Jamal Chaouki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1606693/publications.pdf

Version: 2024-02-01

274 papers 7,960 citations

43973 48 h-index 71 g-index

280 all docs

280 docs citations

times ranked

280

4776 citing authors

#	Article	IF	CITATIONS
1	A correlation for average droplet diameter in rotating packed beds. Canadian Journal of Chemical Engineering, 2023, 101, 160-171.	0.9	1
2	On the Investigation of the Thermal Degradation of Waste Printed Circuit Boards for Recycling Applications. Advanced Sustainable Systems, 2022, 6, 2100054.	2.7	8
3	Effect of particle angularity on flow regime transitions and segregation of bidisperse blends in a rotating drum. Computational Particle Mechanics, 2022, 9, 443-463.	1.5	6
4	Development of a novel silica-based microwave receptor for high temperature processes. Powder Technology, 2022, 399, 117180.	2.1	1
5	Combustion behaviour and reaction kinetics of GO/Al/oxidizing salts ternary nanothermites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10245-10257.	2.0	3
6	Two-Phase flow characterization of a rotating packed bed through CFD simulation in OpenFOAM. Chemical Engineering Science, 2022, 253, 117589.	1.9	7
7	Microwave-assisted catalytic pyrolysis of paraffin wax. Fuel, 2022, 320, 123886.	3.4	15
8	Process development and techno-economic analysis of microwave-assisted demetallization and desulfurization of crude petroleum oil. Energy Reports, 2022, 8, 4373-4385.	2.5	7
9	Preface: Special issue of "Multiphase Flows in Process Engineering: Recent Experimental, Theoretical and Numerical Developments― International Journal of Chemical Reactor Engineering, 2022, 20, 385-385.	0.6	O
10	Experimental methods in chemical engineering: Optical fibre probes in multiphase systems. Canadian Journal of Chemical Engineering, 2022, 100, 2762-2777.	0.9	1
11	High-resolution simulation of oscillating bubble plumes in a square cross-sectioned bubble column with an unsteady k-ε model. Chemical Engineering Science, 2021, 231, 116321.	1.9	3
12	Impact of surface roughness on heat transfer through spherical particle packed beds. Chemical Engineering Science, 2021, 231, 116256.	1.9	13
13	In-situ quantification of the magnitude of interparticle forces and its temperature variation in a gas-solid fluidized bed. Chemical Engineering Science, 2021, 232, 116349.	1.9	10
14	Impact of granular segregation on heat transfer in horizontal drums. Chemical Engineering Journal, 2021, 409, 128039.	6.6	14
15	Dehydration of lithium dihydrogenphosphate in a ballâ€mill rotaryâ€kiln (<scp>BaMRoK</scp>) reactor. Canadian Journal of Chemical Engineering, 2021, 99, 667-679.	0.9	1
16	Synthesis and Characterization of Tertiary Nanothermite CNMs/Al/KClO ₄ with Enhanced Combustion Characteristics. Propellants, Explosives, Pyrotechnics, 2021, 46, 995-1005.	1.0	7
17	Synthesis of Li ₄ Ti ₅ O ₁₂ negative electrode material in a fluidized bed thermogravimetric analyzer. Canadian Journal of Chemical Engineering, 2021, 99, 1836-1848.	0.9	1
18	Pulseâ€assisted fluidization of nanoparticles: Case of lithium iron phosphate material. Canadian Journal of Chemical Engineering, 2021, 99, 1824-1835.	0.9	0

#	Article	IF	CITATIONS
19	Kinetic study of calcination of a rare earth ore. Hydrometallurgy, 2021, 200, 105557.	1.8	3
20	Calibration of solids concentration optical fibre probes with solidsâ€polymer blocks. Canadian Journal of Chemical Engineering, 2021, 99, 1627-1638.	0.9	2
21	<scp>CFDâ€DEM</scp> analysis of the spouted fluidized bed with nonâ€spherical particles. Canadian Journal of Chemical Engineering, 2021, 99, 2303-2319.	0.9	20
22	On the Volume of Fluid Simulation Details and Droplet Size Distribution inside Rotating Packed Beds. Industrial & Engineering Chemistry Research, 2021, 60, 8888-8900.	1.8	10
23	Electrification of materials processing via microwave irradiation: A review of mechanism and applications. Applied Thermal Engineering, 2021, 193, 117003.	3.0	50
24	A cleaner recovery of rare earth bearing minerals by Pickering emulsification: Improvement of processing conditions toward an economic operation. Journal of Environmental Chemical Engineering, 2021, 9, 105449.	3.3	2
25	Effect of pressure on the hydrodynamics of a pilotâ€scale bubble column operating with low and moderate viscosity Newtonian liquids. Canadian Journal of Chemical Engineering, 2021, 99, 2320-2332.	0.9	1
26	Combustion characteristics of EMOFs/oxygenated salts novel thermite for green energetic applications. Thermochimica Acta, 2021, 704, 179019.	1.2	3
27	Superior performance of quaternary NC/GO/Al/KClO4 nanothermite for high speed impulse small-scale propulsion applications. Combustion and Flame, 2021, 232, 111527.	2.8	13
28	Effect of solid loading and particle size on the phase holdup distribution and bubble behaviour in a pilot-scale slurry bubble column. Chemical Engineering Science, 2021, 243, 116732.	1.9	10
29	Experimental methods in chemical engineering: Thermogravimetric analysis—TGA. Canadian Journal of Chemical Engineering, 2020, 98, 34-43.	0.9	146
30	Simultaneous effect of particle size and solid concentration on the hydrodynamics of slurry bubble column reactors. AICHE Journal, 2020, 66, e16813.	1.8	24
31	Lethe: An open-source parallel high-order adaptative CFD solver for incompressible flows. SoftwareX, 2020, 12, 100579.	1.2	20
32	Size segregation of bidisperse granular mixtures in rotating drum. Powder Technology, 2020, 374, 172-184.	2.1	21
33	Separation of Radioactive Elements from Rare Earth Element-Bearing Minerals. Metals, 2020, 10, 1524.	1.0	36
34	Upgrading of Oils from Biomass and Waste: Catalytic Hydrodeoxygenation. Catalysts, 2020, 10, 1381.	1.6	42
35	An environmentally friendly route for beneficiation of rare earth-bearing minerals by Pickering emulsification: adjusting the interfacial and formulation parameters. Green Chemistry, 2020, 22, 5771-5784.	4.6	2
36	Multilayer Thin Films on Fine Particles. , 2020, , .		0

