
Ian G Macreadie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/160523/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Toxic Amyloid-beta Peptide of Alzheimer's Disease and Yeast Aiding in its Study and Control. Current Bioactive Compounds, 2022, 18, .	0.2	0
2	Developing systems in yeast to address Alzheimer's disease. Methods in Microbiology, 2022, , 1-43.	0.4	3
3	Yeast as a model organism for teaching biotechnology and human cell biology leading to sustainable futures. , 2022, , 325-347.		0
4	Reflections on the COVID-19 pandemic from a university academic. Microbiology Australia, 2021, 42, 138.	0.1	0
5	Potential contributions of trace amines in Alzheimer's disease and therapeutic prospects. Neural Regeneration Research, 2021, 16, 1394.	1.6	6
6	Lipids, statins and susceptibility to SARS-CoV-2 and influenza A viruses. Microbiology Australia, 2021, 42, 87.	0.1	2
7	Genes of SARS-CoV-2 and emerging variants. Microbiology Australia, 2021, 42, 10.	0.1	2
8	A Toxic Synergy between Aluminium and Amyloid Beta in Yeast. International Journal of Molecular Sciences, 2021, 22, 1835.	1.8	14
9	Trans-Chalcone Plus Baicalein Synergistically Reduce Intracellular Amyloid Beta (Aβ42) and Protect from Aβ42 Induced Oxidative Damage in Yeast Models of Alzheimer's Disease. International Journal of Molecular Sciences, 2021, 22, 9456.	1.8	15
10	Severity, Pathogenicity and Transmissibility of Delta and Lambda Variants of SARS-CoV-2, Toxicity of Spike Protein and Possibilities for Future Prevention of COVID-19. Microorganisms, 2021, 9, 2167.	1.6	36
11	Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer's disease. Trends in Food Science and Technology, 2020, 104, 153-162.	7.8	23
12	Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. International Journal of Molecular Sciences, 2020, 21, 8014.	1.8	15
13	Utilization of an Industry Byproduct, Corymbia maculata Leaves, by Aspergillus terreus to Produce Lovastatin. Bioengineering, 2020, 7, 101.	1.6	3
14	Tyramine and Amyloid Beta 42: A Toxic Synergy. Biomedicines, 2020, 8, 145.	1.4	14
15	Polyphasic Characterisation of Cedecea colo sp. nov., a New Enteric Bacterium Isolated from the Koala Hindgut. Microorganisms, 2020, 8, 309.	1.6	8
16	Siccibacter turicensis from Kangaroo Scats: Possible Implication in Cellulose Digestion. Microorganisms, 2020, 8, 635.	1.6	7
17	Comparison of Cytocidal Activities of L-DOPA and Dopamine in <i>S. cerevisiae</i> and <i>C. glabrata</i> . Current Bioactive Compounds, 2020, 16, 90-93.	0.2	3
18	Yeast contributions to Alzheimer's Disease. Journal of Human and Clinical Genetics, 2020, 2, 1-19.	0.2	8

#	Article	IF	CITATIONS
19	Fluoxetine Inhibits Respiratory Growth of Candida glabrata and has Cytocidal Activity. Current Bioactive Compounds, 2020, 15, 692-695.	0.2	0
20	Simvastatin Efficiently Reduces Levels of Alzheimer's Amyloid Beta in Yeast. International Journal of Molecular Sciences, 2019, 20, 3531.	1.8	22
21	Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer's Disease. International Journal of Molecular Sciences, 2019, 20, 5090.	1.8	57
22	Insights from Yeast on Oxidative Stress in Alzheimer's Disease, Focusing on Ahp1p/Prx5. , 2019, 3, 1-1.		4
23	Inhibition of Respiration in Yeast by 2-Phenylethylamine. Current Bioactive Compounds, 2018, 14, 67-69.	0.2	3
24	Statin resistance in Candida glabrata. Biotechnology Letters, 2018, 40, 1389-1394.	1.1	9
25	Development of Convenient System for Detecting Yeast Cell Stress, Including That of Amyloid Beta. International Journal of Molecular Sciences, 2018, 19, 2136.	1.8	10
26	How Yeast Can Inform Us about Healthy Aging. Open Journal of Social Sciences, 2018, 06, 24-31.	0.1	3
27	From the Editorial Team. Microbiology Australia, 2018, 39, 66.	0.1	0
28	Production of statins by fungal fermentation. Microbiology Australia, 2017, 38, 70.	0.1	3
29	Solid lipid nanoparticles mediate non-viral delivery of plasmid DNA to dendritic cells. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	15
30	Fungicidal effect of thymoquinone involves generation of oxidative stress in Candida glabrata. Microbiological Research, 2017, 195, 81-88.	2.5	28
31	Industrial microbiology. Microbiology Australia, 2017, 38, 51.	0.1	0
32	Yeast as a model organism for the pharmaceutical and nutraceutical industries. Microbiology Australia, 2017, 38, 55.	0.1	1
33	Exploitation of Aspergillus terreus for the Production of Natural Statins. Journal of Fungi (Basel,) Tj ETQq1 1 0.7	84314 rgE 1.5	BT /Qyerlock]
34	Yeast as a Model for Studies on Aβ Aggregation Toxicity in Alzheimer's Disease, Autophagic Responses, and Drug Screening. Methods in Molecular Biology, 2016, 1303, 217-226.	0.4	15
35	Finding chemopreventatives to reduce amyloid beta in yeast. Neural Regeneration Research, 2016, 11, 244.	1.6	4
36	Utilization of yeast to find compounds that promotes cell health. , 2016, 06, .		0

