Acceptor Based Semiconducting Copolymers with High Dielectric Constants. Journal of Physical Chemistry C, 2021, 125, 6886-6896.	3.1	8
474	Waterâ€Insensitive Electron Transport and Photoactive Layers for Improved Underwater Stability of Organic Photovoltaics. Advanced Functional Materials, 2022, 32, .	14.9	8
475	Long-lived primary radical pair state detected by time-resolved fluorescence and absorption spectroscopy in an isolated Photosystem two core. Photosynthesis Research, 1992, 34, 419-431.	2.9	7
476	Impact of RbF and NaF Postdeposition Treatments on Charge Carrier Transport and Recombination in Gaâ€Graded Cu(In,Ga)Se ₂ Solar Cells. Advanced Functional Materials, 2021, 31, 2103663.	14.9	7
477	Efficient Hole Trapping in Carbon Dot/Oxygenâ€Modified Carbon Nitride Heterojunction Photocatalysts for Enhanced Methanol Production from CO 2 under Neutral Conditions. Angewandte Chemie, 2021, 133, 20979-20984.	2.0	7
478	A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells., 2010,, 63-69.		6
479	Nanoscale Structure–Property Relationships in Low-Temperature Solution-Processed Electron Transport Layers for Organic Photovoltaics. Crystal Growth and Design, 2017, 17, 6559-6564.	3.0	6
480	Impact of Fullerene Intercalation on Structural and Thermal Properties of Organic Photovoltaic Blends. Journal of Physical Chemistry C, 2017, 121, 20976-20985.	3.1	6
481	Excitation Wavelength-Dependent Internal Quantum Efficiencies in a P3HT/Nonfullerene Acceptor Solar Cell. Journal of Physical Chemistry C, 2019, 123, 5826-5832.	3.1	6
482	The effect of nanoparticulate PdO co-catalysts on the faradaic and light conversion efficiency of WO ₃ photoanodes for water oxidation. Physical Chemistry Chemical Physics, 2021, 23, 1285-1291.	2.8	6
483	Use of gas cluster ion source depth profiling to study the oxidation of fullerene thin films by XPS. Organic Electronics, 2017, 49, 85-93.	2.6	5
484	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12316-12324.	3.3	5
485	Synthetic approaches to artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 242-281.	3.2	5
486	Title is missing!. Photosynthesis Research, 1999, 62, 205-217.	2.9	4

#	Article	IF	Citations
487	Piezoelectric Enhancement of Hybrid Organic/Inorganic Photovoltaic Device. Journal of Physics: Conference Series, 2013, 476, 012009.	0.4	4
488	Interfacial Electron Transfer in Dye Sensitised Nanocrystalline TiO2 Films. Springer Series in Chemical Physics, 1996, , 433-434.	0.2	3
489	The effect of zinc oxide nanostructure on the performance of hybrid polymer/zinc oxide solar cells. , 2005, , .		3
490	Trapping of excitation energy by photosystem two reaction centres: Is P680 a multimer?. Solar Energy Materials and Solar Cells, 1995, 38, 135-138.	6.2	2
491	Interfacial electron transfer in dye sensitised nanocrystalline TiO2 films. Journal of Chemical Sciences, 1997, 109, 411-414.	1.5	2
492	Transient absorption and photovoltage characterization of dye-sensitized solar cells., 2004,,.		2
493	ZnO Nanostructured Diodes - Enhancing Energy Generation through Scavenging Vibration. Materials Research Society Symposia Proceedings, 2013, 1556, 1.	0.1	2
494	Demonstrator devices for artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 345-363.	3.2	2
495	Organic Solar Cells: Exciton and Charge Carrier Dynamics in Highly Crystalline PTQ10:IDIC Organic Solar Cells (Adv. Energy Mater. 38/2020). Advanced Energy Materials, 2020, 10, 2070158.	19.5	2
496	The Influence of Energy Level Disorder on the Charge Separation / Trapping Kinetics in Photosystem Two. , 1995, , 611-614.		2
497	Identification of Chlorophyll Anion States During Charge Separation in Mutant Photosystem II Reaction Centres. , 1998, , 1041-1044.		2
