Ryan A Shenvi

List of Publications by Citations

Source: https://exaly.com/author-pdf/1606667/ryan-a-shenvi-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,661 60 32 73 h-index g-index citations papers 6.07 110 4,355 15.5 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
73	Mn-, Fe-, and Co-Catalyzed Radical Hydrofunctionalizations of Olefins. <i>Chemical Reviews</i> , 2016 , 116, 89	1 <i>2</i> -9 <u>.0</u> 0	0490
72	Chemoselectivity: the mother of invention in total synthesis. <i>Accounts of Chemical Research</i> , 2009 , 42, 530-41	24.3	221
71	Simple, chemoselective, catalytic olefin isomerization. <i>Journal of the American Chemical Society</i> , 2014 , 136, 16788-91	16.4	210
70	Simple, chemoselective hydrogenation with thermodynamic stereocontrol. <i>Journal of the American Chemical Society</i> , 2014 , 136, 1300-3	16.4	194
69	Branch-Selective Hydroarylation: Iodoarene-Olefin Cross-Coupling. <i>Journal of the American Chemical Society</i> , 2016 , 138, 12779-12782	16.4	170
68	Ph(i-PrO)SiH2: An Exceptional Reductant for Metal-Catalyzed Hydrogen Atom Transfers. <i>Journal of the American Chemical Society</i> , 2016 , 138, 4962-71	16.4	156
67	Synthesis of (+)-cortistatin A. <i>Journal of the American Chemical Society</i> , 2008 , 130, 7241-3	16.4	143
66	The High Chemofidelity of Metal-Catalyzed Hydrogen Atom Transfer. <i>Accounts of Chemical Research</i> , 2018 , 51, 2628-2640	24.3	119
65	Stereoinversion of tertiary alcohols to tertiary-alkyl isonitriles and amines. <i>Nature</i> , 2013 , 501, 195-9	50.4	109
64	Mechanistic Interrogation of Co/Ni-Dual Catalyzed Hydroarylation. <i>Journal of the American Chemical Society</i> , 2018 , 140, 12056-12068	16.4	108
63	Iron-Nickel Dual-Catalysis: A New Engine for Olefin Functionalization and the Formation of Quaternary Centers. <i>Journal of the American Chemical Society</i> , 2018 , 140, 11317-11324	16.4	102
62	Scalable synthesis of cortistatin A and related structures. <i>Journal of the American Chemical Society</i> , 2011 , 133, 8014-27	16.4	99
61	Expanding Reactivity in DNA-Encoded Library Synthesis via Reversible Binding of DNA to an Inert Quaternary Ammonium Support. <i>Journal of the American Chemical Society</i> , 2019 , 141, 9998-10006	16.4	86
60	Hydroalkylation of Olefins To Form Quaternary Carbons. <i>Journal of the American Chemical Society</i> , 2019 , 141, 7709-7714	16.4	81
59	Total synthesis of (+/-)-chartelline C. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14028-9	16.4	76
58	Synthesis of a potent antimalarial amphilectene. <i>Journal of the American Chemical Society</i> , 2012 , 134, 19604-6	16.4	72
57	Synthesis of highly strained terpenes by non-stop tail-to-head polycyclization. <i>Nature Chemistry</i> , 2012 , 4, 915-20	17.6	72

(2009-2015)