#	Article	IF	CITATIONS
37	Solid holdâ€up measurement in a jetâ€impactor assisted fluidized bed using gammaâ€ray densitometry. AICHE Journal, 2020, 66, e16653.	1.8	1
38	Metal and sulfur removal from petroleum oil using a novel demetallization-desulfurization agent and process. Journal of Cleaner Production, 2020, 275, 124177.	4.6	21
39	Effect of solid particles on the volumetric gas liquid mass transfer coefficient in slurry bubble column reactors. Chemical Engineering Science, 2020, 227, 115912.	1.9	28
40	Advanced Coal, Biomass and Waste Conversion Technologies. Journal of Carbon Research, 2020, 6, 8.	1.4	0
41	A bubble-induced turbulence model for gas-liquid bubbly flows in airlift columns, pipes and bubble columns. Chemical Engineering Science, 2020, 227, 115945.	1.9	10
42	Production of rare earth oxides from raw ore in fluidized bed reactor. Journal of Industrial and Engineering Chemistry, 2020, 85, 141-151.	2.9	1
43	Kinetics of calcination of natural carbonate minerals. Minerals Engineering, 2020, 150, 106279.	1.8	16
44	Continuous aerosol photopolymerization to coat de-agglomerated nanoparticles. Chemical Engineering Journal, 2020, 390, 124526.	6.6	12
45	The development of industrial (thermal) processes in the context of sustainability: The case for microwave heating. Canadian Journal of Chemical Engineering, 2020, 98, 832-847.	0.9	18
46	Development and confirmation of a simple procedure to measure solids distribution in fluidized beds using tracer particles. Chemical Engineering Science, 2020, 217, 115501.	1.9	15
47	Microwave effect on kinetics of paper cups pyrolysis. Canadian Journal of Chemical Engineering, 2020, 98, 1757-1766.	0.9	10
48	Kinetic study of microwave pyrolysis of paper cups and comparison with calcium oxide catalyzed reaction. AICHE Journal, 2019, 65, 684-690.	1.8	9
49	Investigation of Energy Harvesting Using Solar Water Heating and Photovoltaic Systems for Gaza and Montreal QC Climates. , 2019, , .		4
50	Effect of interparticle force on gas dynamics in a bubbling gas–solid fluidized bed: A CFD-DEM study. Chemical Engineering Research and Design, 2019, 152, 348-362.	2.7	13
51	Physical beneficiation of rare earth-bearing ores by Pickering emulsification. Minerals Engineering, 2019, 144, 106034.	1.8	6
52	Mass transfer in the homogeneous flow regime of a bubble column. Chemical Engineering and Processing: Process Intensification, 2019, 144, 107647.	1.8	12
53	Defluidization Prediction and Prevention during Cocombustion of ReEngineered Feedstock with Coal in a Bubbling Fluidized Bed Combustor. Energy & Samp; Fuels, 2019, 33, 1603-1621.	2.5	5
54	Kinetics of the dehydration of lithium dihydrogenphosphate. Canadian Journal of Chemical Engineering, 2019, 97, 2273-2286.	0.9	2

#	Article	IF	CITATIONS
55	Experimental Methods in Chemical Engineering: Discrete Element Methodâ€"DEM. Canadian Journal of Chemical Engineering, 2019, 97, 1964-1973.	0.9	44
56	Gasâ€phase carbon coating of LiFePO ₄ nanoparticles in fluidized bed reactor. Canadian Journal of Chemical Engineering, 2019, 97, 2259-2272.	0.9	6
57	Multiscale multiphase phenomena in bubble column reactors: A review. Renewable Energy, 2019, 141, 613-631.	4.3	81
58	Piloting melt synthesis and manufacturing processes to produce câ€lifepo ₄ : preface. Canadian Journal of Chemical Engineering, 2019, 97, 2189-2195.	0.9	4
59	New technique for simultaneous measurement of the local solid and gas holdup by using optical fiber probes in the slurry bubble column. Chemical Engineering Journal, 2019, 358, 831-841.	6.6	35
60	Numerical and experimental comparison of tracer particle and averaging techniques for particle velocities in a fluidized bed. Chemical Engineering Science, 2019, 195, 356-366.	1.9	13
61	Coal pyrolysis and gasification in a fluidized bed thermogravimetric analyzer. Canadian Journal of Chemical Engineering, 2018, 96, 2144-2154.	0.9	12
62	Major trends and roadblocks in CFD-aided process intensification of biomass pyrolysis. Chemical Engineering and Processing: Process Intensification, 2018, 127, 206-212.	1.8	52
63	Development of a microwave thermogravimetric analyzer and its application on polystyrene microwave pyrolysis kinetics. Journal of Analytical and Applied Pyrolysis, 2018, 130, 209-215.	2.6	38
64	Novel approach in k-NAA for highly concentrated REE Samples. Talanta, 2018, 180, 403-409.	2.9	11
65	Effect of microwave heating on the performance of catalytic oxidation of n-butane in a gas-solid fluidized bed reactor. Chemical Engineering Science, 2018, 192, 1177-1188.	1.9	34
66	Microwave Heating-Assisted Catalytic Dry Reforming of Methane to Syngas. Scientific Reports, 2018, 8, 8940.	1.6	40
67	From complex feedstocks to new processes: The role of the newly developed micro-reactors. Chemical Engineering and Processing: Process Intensification, 2018, 131, 92-105.	1.8	14
68	Conformal Multilayer Photocatalytic Thin Films on Fine Particles by Atmospheric Pressure Fluidized Bed Chemical Vapor Deposition. Industrial & Engineering Chemistry Research, 2018, 57, 10345-10353.	1.8	10
69	De-agglomeration of nanoparticles in a jet impactor-assisted fluidized bed. Powder Technology, 2017, 316, 455-461.	2.1	18
70	Editorial: Fluidization for Emerging Green Technologies. Powder Technology, 2017, 316, 1-2.	2.1	0
71	Shedding light on iron pentacarbonyl photochemistry through a CVD case study. Catalysis Communications, 2017, 100, 19-23.	1.6	10
72	Performance evaluation of different approaches for early detection of defluidization. Powder Technology, 2017, 316, 139-147.	2.1	10