498	Charge recombination studies in polyfluorene:[6,6]-phenyl c 61 -butyric acid methyl ester blend photovoltaic cells., 2004, 5215, 262.		1
499	Solid state solar cell made from nanocrystalline TiO 2 with a fluorene-thiophene copolymer as a hole conductor. , 2004, , .		1
500	DYE- AND PEROVSKITE-SENSITISED MESOSCOPIC SOLAR CELLS. Series on Photoconversion of Solar Energy, 2014, , 413-452.	0.2	1
501	Photocatalysis: Evidence and Effect of Photogenerated Charge Transfer for Enhanced Photocatalysis in WO ₃ /TiO ₂ Heterojunction Films: A Computational and Experimental Study (Adv. Funct. Mater. 18/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
502	An overview of electron and energy transfer in the reaction center of Photosystem Two. AIP Conference Proceedings, 1996, , .	0.4	0
503	PROTEIN ADSORPTION ON NANOCRYSTALLINE Ti02 FILMS: A NOVEL IMMOBILISATION STRATEGY FOR BIOELECTROCHEMISTRY AND BIOANALYTICAL DEVICES. Biochemical Society Transactions, 2000, 28, A44-A44.	3.4	0
504	Slow charge recombination at a dye-sensitized nanocrystalline TiO 2 /organic semiconductor heterojunction employing Al 2 O 3 coatings. , 2004, , .		0

#	Article	IF	CITATIONS
505	Kinetic redundancy in dye-sensitized solar cells: the use of high-bandgap metal oxide barrier layers. , 2004, 5520, 76.		0
506	Efficient hybrid polymer/TiO 2 solar cells using a multilayer structure. , 2004, , .		0
507	Comparison of the field and Fermi level dependence of transport and recombination in polymer/C60 cells and solid state dye-sensitized cells. , 2006, 6334, 5.		0
508	Electronic structure tuning of new fused thieno $[3,2-b]$ thieno bisthiophene based polymers via alkyl chain and Group IV heteroatom modulation. Proceedings of SPIE, 2012, , .	0.8	0
509	Correlating crystallinity and photophysics for donor polymers of interest for organic photovoltaic devices. Proceedings of SPIE, 2012, , .	0.8	0
510	Transient absorption spectroscopy of ultra-low band gap polymers for organic electronic applications. Proceedings of SPIE, 2016, , .	0.8	0
511	Charge generation in polymer:fullerene photovoltaic systems (Conference Presentation). , 2016, , .		0
512	Aceneâ€Modified Smallâ€Molecule Donors for Organic Photovoltaics. Chemistry - A European Journal, 2019, 25, 12233-12233.	3.3	0
513	Beyond artificial photosynthesis: general discussion. Faraday Discussions, 2019, 215, 422-438.	3.2	0
514	Titelbild: Solar Reforming of Biomass with Homogeneous Carbon Dots (Angew. Chem. 41/2020). Angewandte Chemie, 2020, 132, 17913-17913.	2.0	0
515	Asymmetric Charge Carrier Transfer and Transport in Planar Lead Halide Perovskite Solar Cells. , 0, , .		0
516	Charge-transfer States in Organic Solar Cells: Understanding the Impact of Energetics. , 0, , .		0
517	Parameters controlling electron injection kinetics in ruthenium bipyridyl dye sensitised titanium dioxide nanocrystalline films. , 2000, , .		0
518	Transient Absorption Studies Of Charge Photogeneration In Organic And Dye Sensitized Solar Cells. , 2010, , .		0
519	Primary Radical Pair Formation in Photosystem-Two Reaction Centres. Springer Series in Chemical Physics, 1993, , 546-548.	0.2	0
520	Photoselective Excitation of P680 ?. , 1995, , 607-610.		0
521	Comparison of PS II Primary Photochemistry in Higher Plant, Synechocystis and Synechocystis Mutants., 1995,, 615-618.		0
522	Construction and Initial Characterisation of a D2-LEU205TYR Mutant of Chlamydomonas Reinhardtii. , 1995, , 839-842.		0

#	Article	IF	CITATIONS
523	Observation of an Intermediate Step During Primary Charge Separation by Photosystem Two. Springer Series in Chemical Physics, 1996, , 342-343.	0.2	O
