## Junnan Hao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1605354/publications.pdf

Version: 2024-02-01



ΙΠΝΝΑΝ ΗΛΟ

| #  | Article                                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | An Inâ€Depth Study of Zn Metal Surface Chemistry for Advanced Aqueous Znâ€ŀon Batteries. Advanced<br>Materials, 2020, 32, e2003021.                                                                                                                  | 11.1 | 707       |
| 2  | Designing Dendriteâ€Free Zinc Anodes for Advanced Aqueous Zinc Batteries. Advanced Functional<br>Materials, 2020, 30, 2001263.                                                                                                                       | 7.8  | 598       |
| 3  | Recent progress and perspectives on aqueous Zn-based rechargeable batteries with mild aqueous electrolytes. Energy Storage Materials, 2019, 20, 410-437.                                                                                             | 9.5  | 525       |
| 4  | Boosting Zinc Electrode Reversibility in Aqueous Electrolytes by Using Low ost Antisolvents.<br>Angewandte Chemie - International Edition, 2021, 60, 7366-7375.                                                                                      | 7.2  | 516       |
| 5  | Electrolyte Design for In Situ Construction of Highly Zn <sup>2+</sup> onductive Solid Electrolyte<br>Interphase to Enable Highâ€Performance Aqueous Znâ€ŀon Batteries under Practical Conditions. Advanced<br>Materials, 2021, 33, e2007416.        | 11.1 | 484       |
| 6  | Deeply understanding the Zn anode behaviour and corresponding improvement strategies in different aqueous Zn-based batteries. Energy and Environmental Science, 2020, 13, 3917-3949.                                                                 | 15.6 | 480       |
| 7  | Regulation methods for the Zn/electrolyte interphase and the effectiveness evaluation in aqueous<br>Zn-ion batteries. Energy and Environmental Science, 2021, 14, 5669-5689.                                                                         | 15.6 | 314       |
| 8  | Bio-inspired design of an <i>in situ</i> multifunctional polymeric solid–electrolyte interphase for Zn<br>metal anode cycling at 30 mA cm <sup>â^'2</sup> and 30 mA h cm <sup>â^'2</sup> . Energy and<br>Environmental Science, 2021, 14, 5947-5957. | 15.6 | 289       |
| 9  | Toward Highâ€Performance Hybrid Znâ€Based Batteries via Deeply Understanding Their Mechanism and<br>Using Electrolyte Additive. Advanced Functional Materials, 2019, 29, 1903605.                                                                    | 7.8  | 259       |
| 10 | Dualâ€Function Electrolyte Additive for Highly Reversible Zn Anode. Advanced Energy Materials, 2021, 11,<br>2102010.                                                                                                                                 | 10.2 | 246       |
| 11 | Yolk–Shell Structured FeP@C Nanoboxes as Advanced Anode Materials for Rechargeable<br>Lithiumâ€ <del>/</del> Potassiumâ€ <del>l</del> on Batteries. Advanced Functional Materials, 2019, 29, 1808291.                                                | 7.8  | 232       |
| 12 | Toward a Reversible Mn <sup>4+</sup> /Mn <sup>2+</sup> Redox Reaction and Dendriteâ€Free Zn Anode in<br>Nearâ€Neutral Aqueous Zn/MnO <sub>2</sub> Batteries via Salt Anion Chemistry. Advanced Energy<br>Materials, 2020, 10, 1904163.               | 10.2 | 221       |
| 13 | Anion Vacancies Regulating Endows MoSSe with Fast and Stable Potassium Ion Storage. ACS Nano, 2019, 13, 11843-11852.                                                                                                                                 | 7.3  | 210       |
| 14 | Heterostructure Manipulation <i>via in Situ</i> Localized Phase Transformation for High-Rate and<br>Highly Durable Lithium Ion Storage. ACS Nano, 2018, 12, 10430-10438.                                                                             | 7.3  | 138       |
| 15 | Engineering Textile Electrode and Bacterial Cellulose Nanofiber Reinforced Hydrogel Electrolyte to<br>Enable Highâ€Performance Flexible All‧olid‧tate Supercapacitors. Advanced Energy Materials, 2021, 11,<br>2003010.                              | 10.2 | 128       |
| 16 | Large-Scale Electric-Field Confined Silicon with Optimized Charge-Transfer Kinetics and Structural<br>Stability for High-Rate Lithium-Ion Batteries. ACS Nano, 2020, 14, 7066-7076.                                                                  | 7.3  | 114       |
| 17 | Three-dimensional graphene layers prepared by a gas-foaming method for supercapacitor applications.<br>Carbon, 2015, 94, 879-887.                                                                                                                    | 5.4  | 107       |
| 18 | Three-dimensional nitrogen-doped graphene hydrogels prepared via hydrothermal synthesis as high-performance supercapacitor materials. Electrochimica Acta, 2016, 194, 136-142.                                                                       | 2.6  | 107       |