#	Article	IF	CITATIONS
73	Catalytic ash free coal gasification in a fluidized bed thermogravimetric analyzer. Powder Technology, 2017, 316, 551-559.	2.1	15
74	A simple and robust approach for early detection of defluidization. Chemical Engineering Journal, 2017, 313, 144-156.	6.6	18
75	Effects of temperature, pressure, and interparticle forces on the hydrodynamics of a gas-solid fluidized bed. Chemical Engineering Journal, 2017, 313, 580-590.	6.6	74
76	Reply to comments on "Investigation of turbulent flows in stirred tanks using a non-intrusive particle tracking technique― Chemical Engineering Science, 2017, 158, 623.	1.9	0
77	Similarities between gas-solid fluidization in the presence of interparticle forces at high temperature and induced by a polymer coating approach. Powder Technology, 2017, 320, 155-160.	2.1	5
78	NaClO/NaOH soil oxidation for the remediation of two real heavy-metal and petroleum contaminated soils. Journal of Environmental Chemical Engineering, 2017, 5, 2691-2698.	3.3	10
79	Influence of interparticle forces on solids motion in a bubbling gas-solid fluidized bed. Powder Technology, 2016, 299, 98-106.	2.1	33
80	Investigating the dynamics of cylindrical particles in a rotating drum using multiple radioactive particle tracking. AICHE Journal, 2016, 62, 2622-2634.	1.8	39
81	Development of a multiscale model for the design and scale-up of gas/liquid stirred tank reactors. Chemical Engineering Journal, 2016, 297, 277-294.	6.6	31
82	Solids flux measurements via alternate techniques in a gas-fluidized bed. Chemical Engineering Journal, 2016, 306, 306-321.	6.6	13
83	Impact of the heating mechanism on the yield and composition of bio-oil from pyrolysis of kraft lignin. Biomass and Bioenergy, 2016, 95, 344-353.	2.9	38
84	Selective extraction of heavy metals from two real calcium-rich contaminated soils by a modified NTA. Journal of Hazardous Materials, 2016, 318, 48-53.	6.5	4
85	Comparison of particle velocity measurement techniques in a fluidized bed operating in the square-nosed slugging flow regime. Powder Technology, 2016, 296, 45-52.	2.1	18
86	Local hydrodynamic parameters of bubble column reactors operating with nonâ€Newtonian liquids: Experiments and models development. AICHE Journal, 2016, 62, 1382-1396.	1.8	17
87	Performance of a Catalytic Gas–Solid Fluidized Bed Reactor in the Presence of Interparticle Forces. International Journal of Chemical Reactor Engineering, 2016, 14, 433-444.	0.6	6
88	Fluidization characteristics of a bubbling gas–solid fluidized bed at high temperature in the presence of interparticle forces. Chemical Engineering Journal, 2016, 288, 344-358.	6.6	40
89	Supercritical fluid rectification of lignin pyrolysis oil methyl ether (LOME) and its use as a bio-derived aprotic solvent. Green Chemistry, 2016, 18, 2089-2094.	4.6	10
90	Simulation of the Selective Hydrogenation of C ₃ -Cut in the Liquid Phase. International Journal of Chemical Reactor Engineering, 2016, 14, 859-874.	0.6	8

