Sean M R Crowell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1606518/publications.pdf Version: 2024-02-01

SEAN M.R.CROWELL

#	Article	IF	CITATIONS
1	Improved retrievals of carbon dioxide from Orbiting Carbon Observatory-2 with the version 8 ACOS algorithm. Atmospheric Measurement Techniques, 2018, 11, 6539-6576.	3.1	188
2	Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change, 2021, 11, 442-448.	18.8	166
3	The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network. Atmospheric Chemistry and Physics, 2019, 19, 9797-9831.	4.9	113
4	Quantifying the Impact of Atmospheric Transport Uncertainty on CO ₂ Surface Flux Estimates. Global Biogeochemical Cycles, 2019, 33, 484-500.	4.9	95
5	Model structures amplify uncertainty in predicted soil carbon responses to climate change. Nature Communications, 2018, 9, 2171.	12.8	88
6	The Potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to Provide Multi-scale Constraints on the Carbon Cycle in the Americas. Frontiers in Environmental Science, 2018, 6, .	3.3	60
7	Constraining regional greenhouse gas emissions using geostationary concentration measurements: a theoretical study. Atmospheric Measurement Techniques, 2014, 7, 3285-3293.	3.1	46
8	Four years of global carbon cycle observed from the Orbiting Carbon Observatory 2 (OCO-2) versionÂ9 and in situ data and comparison to OCO-2 versionÂ7. Atmospheric Chemistry and Physics, 2022, 22, 1097-1130.	4.9	44
9	Large loss and rapid recovery of vegetation cover and aboveground biomass over forest areas in Australia during 2019–2020. Remote Sensing of Environment, 2022, 278, 113087.	11.0	26
10	On the Ability of Spaceâ€Based Passive and Active Remote Sensing Observations of CO ₂ to Detect Flux Perturbations to the Carbon Cycle. Journal of Geophysical Research D: Atmospheres, 2018, 123, 1460-1477.	3.3	25
11	Dynamical Downscaling of CO ₂ in 2016 Over the Contiguous United States Using WRFâ€VPRM, a Weatherâ€Biosphereâ€Onlineâ€Coupled Model. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001875.	3.8	21
12	On the role of atmospheric model transport uncertainty in estimating the Chinese land carbon sink. Nature, 2022, 603, E13-E14.	27.8	21
13	Terrestrial CO ₂ Fluxes, Concentrations, Sources and Budget in Northeast China: Observational and Modeling Studies. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031686.	3.3	15
14	Implementation of Improved Parameterization of Terrestrial Flux in WRFâ€VPRM Improves the Simulation of Nighttime CO ₂ Peaks and a Daytime CO ₂ Band Ahead of a Cold Front. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034362.	3.3	15
15	Multisensor and Multimodel Monitoring and Investigation of a Wintertime Air Pollution Event Ahead of a Cold Front Over Eastern China. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD033538.	3.3	14
16	Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON). Atmospheric Measurement Techniques, 2022, 15, 2433-2463.	3.1	10
17	Solar-induced chlorophyll fluorescence from the Geostationary Carbon Cycle Observatory (GeoCarb): An extensive simulation study. Remote Sensing of Environment, 2021, 263, 112565.	11.0	9
18	A scanning strategy optimized for signal-to-noise ratio for the Geostationary Carbon Cycle Observatory (GeoCarb) instrument. Atmospheric Measurement Techniques, 2019, 12, 3317-3334.	3.1	7

#	Article	IF	CITATIONS
19	Impacts of atmospheric state uncertainty on O ₂ measurement requirements for the ASCENDS mission. Atmospheric Measurement Techniques, 2015, 8, 2685-2697.	3.1	5
20	Multiâ€Season Evaluation of CO ₂ Weather in OCOâ€2 MIP Models. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	5
21	Comparison of Traditional and Novel Discretization Methods for Advection Models in Numerical Weather Prediction. Lecture Notes in Computer Science, 2009, , 263-272.	1.3	2
22	Estimation of near surface wind speeds in strongly rotating flows. Applied Mathematics and Computation, 2014, 235, 201-211.	2.2	0