56	An eight-step gram-scale synthesis of (-)-jiadifenolide. <i>Nature Chemistry</i> , 2015 , 7, 604-7	17.6	67
55	Branch-Selective Addition of Unactivated Olefins into Imines and Aldehydes. <i>Journal of the American Chemical Society</i> , 2018 , 140, 16976-16981	16.4	62
54	A remarkable ring contraction en route to the chartelline alkaloids. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 3714-7	16.4	59
53	Synthesis of the Privileged 8-Arylmenthol Class by Radical Arylation of Isopulegol. <i>Organic Letters</i> , 2016 , 18, 2620-3	6.2	56
52	Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. <i>Chemical Science</i> , 2020 , 11, 12401-12422	9.4	55
51	Syntheses and biological studies of marine terpenoids derived from inorganic cyanide. <i>Natural Product Reports</i> , 2015 , 32, 543-77	15.1	53
50	Stereodivergent synthesis of 17-alpha and 17-beta-alpharyl steroids: application and biological evaluation of D-ring cortistatin analogues. <i>Angewandte Chemie - International Edition</i> , 2009 , 48, 4328-31	16.4	52
49	Synthesis of medicinally relevant terpenes: reducing the cost and time of drug discovery. <i>Future Medicinal Chemistry</i> , 2014 , 6, 1127-48	4.1	51
48	Synthesis of (+)-7,20-Diisocyanoadociane and Liver-Stage Antiplasmodial Activity of the Isocyanoterpene Class. <i>Journal of the American Chemical Society</i> , 2016 , 138, 7268-71	16.4	50
47	Synthesis of (-)-neothiobinupharidine. <i>Journal of the American Chemical Society</i> , 2013 , 135, 1209-12	16.4	49
46	A stereoselective hydroamination transform to access polysubstituted indolizidines. <i>Journal of the American Chemical Society</i> , 2012 , 134, 2012-5	16.4	45
45	A Longitudinal Study of Alkaloid Synthesis Reveals Functional Group Interconversions as Bad Actors. <i>Chemical Reviews</i> , 2015 , 115, 9465-531	68.1	39
44	Synthesis of (-)-11-O-Debenzoyltashironin: Neurotrophic Sesquiterpenes Cause Hyperexcitation. Journal of the American Chemical Society, 2017 , 139, 9637-9644	16.4	38
43	Synthetic access to bent polycycles by cation-pi cyclization. <i>Organic Letters</i> , 2010 , 12, 3548-51	6.2	34
42	Long-range effects on calcium binding and conformational change in the N-domain of calmodulin. <i>Biochemistry</i> , 2001 , 40, 12719-26	3.2	33
41	Natural Products in the "Marketplace": Interfacing Synthesis and Biology. <i>Journal of the American Chemical Society</i> , 2019 , 141, 3332-3346	16.4	29
40	A review of salvinorin analogs and their kappa-opioid receptor activity. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2018 , 28, 1436-1445	2.9	29
39	A short and efficient synthesis of (-)-7-methylomuralide, a potent proteasome inhibitor. <i>Journal of the American Chemical Society</i> , 2009 , 131, 5746-7	16.4	25

38	Dynamic Strategic Bond Analysis Yields a Ten-Step Synthesis of 20-nor-Salvinorin A, a Potent EOR Agonist. <i>ACS Central Science</i> , 2017 , 3, 1329-1336	16.8	23
37	Neurite outgrowth enhancement by jiadifenolide: possible targets. <i>Natural Product Reports</i> , 2016 , 33, 535-9	15.1	20
36	Synthetic, Mechanistic, and Biological Interrogation of Chemical Space En Route to (-)-Bilobalide. Journal of the American Chemical Society, 2020 , 142, 18599-18618	16.4	20
35	Concise asymmetric synthesis of (-)-bilobalide. <i>Nature</i> , 2019 , 575, 643-646	50.4	20
34	Stereocontrolled Synthesis of Kalihinol C. Journal of the American Chemical Society, 2017, 139, 3647-365	5 0 6.4	18
33	Cycloisomerization of Olefins in Water. Angewandte Chemie - International Edition, 2020 , 59, 12998-130	03 6.4	17
32	Synthesis and Sulfur Electrophilicity of the Nuphar Thiaspirane Pharmacophore. <i>ACS Central Science</i> , 2016 , 2, 401-8	16.8	17
31	Nitrosopurines en route to potently cytotoxic asmarines. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 2410-5	16.4	17
30	Electronic complementarity permits hindered butenolide heterodimerization and discovery of novel cGAS/STING pathway antagonists. <i>Nature Chemistry</i> , 2020 , 12, 310-317	17.6	16
29	Synthesis of (-)-Picrotoxinin by Late-Stage Strong Bond Activation. <i>Journal of the American Chemical Society</i> , 2020 , 142, 11376-11381	16.4	15
28	Conjuring a Supernatural Product [DelMarine. Synlett, 2016 , 27, 1145-1164	2.2	14
27	A Remarkable Ring Contraction En Route to the Chartelline Alkaloids. <i>Angewandte Chemie</i> , 2005 , 117, 3780-3783	3.6	13
26	Intermolecular Heck Coupling with Hindered Alkenes Directed by Potassium Carboxylates. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2371-2376	16.4	13
25	Pharmacological characterization of the neurotrophic sesquiterpene jiadifenolide reveals a non-convulsant signature and potential for progression in neurodegenerative disease studies. <i>Biochemical Pharmacology</i> , 2018 , 155, 61-70	6	12
24	Synthesis of Lepadiformine Using a Hydroamination Transform. Organic Letters, 2015, 17, 5776-9	6.2	11
23	Hydrofunctionalization of Alkenes by Hydrogen-Atom Transfer 2019 , 383-470		10
22	One-Step Syntesis of 4,5-Disubstituted Pyrimidines Using Commercially Available and Inexpensive Reagents. <i>Heterocycles</i> , 2006 , 70, 581	0.8	9
21	O6C-20-nor-salvinorin A is a stable and potent KOR agonist. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2018 , 28, 2770-2772	2.9	8