#	Article	IF	Citations
91	Experimental investigation of solid particles flow in a conical spouted bed using radioactive particle tracking. AICHE Journal, 2016, 62, 26-37.	1.8	19
92	Reduction of pulverized coal boiler's emissions through ReEngineered Feedstockâ,,¢ co-combustion. Energy, 2016, 101, 471-483.	4.5	3
93	Sodium hypochlorite oxidation of petroleum aliphatic contaminants in calcareous soils. Chemosphere, 2016, 145, 200-206.	4.2	8
94	Effect of elevated pressure on the hydrodynamic aspects of a pilot-scale bubble column reactor operating with non-Newtonian liquids. Chemical Engineering Journal, 2016, 288, 377-389.	6.6	21
95	Co-combustion of coal and waste in pulverized coal boiler. Energy, 2016, 94, 742-754.	4.5	24
96	Investigation of turbulent fluid flows in stirred tanks using a non-intrusive particle tracking technique. Chemical Engineering Science, 2016, 140, 233-251.	1.9	29
97	Gas residence time distribution in a conical spouted bed. Powder Technology, 2016, 290, 62-71.	2.1	12
98	Fast Pyrolysis of Lignocellulosic Biomass for the Production of Energy and Chemicals: A Critical Review. Current Organic Chemistry, 2016, 20, 2458-2479.	0.9	40
99	Technoâ€Economic Comparison of a 7â€MW⟨sub⟩th⟨/sub⟩ Biomass Chemical Looping Gasification Unit with Conventional Systems. Chemical Engineering and Technology, 2015, 38, 867-878.	0.9	23
100	Determination of Enthalpy of Pyrolysis from DSC and Industrial Reactor Data: Case of Tires. Chemical Product and Process Modeling, 2015, 10, 97-111.	0.5	3
101	A CPFD model for a bubbly biomass–sand fluidized bed. Powder Technology, 2015, 275, 39-50.	2.1	35
102	Investigation of particle velocity in FCC gas-fluidized beds based on different measurement techniques. Chemical Engineering Science, 2015, 127, 310-322.	1.9	45
103	Behavior of Sulfur during the Pyrolysis of Tires. Energy & Energy	2.5	30
104	Sand-assisted fluidization of large cylindrical and spherical biomass particles: Experiments and simulation. Chemical Engineering Science, 2015, 126, 543-559.	1.9	66
105	A multiple radioactive particle tracking technique to investigate particulate flows. AICHE Journal, 2015, 61, 384-394.	1.8	30
106	A novel induction heating fluidized bed reactor: Its design and applications in high temperature screening tests with solid feedstocks and prediction of defluidization state. AICHE Journal, 2015, 61, 1507-1523.	1.8	31
107	Characterization of the upward motion of an object immersed in a bubbling fluidized bed of fine particles. Chemical Engineering Journal, 2015, 280, 26-35.	6.6	13
108	Application of Temperature and Pressure Signals for Early Detection of Defluidization Conditions. Procedia Engineering, 2015, 102, 1006-1015.	1.2	10

#	Article	IF	Citations
109	The separation of the main combustible components of municipal solid waste through a dry step-wise process. Powder Technology, 2015, 278, 118-129.	2.1	10
110	The effects of liquid phase rheology on the hydrodynamics of a gas–liquid bubble column reactor. Chemical Engineering Science, 2015, 129, 193-207.	1.9	41
111	Transient modeling of biomass steam gasification with Co3O4. Fuel, 2015, 140, 354-364.	3.4	9
112	Thermal behavior of an engineered fuel and its constituents for a large range of heating rates with emphasis on heat transfer limitations. Thermochimica Acta, 2015, 601, 54-62.	1.2	16
113	Development of a fluidized bed thermogravimetric analyzer. AICHE Journal, 2015, 61, 84-89.	1.8	33
114	A modified microwave thermo-gravimetric-analyzer for kineticÂpurposes. Applied Thermal Engineering, 2015, 75, 65-72.	3.0	38
115	Economics evaluation for on-site pyrolysis of kraft lignin to value-added chemicals. Bioresource Technology, 2015, 175, 254-261.	4.8	42
116	Hydrodynamics of a gas–solid fluidized bed with thermally induced interparticle forces. Chemical Engineering Journal, 2015, 259, 135-152.	6.6	69
117	Microwave Heating Assisted Biorefinery of Biomass. , 2015, , 131-166.		2
118	Local characterization of a gas–solid fluidized bed in the presence of thermally induced interparticle forces. Chemical Engineering Science, 2014, 119, 261-273.	1.9	38
119	Innovate: Yes You Can. Procedia Engineering, 2014, 83, 16-18.	1.2	0
120	TGA and kinetic modelling of Co, Mn and Cu oxides for chemical looping gasification (CLG). Canadian Journal of Chemical Engineering, 2014, 92, 1903-1910.	0.9	28
121	Fabrication of mullite-bonded porous SiC ceramics via a sol–gel assisted in situ reaction bonding. Journal of the European Ceramic Society, 2014, 34, 237-247.	2.8	59
122	Conical spouted bed drying of Baker's yeast: Experimentation and multi-modeling. Food Research International, 2014, 62, 137-150.	2.9	26
123	Distributed Microwave Pyrolysis of Domestic Waste. Waste and Biomass Valorization, 2014, 5, 1-10.	1.8	35
124	Comparison of DEM results and Lagrangian experimental data for the flow and mixing of granules in a rotating drum. AICHE Journal, 2014, 60, 60-75.	1.8	83
125	Distribution of large biomass particles in a sandâ€biomass fluidized bed: Experiments and modeling. AICHE Journal, 2014, 60, 869-880.	1.8	53
126	Compartmental modelling of turbulent fluid flow for the scaleâ€up of stirred tanks. Canadian Journal of Chemical Engineering, 2014, 92, 1070-1081.	0.9	20

