
Yuming Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1605604/publications.pdf Version: 2024-02-01

YUMING IMO

#	Article	IF	CITATIONS
1	Single-Cell Atlas Reveals Complexity of the Immunosuppressive Microenvironment of Initial and Recurrent Glioblastoma. Frontiers in Immunology, 2020, 11, 835.	4.8	111
2	Resveratrol Inhibits the Invasion of Glioblastoma-Initiating Cells via Down-Regulation of the PI3K/Akt/NF-κB Signaling Pathway. Nutrients, 2015, 7, 4383-4402.	4.1	61
3	Somatic MAP3K3 mutation defines a subclass of cerebral cavernous malformation. American Journal of Human Genetics, 2021, 108, 942-950.	6.2	54
4	A supplementary grading scale combining lesion-to-eloquence distance for predicting surgical outcomes of patients with brain arteriovenous malformations. Journal of Neurosurgery, 2018, 128, 530-540.	1.6	25
5	Mesenchymal Behavior of the Endothelium Promoted by SMAD6 Downregulation Is Associated With Brain Arteriovenous Malformation Microhemorrhage. Stroke, 2020, 51, 2197-2207.	2.0	22
6	Effect of functional MRI–guided navigation on surgical outcomes: a prospective controlled trial in patients with arteriovenous malformations. Journal of Neurosurgery, 2016, 126, 1863-1872.	1.6	21
7	Plasticity in language cortex and white matter tracts after resection of dominant inferior parietal lobule arteriovenous malformations: a combined fMRI and DTI study. Journal of Neurosurgery, 2021, 134, 953-960.	1.6	20
8	High Dimensional Mass Cytometry Analysis Reveals Characteristics of the Immunosuppressive Microenvironment in Diffuse Astrocytomas. Frontiers in Oncology, 2020, 10, 78.	2.8	18
9	Supratentorial cavernous malformations adjacent to the corticospinal tract: surgical outcomes and predictive value of diffusion tensor imaging findings. Journal of Neurosurgery, 2018, 128, 541-552.	1.6	17
10	Clinical features and long-term outcomes of pediatric intraventricular meningiomas: data from a single neurosurgical center. Neurosurgical Review, 2018, 41, 525-530.	2.4	17
11	De Novo Germline and Somatic Variants Convergently Promote Endothelial-to-Mesenchymal Transition in Simplex Brain Arteriovenous Malformation. Circulation Research, 2021, 129, 825-839.	4.5	17
12	Pediatric intracranial clear cell meningioma: a clinicopathological study of seven cases and literature review. Child's Nervous System, 2017, 33, 239-248.	1.1	14
13	Atorvastatin and growth, rupture of small unruptured intracranial aneurysm: results of a prospective cohort study. Therapeutic Advances in Neurological Disorders, 2021, 14, 175628642098793.	3.5	14
14	Lesion-to-Eloquent Fiber Distance Is a Crucial Risk Factor in Presurgical Evaluation of Arteriovenous Malformations in the Temporo-occipital Junction. World Neurosurgery, 2016, 93, 355-364.	1.3	10
15	Brain Arteriovenous Malformations Located in Language Area: Surgical Outcomes and Risk Factors for Postoperative Language Deficits. World Neurosurgery, 2017, 105, 478-491.	1.3	8
16	A comparison of clinicopathological features and surgical outcomes between pediatric skull base and non-skull base meningiomas. Child's Nervous System, 2017, 33, 595-600.	1.1	8
17	Differential long non-coding RNA and mRNA expression in differentiated human glioblastoma stem cells. Molecular Medicine Reports, 2016, 14, 2067-2076.	2.4	7
18	Prediction of High-Grade Pediatric Meningiomas: Magnetic Resonance ImagingÂFeatures Based on T1-Weighted, T2-Weighted, and Contrast-Enhanced T1-WeightedÂImages. World Neurosurgery, 2016, 91, 89-95.	1.3	6

Yuming Jiao

#	Article	IF	CITATIONS
19	Brain Arteriovenous Malformations Located in Premotor Cortex: Surgical Outcomes and Risk Factors for Postoperative Neurologic Deficits. World Neurosurgery, 2017, 105, 432-440.	1.3	6
20	Machine Learning-Enabled Determination of Diffuseness of Brain Arteriovenous Malformations from Magnetic Resonance Angiography. Translational Stroke Research, 2022, 13, 939-948.	4.2	6
21	Surgical management of complex brain arteriovenous malformations with hybrid operating technique: study protocol of a prospective registry and a pragmatic clinical trial. BMC Neurology, 2019, 19, 75.	1.8	5
22	Chinese Cerebrovascular Neurosurgery Society and Chinese Interventional & Hybrid Operation Society, of Chinese Stroke Association Clinical Practice Guidelines for Management of Brain Arteriovenous Malformations in Eloquent Areas. Frontiers in Neurology, 2021, 12, 651663.	2.4	5
23	Brain Arteriovenous Malformations Supplied by the Anterior Choroidal Artery: Treatment Outcomes and Risk Factors for Worsened Muscle Strength After Surgical Resection. World Neurosurgery, 2017, 104, 567-574.	1.3	4
24	CyTOF Analysis Reveals a Distinct Immunosuppressive Microenvironment in IDH Mutant Anaplastic Gliomas. Frontiers in Oncology, 2020, 10, 560211.	2.8	4
25	Risk factors for neurological deficits after surgical treatment of brain arteriovenous malformations supplied by deep perforating arteries. Neurosurgical Review, 2018, 41, 255-265.	2.4	2
26	Spetzler-Martin grade IV and V arteriovenous malformations: Treatment outcomes and risk factors for negative outcomes after surgical resection. Journal of Clinical Neuroscience, 2019, 61, 166-173.	1.5	2
27	Classification of brain arteriovenous malformations located in motor-related areas based on location and anterior choroidal artery feeding. Stroke and Vascular Neurology, 2021, 6, 441-448.	3.3	2
28	Radiomics Analysis for Predicting Epilepsy in Patients With Unruptured Brain Arteriovenous Malformations. Frontiers in Neurology, 2021, 12, 767165.	2.4	2
29	One-Stage Surgical Resection of Giant Intracranial Arteriovenous Malformations in Selected Patients: A Novel Diffusion Tenser Imaging Score. World Neurosurgery, 2019, 130, e1041-e1050.	1.3	1
30	The CTSC-RAB38 Fusion Transcript Is Associated With the Risk of Hemorrhage in Brain Arteriovenous Malformations. Journal of Neuropathology and Experimental Neurology, 2021, 80, 71-78.	1.7	0
31	Grading scale based on arcuate fasciculus segmentation to predict postoperative language outcomes of brain arteriovenous malformations. Stroke and Vascular Neurology, 2022, 7, 390-398.	3.3	Ο