20	Concise Synthesis of GB22 by Endo-Selective Siloxycyclopropane Arylation		7
19	Cycloisomerization of Olefins in Water. <i>Angewandte Chemie</i> , 2020 , 132, 13098-13103	3.6	6
18	Mechanism of Action of the Cytotoxic Asmarine Alkaloids. ACS Chemical Biology, 2018, 13, 1299-1306	4.9	5
17	Intermolecular Heck Coupling with Hindered Alkenes Directed by Potassium Carboxylates. <i>Angewandte Chemie</i> , 2019 , 131, 2393-2398	3.6	4
16	Supramolecular catalysis: Terpenes in tight spaces. <i>Nature Chemistry</i> , 2015 , 7, 187-9	17.6	4
15	Chemical syntheses of the salvinorin chemotype of KOR agonist. <i>Natural Product Reports</i> , 2020 , 37, 147	78£\$490	5 4
14	Change the channel: CysLoop receptor antagonists from nature. <i>Pest Management Science</i> , 2021 , 77, 3650-3662	4.6	3
13	Nitrosopurines En Route to Potently Cytotoxic Asmarines. <i>Angewandte Chemie</i> , 2015 , 127, 2440-2445	3.6	3
12	Concise syntheses of GB22, GB13, and himgaline by cross-coupling and complete reduction <i>Science</i> , 2022 , 375, 1270-1274	33.3	3
11	Synthesis and Mechanistic Interrogation of Ginkgo biloba Chemical Space en route to (卧Bilobalide		2
10	Concise Synthesis of GB22 by Endo-Selective Siloxycyclopropane Arylation		2
9	Cobalt-catalyzed alkene hydrogenation by reductive turnover. <i>Tetrahedron Letters</i> , 2021 , 72, 153047	2	2
8	Natural Product Synthesis through the Lens of Informatics. <i>Accounts of Chemical Research</i> , 2021 , 54, 1157-1167	24.3	2
7	Cluster Preface: Reinventing Radical Reactions. <i>Synlett</i> , 2016 , 27, 678-679	2.2	1
6	Olefin Hydroarylation via Ni/Co Dual Catalysis. <i>Trends in Chemistry</i> , 2019 , 1, 540-541	14.8	1
5	Revision of the Unstable Picrotoxinin Hydrolysis Product. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 19113-19116	16.4	0
4	Reanalysis of Lindenatriene, a Building Block for the Synthesis of Lindenane Oligomers. <i>Tetrahedron</i> , 2019 , 75, 3140-3144	2.4	
3	Reaction: And You, of Tender Years 1. <i>CheM</i> , 2016 , 1, 334-335	16.2	

Stereodivergent Attached-Ring Synthesis via Non-Covalent Interactions: A Short Formal Synthesis of Merrilactone A. *Angewandte Chemie*, **2022**, 134, e202114514 2 3.6

Revision of the Unstable Picrotoxinin Hydrolysis Product. Angewandte Chemie, 2021, 133, 19261-19264 3.6