#	Article	IF	CITATIONS
127	Optimization of detector positioning in the radioactive particle tracking technique. Applied Radiation and Isotopes, 2014, 89, 109-124.	0.7	22
128	Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent. Bioresource Technology, 2014, 154, 101-108.	4.8	144
129	Manufacturing Process for in Situ Reaction-Bonded Porous SiC Ceramics Using a Combination of Graft Polymerization and Sol–Gel Approaches. Industrial & Engineering Chemistry Research, 2014, 53, 17604-17614.	1.8	6
130	Detailed compositional analysis and structural investigation of a bio-oil from microwave pyrolysis of kraft lignin. Journal of Analytical and Applied Pyrolysis, 2014, 109, 249-257.	2.6	75
131	Lumped Approach in Kinetic Modeling of Microwave Pyrolysis of Kraft Lignin. Energy & 2014, 28, 1406-1417.	2.5	68
132	Discrete element simulation of the dynamics of adsorbents in a radial flow reactor used for gas prepurification. Adsorption, 2014, 20, 91-107.	1.4	8
133	Novel fabrication route for porous silicon carbide ceramics through the combination of <i>in situ</i> polymerization and reaction bonding techniques. Journal of Applied Polymer Science, 2014, 131, .	1.3	7
134	Discrete element simulation of particle mixing and segregation in a tetrapodal blender. Computers and Chemical Engineering, 2014, 64, 1-12.	2.0	34
135	Diffusional effects for the oxidation of SiC powders in thermogravimetric analysis experiments. Journal of Materials Science, 2013, 48, 4396-4407.	1.7	20
136	Experimental investigation of solid mixing and segregation in a tetrapodal blender. Chemical Engineering Science, 2013, 97, 354-365.	1.9	12
137	Discrete element investigation of flow patterns and segregation in a spheronizer. Computers and Chemical Engineering, 2013, 49, 170-182.	2.0	17
138	Using S-statistic for investigating the effect of temperature on hydrodynamics of gas–solid fluidization. Particuology, 2013, 11, 288-293.	2.0	8
139	Characterization of Mixing and Size Segregation in a Rotating Drum by a Particle Tracking Method. AICHE Journal, 2013, 59, 1894-1905.	1.8	82
140	Dynamics of non-spherical particles in a rotating drum. Chemical Engineering Science, 2013, 101, 486-502.	1.9	83
141	Experimental investigation of the effect of particle cohesion on the flow dynamics in a spheronizer. AICHE Journal, 2013, 59, 1491-1501.	1.8	10
142	Development of a granular normal contact force model based on a non-Newtonian liquid filled dashpot. Powder Technology, 2013, 237, 202-212.	2.1	24
143	Gas jet penetration lengths from upward and downward nozzles in dense gas–solid fluidized beds. Powder Technology, 2013, 235, 42-54.	2.1	12
144	The effect of biomass particles on the gas distribution and dilute phase characteristics of sandâ€"biomass mixtures fluidized in the bubbling regime. Chemical Engineering Science, 2013, 102, 129-138.	1.9	45

#	Article	IF	CITATIONS
145	Gas-phase propane combustion in the freeboard of a fluidized bed. Fuel, 2013, 111, 316-323.	3.4	4
146	Traveling column for comparison of invasive and non-invasive fluidization voidage measurement techniques. Powder Technology, 2013, 235, 203-220.	2.1	65
147	Biomass Pretreatments for Biorefinery Applications: Gasification. Green Energy and Technology, 2013, , 197-227.	0.4	0
148	Predictive Kinetics Model for an Industrial Waste Tire Pyrolysis Process. Energy & E	2.5	9
149	Characterization of Minimum Impeller Speed for Suspension of Solids in Liquid at High Solid Concentration, Using Gamma-Ray Densitometry. International Journal of Chemical Engineering, 2012, 2012, 1-15.	1.4	27
150	Using particle trajectory for determining the fluidization regime in gas–solid fluidized beds. Advanced Powder Technology, 2012, 23, 349-351.	2.0	12
151	A multiscale model for the simulation of granulation in rotor-based equipment. Chemical Engineering Science, 2012, 81, 106-117.	1.9	31
152	A Comprehensive Review of Just Suspended Speed in Liquid-Solid and Gas-Liquid-Solid Stirred Tank Reactors. International Journal of Chemical Reactor Engineering, 2012, 10, .	0.6	10
153	Nanoparticle encapsulation by a polymer via <i>in situ</i> polymerization in supercritical conditions. Polymer Engineering and Science, 2012, 52, 637-642.	1.5	10
154	Control of particle cohesion with a polymer coating and temperature adjustment. AICHE Journal, 2012, 58, 3685-3696.	1.8	17
155	Experimental investigation on solid dispersion, power consumption and scale-up in moderate to dense solid–liquid suspensions. Chemical Engineering Research and Design, 2012, 90, 201-212.	2.7	37
156	Temperature profile prediction within selected materials heated by microwaves at 2.45GHz. Applied Thermal Engineering, 2012, 36, 360-369.	3.0	85
157	Gas–solid structure in the vicinity of a sparger nozzle in a fluidized bed. Powder Technology, 2012, 228, 131-140.	2.1	6
158	MeOH to DME in bubbling fluidized bed: Experimental and modelling. Canadian Journal of Chemical Engineering, 2011, 89, 274-283.	0.9	14
159	Characterization of solids mixing patterns in bubbling fluidized beds. Chemical Engineering Research and Design, 2011, 89, 817-826.	2.7	79
160	Non-premixed fluidized bed combustion of C1–C4 n-alkanes. Fuel, 2011, 90, 2850-2857.	3.4	6
161	Kinetic Modeling of Methanol-to-Olefin Reaction over ZSM-5 in Fluid Bed. Industrial & Engineering Chemistry Research, 2010, 49, 29-38.	1.8	59
162	An investigation of magnesium stearate mixing in a V-blender through gamma-ray detection. Powder Technology, 2010, 200, 234-245.	2.1	35

