Teresa QuilhÃ³

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1606498/publications.pdf Version: 2024-02-01

Τερέςλ Οιμι μÃ3

#	Article	IF	CITATIONS
1	Root functioning, tree water use and hydraulic redistribution in Quercus suber trees: A modeling approach based on root sap flow. Forest Ecology and Management, 2013, 307, 136-146.	1.4	133
2	Characterisation and hydrothermal processing of corn straw towards the selective fractionation of hemicelluloses. Industrial Crops and Products, 2013, 50, 145-153.	2.5	77
3	Evaluation on paper making potential of nine Eucalyptus species based on wood anatomical features. Industrial Crops and Products, 2014, 54, 327-334.	2.5	62
4	The bark of Eucalyptus sideroxylon as a source of phenolic extracts with anti-oxidant properties. Industrial Crops and Products, 2016, 82, 81-87.	2.5	52
5	WITHIN AND BETWEEN-TREE VARIATION OF BARK CONTENT AND WOOD DENSITY OF EUCALYPTUS GLOBULUS IN COMMERCIAL PLANTATIONS. IAWA Journal, 2001, 22, 255-265.	2.7	43
6	VARIABILITY OF FIBRE LENGTH IN WOOD AND BARK IN EUCALYPTUS GLOBULUS. IAWA Journal, 2000, 21, 41-48.	2.7	41
7	Characterisation and fractioning of Tectona grandis bark in view of its valorisation as a biorefinery raw-material. Industrial Crops and Products, 2013, 50, 166-175.	2.5	41
8	WITHIN–TREE VARIATION IN PHLOEM CELL DIMENSIONS AND PROPORTIONS IN EUCALYPTUS GLOBULUS. IAWA Journal, 2000, 21, 31-40.	2.7	40
9	The cellular structure of cork from Quercus cerris var. cerris bark in a materials' perspective. Industrial Crops and Products, 2011, 34, 929-936.	2.5	40
10	Drought-induced embolism in current-year shoots of two Mediterranean evergreen oaks. Forest Ecology and Management, 2012, 285, 1-10.	1.4	35
11	Characterization of <i>Betula pendula</i> Outer Bark Regarding Cork and Phloem Components at Chemical and Structural Levels in View of Biorefinery Integration. Journal of Wood Chemistry and Technology, 2017, 37, 10-25.	0.9	35
12	Variability of Bark Structure in Plantation-Grown Eucalyptus Globulus. IAWA Journal, 1999, 20, 171-180.	2.7	33
13	Anatomy and Chemical Composition of Pinus Pinaster Bark. IAWA Journal, 1996, 17, 141-150.	2.7	30
14	Characterization of Cork Oak (Quercus Suber) Wood Anatomy. IAWA Journal, 2009, 30, 149-161.	2.7	29
15	Anatomy and chemical composition of Pinus pinea L. bark. Annales Des Sciences Forestières, 1999, 56, 479-484.	1.1	26
16	Cellular structure and chemical composition of cork from Plathymenia reticulata occurring in the Brazilian Cerrado. Industrial Crops and Products, 2016, 90, 65-75.	2.5	26
17	Within-Tree Variation in Wood Fibre Biometry And Basic Density of the Urograndis Eucalypt Hybrid (Eucalyptus Grandis × E. Urophylla). IAWA Journal, 2006, 27, 243-254.	2.7	25
18	<i>Copaifera langsdorffii</i> Bark as a Source of Chemicals: Structural and Chemical Characterization. Journal of Wood Chemistry and Technology, 2016, 36, 305-317.	0.9	21

Teresa QuilhÃ³

#	Article	IF	CITATIONS
19	Chemical and anatomical characterization, and antioxidant properties of barks from 11 Eucalyptus species. European Journal of Wood and Wood Products, 2018, 76, 783-792.	1.3	21
20	Bark anatomy, chemical composition and ethanol-water extract composition of Anadenanthera peregrina and Anadenanthera colubrina. PLoS ONE, 2017, 12, e0189263.	1.1	21
21	Assessment of old timber members: Importance of wood species identification and direct tensile test information. Construction and Building Materials, 2019, 207, 651-660.	3.2	17
22	Tree bark characterization envisioning an integrated use in a biorefinery. Biomass Conversion and Biorefinery, 2023, 13, 2029-2043.	2.9	17
23	Bark anatomy of Quercus cerris L. var. cerris from Turkey. Turkish Journal of Botany, 0, , .	0.5	16
24	ANATOMICAL CHARACTERISATION AND VARIABILITY OF THE THISTLE CYNARA CARDUNCULUS IN VIEW OF PULPING POTENTIAL. IAWA Journal, 2004, 25, 217-230.	2.7	15
25	Anatomical variation of teakwood from unmanaged mature plantations in East Timor. Journal of Wood Science, 2015, 61, 326-333.	0.9	14
26	Quercus rotundifolia Bark as a Source of Polar Extracts: Structural and Chemical Characterization. Forests, 2021, 12, 1160.	0.9	14
27	Chemical and structural characterization of the bark of Albizia niopoides trees from the Amazon. Wood Science and Technology, 2016, 50, 677-692.	1.4	13
28	Aged Acacia melanoxylon bark as an organic peat replacement in container media. Journal of Cleaner Production, 2019, 232, 1103-1111.	4.6	13
29	Bark Characterisation of the Brazilian Hardwood Goupia glabra in Terms of Its Valorisation. BioResources, 2016, 11, .	0.5	12
30	Cistus ladanifer as a source of chemicals: structural and chemical characterization. Biomass Conversion and Biorefinery, 2020, 10, 325-337.	2.9	12
31	Cork of Douglas-fir bark: Impact of structural and anatomical features on usage. Industrial Crops and Products, 2017, 99, 135-141.	2.5	11
32	Eucalyptus globulus Stumps Bark: Chemical and Anatomical Characterization Under a Valorisation Perspective. Waste and Biomass Valorization, 2021, 12, 1253-1265.	1.8	11
33	Growth rate and ring width variability of teak, <i>Tectona grandis</i> (Verbenaceae) in an unmanaged forest in East Timor Revista De Biologia Tropical, 2012, 60, 483-94.	0.1	11
34	Photoallergic contact dermatitis to brosimum wood. Contact Dermatitis, 2008, 58, 243-245.	0.8	10
35	Wood and bark fiber characteristics of Acacia melanoxylon and comparison to Eucalyptus globules. Cerne, 2011, 17, 61-68.	0.9	10
36	Thermally Modified Wood Exposed to Different Weathering Conditions: A Review. Forests, 2021, 12, 1400.	0.9	9

Teresa QuilhÃ³

#	Article	IF	CITATIONS
37	Influence of cambial age on the bark structure of Douglas-fir. Wood Science and Technology, 2019, 53, 191-210.	1.4	8
38	Bark anatomy and cell size variation in Quercus faginea. Turkish Journal of Botany, 0, , .	0.5	7
39	Bark characterization of Tachigali guianensis and Tachigali glauca from the Amazon under a valorization perspective. BioResources, 2021, 16, 2953-2970.	0.5	3
40	Agrupamento e caracterização anatômica da madeira de espécies nativas da Floresta Ombrófila Mista. Rodriguesia, 0, 70, .	0.9	3
41	Bark characterization of a commercial Eucalyptus urophylla hybrid clone in view of its potential use as a biorefinery raw material. Biomass Conversion and Biorefinery, 0, , 1.	2.9	1
42	The anatomy as a tool for the identification of the bark of Pterocarpus angolensis and Terminalia sericea. Advances in Forestry Science, 2020, 7, 925.	0.0	1