Junnan Hao

| #  | Article                                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Structural Engineering of Hierarchical Microâ€nanostructured Ge–C Framework by Controlling the<br>Nucleation for Ultralongâ€Life Li Storage. Advanced Energy Materials, 2019, 9, 1900081.                                                                                      | 10.2 | 99        |
| 20 | Polyiodide Confinement by Starch Enables Shuttleâ€Free Zn–Iodine Batteries. Advanced Materials, 2022,<br>34, e2201716.                                                                                                                                                         | 11.1 | 98        |
| 21 | Recent progress and perspectives on dual-ion batteries. EnergyChem, 2019, 1, 100004.                                                                                                                                                                                           | 10.1 | 93        |
| 22 | Dehydrationâ€Triggered Ionic Channel Engineering in Potassium Niobate for Li/Kâ€Ion Storage. Advanced<br>Materials, 2020, 32, e2000380.                                                                                                                                        | 11.1 | 85        |
| 23 | Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zincâ€lon Batteries.<br>Angewandte Chemie - International Edition, 2021, 60, 25114-25121.                                                                                                              | 7.2  | 84        |
| 24 | Three-Dimensional Porous Cobalt Phosphide Nanocubes Encapsulated in a Graphene Aerogel as an<br>Advanced Anode with High Coulombic Efficiency for High-Energy Lithium-Ion Batteries. ACS Applied<br>Materials & Interfaces, 2019, 11, 5373-5379.                               | 4.0  | 78        |
| 25 | Metal organic framework derived hollow NiS@C with S-vacancies to boost high-performance supercapacitors. Chemical Engineering Journal, 2021, 419, 129643.                                                                                                                      | 6.6  | 77        |
| 26 | Effects of carbon additives on the performance of negative electrode of lead-carbon battery.<br>Electrochimica Acta, 2015, 151, 89-98.                                                                                                                                         | 2.6  | 76        |
| 27 | Harnessing Plasmaâ€Assisted Doping Engineering to Stabilize Metallic Phase MoSe <sub>2</sub> for Fast<br>and Durable Sodiumâ€lon Storage. Advanced Materials, 2022, 34, e2200397.                                                                                              | 11.1 | 70        |
| 28 | Interfacing MXene flakes on fiber fabric as an ultrafast electron transport layer for high performance textile electrodes. Energy Storage Materials, 2020, 33, 62-70.                                                                                                          | 9.5  | 67        |
| 29 | Highly porous, low band-gap Ni <sub>x</sub> Mn <sub>3â^²x</sub> O <sub>4</sub> (0.55 ≤i>x≤1.2)<br>spinel nanoparticles with <i>in situ</i> coated carbon as advanced cathode materials for zinc-ion<br>batteries. Journal of Materials Chemistry A, 2019, 7, 17854-17866.      | 5.2  | 65        |
| 30 | Achieving Highâ€Performance Metal Phosphide Anode for Potassium Ion Batteries via Concentrated<br>Electrolyte Chemistry. Advanced Energy Materials, 2021, 11, 2003346.                                                                                                         | 10.2 | 62        |
| 31 | Boosting the energy density of supercapacitors by designing both hollow NiO<br>nanoparticles/nitrogen-doped carbon cathode and nitrogen-doped carbon anode from the same<br>precursor. Chemical Engineering Journal, 2022, 431, 134083.                                        | 6.6  | 62        |
| 32 | Face-to-face self-assembly graphene/MnO2 nanocomposites for supercapacitor applications using electrochemically exfoliated graphene. Electrochimica Acta, 2015, 167, 412-420.                                                                                                  | 2.6  | 59        |
| 33 | Catalytic Oxidation of K <sub>2</sub> S via Atomic Co and Pyridinic N Synergy in Potassium–Sulfur<br>Batteries. Journal of the American Chemical Society, 2021, 143, 16902-16907.                                                                                              | 6.6  | 53        |
| 34 | Crystallographicâ€Siteâ€Specific Structural Engineering Enables Extraordinary Electrochemical<br>Performance of Highâ€Voltage LiNi <sub>0.5</sub> Mn <sub>1.5</sub> O <sub>4</sub> Spinel Cathodes for<br>Lithiumâ€Ion Batteries. Advanced Materials, 2021, 33, e2101413.      | 11.1 | 52        |
| 35 | Supercapacitive behavior of electrostatic self-assembly reduced graphene oxide/CoAl-layered double hydroxides nanocomposites. Journal of Alloys and Compounds, 2016, 669, 146-155.                                                                                             | 2.8  | 50        |
| 36 | Designing a hybrid electrode toward high energy density with a staged Li <sup>+</sup> and PF<br><sub>6</sub> <sup>â^'</sup> deintercalation/intercalation mechanism. Proceedings of the National<br>Academy of Sciences of the United States of America, 2020, 117, 2815-2823. | 3.3  | 50        |