#	Article	IF	CITATIONS
163	Hydrodynamic characteristics of gas–solid fluidization at high temperature. Canadian Journal of Chemical Engineering, 2010, 88, 1-11.	0.9	19
164	Simultaneous quantitative measurement of gaseous species composition and solids volume fraction in a gas/solid flow. AICHE Journal, 2010, 56, 2850-2859.	1.8	2
165	Trickle-Bed Laboratory Reactors for Kinetic Studies. International Journal of Chemical Reactor Engineering, 2009, 7, .	0.6	16
166	Encapsulation of nanoparticles by polymerization compounding in a gas/solid fluidized bed reactor. AICHE Journal, 2009, 55, 2271-2278.	1.8	11
167	Spent potliner treatment process optimization using a MADS algorithm. Optimization and Engineering, 2008, 9, 143-160.	1.3	34
168	Experimental characterization of the chaotic dynamics of cohesionless particles: application to a V-blender. Granular Matter, 2008, 10, 133-138.	1.1	16
169	An evaluation of the solid holdâ€up distribution in a fluidized bed of nanoparticles using radioactive densitometry and fibre optics. Canadian Journal of Chemical Engineering, 2008, 86, 543-552.	0.9	17
170	Preamble for special issue honouring John Ross Grace. Canadian Journal of Chemical Engineering, 2008, 86, iii-v.	0.9	1
171	Behaviors of the bubble, cloud, and emulsion phases in a fluidized bed. AICHE Journal, 2008, 54, 406-414.	1.8	22
172	An experimental investigation of effusivity as an indicator of powder blend uniformity. Powder Technology, 2008, 181, 149-159.	2.1	39
173	Large-scale numerical investigation of solids mixing in a V-blender using the discrete element method. Powder Technology, 2008, 181, 205-216.	2.1	114
174	An extended radioactive particle tracking method for systems with irregular moving boundaries. Powder Technology, 2008, 181, 195-204.	2.1	45
175	Exit effect on hydrodynamics of the internal circulating fluidized bed riser. Powder Technology, 2008, 182, 406-414.	2.1	10
176	Wall surface effects on particle–wall friction factor in upward gas–solid flows. Powder Technology, 2008, 186, 80-88.	2.1	13
177	Modeling of the mixing of monodisperse particles using a stationary DEM-based Markov process. Computers and Chemical Engineering, 2008, 32, 1334-1341.	2.0	26
178	A measure of mixing from Lagrangian tracking and its application to granular and fluid flow systems. Chemical Engineering Research and Design, 2008, 86, 1313-1321.	2.7	28
179	Solid Phase Hydrodynamics of Three-Phase Fluidized Bed Reactors A Convective/Dispersive Phenomena. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	2
180	Investigation of Highly Exothermic Reactions in a Turbulent Fluidized Bed Reactor. Energy & Samp; Fuels, 2007, 21, 2230-2237.	2.5	7

#	Article	IF	CITATIONS
181	Solid phase hydrodynamics of three-phase fluidized bedsâ€"A convective/dispersive mixing model. Chemical Engineering Journal, 2007, 133, 85-95.	6.6	9
182	Comparative study of the mixing of free-flowing particles in a V-blender and a bin-blender. Chemical Engineering Science, 2007, 62, 1783-1802.	1.9	97
183	Analysis and modeling of particle–wall contact time in gas fluidized beds. Chemical Engineering Science, 2007, 62, 4573-4578.	1.9	13
184	An experimental study of non-premixed combustion in a turbulent fluidized-bed reactor. Fuel Processing Technology, 2007, 88, 847-858.	3.7	11
185	Effective drag coefficient investigation in the acceleration zone of an upward gas–solid flow. Chemical Engineering Science, 2007, 62, 318-327.	1.9	29
186	A convective/dispersive solid phase mixing model for three-phase fluidized bed reactors: Effect of dimensionless numbers. Chemical Engineering Science, 2007, 62, 4954-4962.	1.9	3
187	Phosphorous modified ZSM-5: Deactivation and product distribution for MTO. Chemical Engineering Science, 2007, 62, 5527-5532.	1.9	111
188	Polymerization Compounding on the Surface of Zirconia Nanoparticles. Macromolecular Symposia, 2006, 243, 268-276.	0.4	11
189	Flow regime transition pointers in three-phase fluidized beds inferred from a solid tracer trajectory. Chemical Engineering and Processing: Process Intensification, 2006, 45, 350-358.	1.8	17
190	A unified lumped approach in kinetic modeling of biomass pyrolysis. Fuel, 2006, 85, 1211-1220.	3.4	92
191	Biomass gasification in a bubbling fluidized bed reactor: Experiments and modeling. AICHE Journal, 2006, 52, 4258-4272.	1.8	145
192	Monitoring the particle–wall contact in a gas fluidized bed by RPT. Powder Technology, 2005, 153, 119-126.	2.1	8
193	Experimental investigation of particle contact time at the wall of gas fluidized beds. Chemical Engineering Science, 2005, 60, 4349-4357.	1.9	18
194	New description of fluidization regimes. AICHE Journal, 2005, 51, 1125-1130.	1.8	30
195	Improvement of fluidizability of fine powders — a computer study. Particuology: Science and Technology of Particles, 2005, 3, 165-169.	0.4	0
196	Scale Effects on Fluidized Bed Hydrodynamics. International Journal of Chemical Reactor Engineering, 2005, 3, .	0.6	11
197	Characterization of Homogeneity of Bubble Flows in Bubble Columns Using RPT and Fibre Optics. International Journal of Chemical Reactor Engineering, 2005, 3, .	0.6	5
198	Performance of Auto-Cyclic Reactor in Catalytic Combustion of Lean Fuel Mixtures. Industrial & Engineering Chemistry Research, 2005, 44, 9676-9682.	1.8	6