524	Nontoxic (CH3NH3)3Bi2l9 Bismuth based perovskite solar cells: Improved device performance and stability through morphological tailoring. , 0 , , .		0
525	Towards OPV devices scaling up: understand the loss mechanisms for thick devices. , 0, , .		0
526	Investigating the Influence of Nanostructuring on Photoanode Performance. , 0, , .		0
527	Understanding Hydrogen Evolution Activity of Linear Organic Photocatalysts. , 0, , .		0
528	Spectroelectrochemical Study of the Catalytic Species on the Ni(Fe)OOH and FeOOH Electrocatalysts. , 0, , .		0
529	Charge Carrier Dynamics in Nanostructured Tungsten Trioxide for Solar Driven Water Oxidation. , 0, ,		0
530	Charge carrier dynamics in organic and perovskite solar cells. , 0, , .		0
531	Effect of Interface Engineering and Origin of High Current in Planar Inverted Perovskite Solar cells. , 0, , .		0
532	(Keynote) Transient Absorption Studies of Charge Carrier Dynamics in Photocatalysts and Photoelectrodes for Solar Driven Water Splitting. ECS Meeting Abstracts, 2019, , .	0.0	0
533	Charge Carrier Dynamics in Disordered Materials for Solar Energy Conversion. , 0, , .		0
534	Using Transient Spectroscopic Techniques to Investigate the Effect of Catalyst Overlayers and Morphology on the Water Oxidation Performance of Bismuth Vanadate. , 0, , .		0
535	Spectroscopic Analysis of NiOx Catalysts for Water Oxidation. , 0, , .		0
536	Investigating the Enhanced Performance of WO3 Photoanodes from the Addition of Pd Co-catalysts. , $0, \dots$		0
537	Operando spectroelectrochemical analyses of water oxidation kinetics on metal oxide electrodes and photoelectrodes., 0,,.		0
538	Influence of Polymer Aggregation and Liquid Immiscibility on Morphology Tuning by Varying Composition in PffBT4T-2DT/Non-Fullerene Organic Solar Cells. Advanced Energy Materials, 2020, 10, .	19.5	0
539	Using Transient Spectroscopic Techniques to Investigate the Effect of Catalyst Overlayers and Morphology on the Water Oxidation Performance of Bismuth Vanadate. , 0, , .		0
540	Spectroscopic Analysis of NiOx Catalysts for Water Oxidation. , 0, , .		0

#	Article	IF	CITATIONS
541	Charge Carrier Dynamics in Nanostructured Tungsten Trioxide for Solar Driven Water Oxidation. , 0, ,		O
542	Understanding Hydrogen Evolution Activity of Linear Organic Photocatalysts., 0,,.		0
543	Spectroelectrochemical Study of the Catalytic Species on the Ni(Fe)OOH and FeOOH Electrocatalysts. , 0, , .		0
544	Investigating the Influence of Nanostructuring on Photoanode Performance. , 0, , .		0
545	Investigating the Enhanced Performance of WO3 Photoanodes from the Addition of Pd Co-catalysts. , 0, , .		O
546	Improving Photostability of Organic Solar Cells Using a Self Assembled Monolayer., 0, , .		0
547	Charge Carrier Behaviour in Organic Planar Heterojunctions by Long-range Exciton Diffusion in Non-fullerene Acceptors. , 0, , .		O
548	Understanding cooperative phenomena in cobalt-based water oxidation electrocatalysts using time resolved operando spetroelectrochemisty , 0, , .		0
549	A Comparison of Water Oxidation Kinetics on Amorphous and Crystalline Iridium Oxides., 0,,.		O
550	Investigating pH-Dependent Redox Kinetics on Iridium Based Oxides Using Operando Optical Spectroscopy. , 0, , .		0
551	Are charge transfer states important for the function of high performance organic solar cells?., 0, , .		O
552	A Dual Functional Polymer Interlayer Enables Nearâ€Infrared Absorbing Organic Photoanodes for Solar Water Oxidation (Adv. Energy Mater. 18/2022). Advanced Energy Materials, 2022, 12, .	19.5	0
553	Operando-photoluminescence spectroscopy for accessing radiative and non-radiative losses in perovskite solar cells., 0,,.		O