Junnan Hao

| #  | Article                                                                                                                                                                                                                                                                          | IF                      | CITATIONS     |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|---------------|
| 37 | Ultrathin Fewâ€Layer GeP Nanosheets via Lithiationâ€Assisted Chemical Exfoliation and Their Application<br>in Sodium Storage. Advanced Energy Materials, 2020, 10, 1903826.                                                                                                      | 10.2                    | 41            |
| 38 | 3Dâ€Printed Wearable Electrochemical Energy Devices. Advanced Functional Materials, 2022, 32, 2103092.                                                                                                                                                                           | 7.8                     | 37            |
| 39 | Hollow NiCoP nanocubes derived from a Prussian blue analogue self-template for high-performance supercapacitors. Journal of Alloys and Compounds, 2022, 893, 162344.                                                                                                             | 2.8                     | 37            |
| 40 | Anchoring ultrafine Co3O4 grains on reduced oxide graphene by dual-template nanocasting strategy for high-energy solid state supercapacitor. Electrochimica Acta, 2019, 326, 134965.                                                                                             | 2.6                     | 35            |
| 41 | Studying the Conversion Mechanism to Broaden Cathode Options in Aqueous Zinc″on Batteries.<br>Angewandte Chemie, 2021, 133, 25318-25325.                                                                                                                                         | 1.6                     | 34            |
| 42 | MnO 2 -introduced-tunnels strategy for the preparation of nanotunnel inserted hierarchical-porous carbon as electrode material for high-performance supercapacitors. Chemical Engineering Journal, 2017, 320, 634-643.                                                           | 6.6                     | 33            |
| 43 | Synthesis of three dimensional N&S co-doped rGO foam with high capacity and long cycling stability for supercapacitors. Journal of Colloid and Interface Science, 2019, 537, 57-65.                                                                                              | 5.0                     | 29            |
| 44 | Preparation of Lithium Titanate/Reduced Graphene Oxide Composites with Three-Dimensional<br>"Fishnet-Like―Conductive Structure via a Gas-Foaming Method for High-Rate Lithium-Ion Batteries. ACS<br>Applied Materials & Interfaces, 2017, 9, 42883-42892.                        | 4.0                     | 25            |
| 45 | Bio-templated fabrication of three-dimensional network activated carbons derived from mycelium pellets for supercapacitor applications. Scientific Reports, 2018, 8, 562.                                                                                                        | 1.6                     | 24            |
| 46 | Metal organic frameworks derived Ni-doped hierarchical NiXCo1-XS@C bundled-like nanostructures for enhanced supercapacitors. Electrochimica Acta, 2022, 406, 139872.                                                                                                             | 2.6                     | 23            |
| 47 | Constructing Layered Nanostructures from Nonâ€Layered Sulfide Crystals via Surface Charge<br>Manipulation Strategy. Advanced Functional Materials, 2021, 31, 2101676.                                                                                                            | 7.8                     | 20            |
| 48 | Pseudocapacitive Zinc Cation Intercalation with Superior Kinetics Enabled by Atomically Thin V2O5<br>Nanobelts for Quasi-Solid-State Microbatteries. Energy Storage Materials, 2022, 50, 454-463.                                                                                | 9.5                     | 20            |
| 49 | Preparation of three-dimensional nitrogen-doped graphene layers by gas foaming method and its electrochemical capactive behavior. Electrochimica Acta, 2016, 193, 293-301.                                                                                                       | 2.6                     | 15            |
| 50 | The Electrolyte Additive Effects on Commercialized Ni-Rich<br>LiNi <sub><i>x</i></sub> Co <i><sub>y</sub></i> Mn <i>z</i> O <sub>2</sub> ( <i>x</i> + <i>y</i> + <i>z</i> ) Tj I                                                                                                 | eto <sub>99</sub> 0 0 0 | rgBT /Overloo |
| 51 | A Robust Coinâ€Cell Design for In Situ Synchrotronâ€based Xâ€Ray Powder Diffraction Analysis of Battery<br>Materials. Batteries and Supercaps, 2021, 4, 380-384.                                                                                                                 | 2.4                     | 11            |
| 52 | Selective Interface Synthesis of Cobalt Metaphosphate Nanosheet Arrays Motivated by Functionalized<br>Carbon Cloths for Fast and Durable Na/K-Ion Storage. ACS Applied Materials & Interfaces, 2021, 13,<br>34410-34418.                                                         | 4.0                     | 8             |
| 53 | Heterostructure Manipulation toward Ameliorating Electrodes for Better Lithium Storage Capability. ACS Sustainable Chemistry and Engineering, 2018, 6, 17267-17276.                                                                                                              | 3.2                     | 7             |
| 54 | Dual-Functional Tungsten Boosted Lithium-Ion Diffusion and Structural Integrity of<br>LiNi <sub>0.8</sub> Co <sub>0.1</sub> Mn <sub>0.1</sub> O <sub>2</sub> Cathodes for High Performance<br>Lithium-Ion Batteries. ACS Sustainable Chemistry and Engineering, 2022, 10, 50-60. | 3.2                     | 7             |

| #  | Article                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Network Simplification-Based Cluster Coordinated Optimization Method for Distributed PVs With<br>Inadequate Measurement. IEEE Access, 2020, 8, 65283-65293.         | 2.6 | 4         |
| 56 | Surface engineering enables highly reversible lithium-ion storage and durable structure for advanced silicon anode. Cell Reports Physical Science, 2021, 2, 100486. | 2.8 | 2         |