#	Article	IF	Citations
199	Effect of Temperature on Solids Mixing in a Bubbling Fluidized Bed Reactor. International Journal of Chemical Reactor Engineering, 2005, 3, .	0.6	4
200	Phase Mixing Modeling in Multiphase Reactors Containing Gas Bubble: a Review International Journal of Chemical Reactor Engineering, 2004, 2, .	0.6	3
201	Catalytic Drying of Digested Sludge. International Journal of Chemical Reactor Engineering, 2004, 2, .	0.6	0
202	Flow structure of the solids in gas–solid fluidized beds. Chemical Engineering Science, 2004, 59, 4217-4227.	1.9	75
203	Interparticle forces in high temperature fluidization of geldart a particles. Particuology: Science and Technology of Particles, 2004, 2, 113-118.	0.4	14
204	Effects of temperature on local two-phase flow structure in bubbling and turbulent fluidized beds of FCC particles. Chemical Engineering Science, 2004, 59, 3413-3422.	1.9	30
205	Update on Spent Potliners Treatments:  Kinetics of Cyanides Destruction at High Temperature. Industrial & Engineering Chemistry Research, 2004, 43, 5828-5837.	1.8	39
206	Axial dispersion in the three-dimensional mixing of particles in a rotating drum reactor. Chemical Engineering Science, 2003, 58, 401-415.	1.9	125
207	High temperature fluidized bed reactor: measurements, hydrodynamics and simulation. Chemical Engineering Science, 2003, 58, 1071-1077.	1.9	25
208	Mixing and circulation of solids in spouted beds: particle tracking and Monte Carlo emulation of the gross flow pattern. Chemical Engineering Science, 2003, 58, 1497-1507.	1.9	36
209	Verification of fluidized bed electrical capacitance tomography measurements with a fibre optic probe. Chemical Engineering Science, 2003, 58, 3923-3934.	1.9	57
210	Multivariate Study on Phenanthrene Sorption in Soils. Journal of Environmental Engineering, ASCE, 2003, 129, 1030-1040.	0.7	5
211	Decreasing the Sampling Time Interval in Radioactive Particle Tracking. Canadian Journal of Chemical Engineering, 2003, 81, 129-133.	0.9	9
212	The Heterogeneous and Homogeneous Combustion of Methane Over Inert Particles. Canadian Journal of Chemical Engineering, 2003, 81, 1182-1191.	0.9	8
213	A Comparison of Two- and Single-Phase Models for Fluidized-Bed Reactors. Industrial & Samp; Engineering Chemistry Research, 2001, 40, 5526-5532.	1.8	57
214	Generalized Model of Pentachlorophenol Distribution in Amended Soil-Water Systems. Water Environment Research, 2001, 73, 110-117.	1.3	14
215	Local solid mixing in gas–solid fluidized beds. Powder Technology, 2001, 114, 23-31.	2.1	132
216	Gas and solids between dynamic bubble and emulsion in gas-fluidized beds. Powder Technology, 2001, 120, 12-20.	2.1	49

#	Article	IF	Citations
217	Desorptive Behavior of Pentachlorophenol (PCP) and Phenanthrene in Soil-Water Systems. Water Environment Research, 2000, 72, 162-169.	1.3	6
218	Gas mixing in a turbulent fluidized bed reactor. Canadian Journal of Chemical Engineering, 2000, 78, 65-74.	0.9	7
219	Characterization of dynamic gas–solid distribution in fluidized beds. Chemical Engineering Journal, 2000, 79, 133-143.	6.6	126
220	Preparation and characterization of alumina and chromia cryogel-based catalysts. Applied Catalysis A: General, 2000, 196, 191-198.	2.2	24
221	On the Axial Movement of Solids in Gas-Solid Fluidized Beds. Chemical Engineering Research and Design, 2000, 78, 911-920.	2.7	48
222	Fiber-supported perovskites for catalytic combustion of natural gas. Catalysis Today, 1999, 47, 115-121.	2.2	34
223	Solids dynamics from experimental trajectory time-series of a single particle motion in gas-spouted beds. Chemical Engineering Science, 1999, 54, 2545-2554.	1.9	26
224	Prediction of effective drag coefficient in fluidized beds. Chemical Engineering Science, 1999, 54, 851-858.	1.9	37
225	Natural gas combustion in a turbulent fluidized bed of inert particles. Chemical Engineering Science, 1999, 54, 2029-2037.	1.9	15
226	Two-phase model for a catalytic turbulent fluidized-bed reactor: Application to ethylene synthesis. Chemical Engineering Science, 1999, 54, 2039-2045.	1.9	35
227	Selective and complete catalytic oxidation of natural gas in Turbulent Fluidized Beds. Korean Journal of Chemical Engineering, 1999, 16, 494-500.	1.2	10
228	An investigation of heat transfer from a vertical tube in a spouted bed. Canadian Journal of Chemical Engineering, 1999, 77, 45-53.	0.9	10
229	Position and velocity of a large particle in a gas/solid riser using the radioactive particle tracking technique. Canadian Journal of Chemical Engineering, 1999, 77, 253-261.	0.9	33
230	Mean and Turbulent Particle Velocity in the Fully Developed Region of a Three-Phase Fluidized Bed. Chemical Engineering and Technology, 1999, 22, 683-689.	0.9	14
231	Radial Hydrodynamics in Risers. Industrial & Engineering Chemistry Research, 1999, 38, 81-89.	1.8	25
232	Simulation of circulating fluidized bed reactors using ASPEN PLUS. Fuel, 1998, 77, 327-337.	3.4	84
233	Simulations of vibrated fine powders. Powder Technology, 1998, 100, 211-222.	2.1	10
234	Flow Structure of the Solids in a Three-Dimensional Liquid Fluidized Bed. Industrial & Engineering Chemistry Research, 1997, 36, 4695-4704.	1.8	19

#	Article	IF	Citations
235	Noninvasive Tomographic and Velocimetric Monitoring of Multiphase Flows. Industrial & Engineering Chemistry Research, 1997, 36, 4476-4503.	1.8	250
236	Trajectory length and residence-time distributions of the solids in three-phase fluidized beds. Chemical Engineering Science, 1997, 52, 3931-3939.	1.9	18
237	On-line flow visualization in multiphase reactors using neural networks. Applied Radiation and Isotopes, 1997, 48, 225-235.	0.7	39
238	Preparation of supported La _{0.66} Sr _{0.34} Ni _{0.3} Co _{0.7} O ₃ perovskite catalysts and their performance in methane and odorized natural gas combustion. Canadian Journal of Chemical Engineering, 1997, 75, 509-519.	0.9	22
239	Gas phase hydrodynamics in circulating fluidized bed risers. , 1996, , 255-296.		5
240	Fluidization of cryogels in a conical column. Powder Technology, 1996, 89, 179-186.	2.1	32
241	Flow structure of the solids in a 3-D gas–liquid–solid fluidized bed. AICHE Journal, 1996, 42, 2439-2452.	1.8	49
242	Gas phase hydrodynamics of a gas-solid turbulent fluidized bed reactor. Chemical Engineering Science, 1996, 51, 713-723.	1.9	59
243	Solids mixing in gas-liquid-solid fluidized beds: Experiments and modelling. Chemical Engineering Science, 1996, 51, 2011-2020.	1.9	29
244	Catalytic Combustion: New Catalysts for New Technologies. Combustion Science and Technology, 1996, 121, 51-65.	1.2	14
245	3-D mapping of solids flow fields in multiphase reactors with RPT. AICHE Journal, 1995, 41, 439-443.	1.8	73
246	Effets de differents parametres sur les vitesses de transition de la fluidisation en regime turbulent. Canadian Journal of Chemical Engineering, 1995, 73, 41-50.	0.9	30
247	CLUSTERS IN CIRCULATING FLUIDIZED BEDS: KINETIC THEORY APPROACH. Chemical Engineering Communications, 1995, 131, 53-71.	1.5	3
248	Experimental Characterization of the Solid Phase Chaotic Dynamics in Three-Phase Fluidization. Industrial & Dynamics in Three-Phase Fluidization. Industrial & Dynamics in Three-Phase Fluidization.	1.8	54
249	Combustion of methane over La0.66Sr0.34Ni0.3Co0.7O3 and La0.4Sr0.6Fe0.4Co0.6O3 prepared by freeze-drying. Applied Catalysis A: General, 1994, 109, 181-193.	2.2	58
250	A \hat{I}^3 -ray detection system for 3-D particle tracking in multiphase reactors. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 338, 568-576.	0.7	115
251	Hydrodynamic characteristics of a trickling bed of peat moss used for biofiltration of wastewater. Canadian Journal of Chemical Engineering, 1994, 72, 411-417.	0.9	6
252	A study of solid behavior in spouted beds using 3â€D particle tracking. Canadian Journal of Chemical Engineering, 1994, 72, 945-952.	0.9	72

#	Article	IF	CITATIONS
253	Influence of the deactivation of an industrial Pt-Sn/Al2O3 catalyst on the performance of the dehydrogenation reactor. Chemical Engineering Science, 1994, 49, 4639-4646.	1.9	16
254	Combustion of Methane in a Cyclic Catalytic Reactor. Industrial & Engineering Chemistry Research, 1994, 33, 2957-2963.	1.8	29
255	Characterization of the Flow Transition between Bubbling and Turbulent Fluidization. Industrial & Lamp; Engineering Chemistry Research, 1994, 33, 1889-1896.	1.8	76
256	Evaluation of some cobalt and nickel based perovskites prepared by freeze-drying as combustion catalysts. Catalysis Letters, 1993, 21, 77-87.	1.4	56
257	CATALYTIC COMBUSTION OF NATURAL GAS IN A FIXED BED REACTOR WITH FLOW REVERSAL. Chemical Engineering Communications, 1993, 125, 171-186.	1.5	27
258	Gas phase hydrodynamics in the riser of a circulating fluidized bed. Chemical Engineering Science, 1993, 48, 3195-3205.	1.9	73
259	Modeling the catalytic oxidation of n-butane to maleic anhydride in a circulating fluidized bed reactor. Industrial & Engineering Chemistry Research, 1992, 31, 2652-2660.	1.8	66
260	Scaling considerations for circulating fluidized bed risers. Powder Technology, 1992, 72, 31-37.	2.1	114
261	Thermal treatment of divided solid wastes by the gas-contact process. Chemical Engineering and Processing: Process Intensification, 1992, 31, 277-284.	1.8	3
262	Improvement of the fluidisability of Ni/SiO2 aerogels by reducing interparticle forces. Powder Technology, 1991, 65, 461-468.	2.1	28
263	Dehydrogenation of methylcyclohexane in a reactor coupled to a hydrogen engine. International Journal of Hydrogen Energy, 1991, 16, 55-60.	3.8	23
264	Hydrodynamic behaviour of aerogel powders in high-velocity fluidized beds. Powder Technology, 1990, 60, 121-129.	2.1	25
265	From sol-gel to aerogels and cryogels. Journal of Non-Crystalline Solids, 1990, 121, 66-67.	1.5	60
266	Catalytic storage of hydrogen: Hydrogenation of toluene over a nickel/silica aerogel catalyst in integral flow conditions. Applied Catalysis, 1988, 42, 121-130.	1.1	81
267	Déshydrogénation du méthylcyclohexane sur le catalyseur industriel Pt-Sn/Al2O3. Oil & Gas Science & Technology, 1988, 43, 873-881.	0.2	9
268	Heat transfer from a circulating fluidized bed to membrane waterwall surfaces. AICHE Journal, 1987, 33, 1888-1893.	1.8	68
269	Circulating fluidized bed reactor design and operation. Sadhana - Academy Proceedings in Engineering Sciences, 1987, 10, 35-48.	0.8	15
270	Kinetics of the selective hydrogenation of cyclopentadiene on a CuAl2O3 aerogel catalyst in an integral plug flow reactor. Applied Catalysis, 1986, 21, 187-199.	1,1	13

#	Article	IF	CITATIONS
271	Étude de l'hydrogénation sélective du cyclopentadiène sur l'aérogel Cu/Al ₂ O ₃ fluidisé. Canadian Journal of Chemical Engineering, 1986, 64, 440-446.	0.9	8
272	Effect of interparticle forces on the hydrodynamic behaviour of fluidized aerogels. Powder Technology, 1985, 43, 117-125.	2.1	205
273	Innovative Microreactors for Low-grade Feedstock Gasification. , 0, , .		1
274	Methods of coating ceramic supports with carbon and Niâ€based catalytically active formulations. Canadian Journal of Chemical Engineering, 0, , .	0.9	1