#	Article	IF	CITATIONS
37	Can Yeast Salvage Folate? Bioinformatics Suggests Yes!. MOJ Proteomics & Bioinformatics, 2016, 3, .	0.1	О
38	Yeast Model of Amyloid-β and Tau Aggregation in Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 47, 9-16.	1.2	16
39	Anti-Amyloidogenic Properties of Some Phenolic Compounds. Biomolecules, 2015, 5, 505-527.	1.8	32
40	Candida glabrata, Friend and Foe. Journal of Fungi (Basel, Switzerland), 2015, 1, 277-292.	1.5	13
41	Lupin peptone as a replacement for animal-derived peptone in rich culture media for yeast. Journal of Microbiological Methods, 2015, 109, 39-40.	0.7	1
42	Immunization of mice with <i>Plasmodium </i> <scp>TCTP</scp> delays establishment of <i>Plasmodium</i> infection. Parasite Immunology, 2015, 37, 23-31.	0.7	8
43	Exogenous folates stimulate growth and budding of Candida glabrata. Microbial Cell, 2015, 2, 163-167.	1.4	2
44	Quorum protection, growth and survival. Microbial Cell, 2015, 2, 38-42.	1.4	0
45	Meet Our Associate Editor:. Current Bioactive Compounds, 2015, 11, 61-61.	0.2	0
46	Pretreatment of chemically-synthesized Aβ ₄₂ affects its biological activity in yeast. Prion, 2014, 8, 404-410.	0.9	13
47	Cell density impacts on <i>Candida glabrata</i> survival in hypo-osmotic stress. FEMS Yeast Research, 2014, 14, 508-516.	1.1	10
48	A simple and inexpensive device for biofilm analysis. Journal of Microbiological Methods, 2014, 98, 59-63.	0.7	14
49	P1-107: FOLATE, AMYLOID BETA, AND CELL GROWTH IN RELATION TO ALZHEIMER'S DISEASE. , 2014, 10, P340-P340.		Ο
50	Application of Yeast to Study the Tau and Amyloid-β Abnormalities of Alzheimer's Disease. Journal of Alzheimer's Disease, 2013, 35, 217-225.	1.2	21
51	Lipid Constituents of the Edible Mushroom, <i>Pleurotus giganteus</i> Demonstrate Anti-Candida Activity. Natural Product Communications, 2013, 8, 1934578X1300801.	0.2	6
52	Lipid constituents of the edible mushroom, Pleurotus giganteus demonstrate anti-Candida activity. Natural Product Communications, 2013, 8, 1763-5.	0.2	5
53	Structure of S. aureus HPPK and the Discovery of a New Substrate Site Inhibitor. PLoS ONE, 2012, 7, e29444.	1.1	24
54	Latrepirdine (Dimebon™) Enhances Autophagy and Reduces Intracellular GFP-Aβ42 Levels in Yeast. Journal of Alzheimer's Disease, 2012, 32, 949-967.	1.2	68

#	Article	IF	CITATIONS
55	Microorganisms: Their benefits and beyond. Microbiology Australia, 2012, 33, 89.	0.1	Ο
56	Microbes at the extreme: Mining with microbes. Microbiology Australia, 2012, 33, 116.	0.1	0
57	Dietary Copper and the Brain. , 2011, , 2375-2392.		0
58	Synthesis and activity of polyacetylene substituted 2-hydroxy acids, esters, and amides against microbes of clinical importance. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 4555-4557.	1.0	7
59	Yeast as a model for studying Alzheimer's disease. FEMS Yeast Research, 2010, 10, 961-969.	1.1	52
60	Inhibition of Respiratory Growth and Survival in Yeast by Dopamine and Counteraction with Ascorbate or Glutathione. Journal of Biomolecular Screening, 2010, 15, 297-301.	2.6	15
61	Aβ aggregation and possible implications in Alzheimer's disease pathogenesis. Journal of Cellular and Molecular Medicine, 2009, 13, 412-421.	1.6	129
62	Alzheimer's Amyloid-β Rescues Yeast from Hydroxide Toxicity. Journal of Alzheimer's Disease, 2009, 18, 31-33.	1.2	6
63	Copper transport and Alzheimer's disease. European Biophysics Journal, 2008, 37, 295-300.	1.2	50
64	Design of 1,2-dioxines with anti-Candida activity: aromatic substituted 1,2-dioxines. Tetrahedron, 2008, 64, 1225-1232.	1.0	9
65	A New Method to Measure Cellular Toxicity of Non-Fibrillar and Fibrillar Alzheimer's Aβ Using Yeast. Journal of Alzheimer's Disease, 2008, 13, 147-150.	1.2	29
66	Validation of Folate in a Convenient Yeast Assay Suited for Identification of Inhibitors of Alzheimer's Amyloid-β Aggregation. Journal of Alzheimer's Disease, 2008, 15, 391-396.	1.2	30
67	Folate Biosynthesis - Reappraisal of Old and Novel Targets in the Search for New Antimicrobials. The Open Enzyme Inhibition Journal, 2008, 1, 12-33.	2.0	41
68	Aβ Produced as a Fusion to Maltose Binding Protein Can Be Readily Purified and Stably Associates with Copper and Zinc. Protein and Peptide Letters, 2007, 14, 83-86.	0.4	11
69	Biological consequences of statins in <i>Candida</i> species and possible implications for human health. Biochemical Society Transactions, 2007, 35, 1529-1532.	1.6	27
70	Design of endoperoxides with anti-Candida activity. Bioorganic and Medicinal Chemistry, 2007, 15, 36-42.	1.4	12
71	A rapid assay for dihydropteroate synthase activity suitable for identification of inhibitors. Analytical Biochemistry, 2007, 360, 227-234.	1.1	8
72	Simvastatin reduces ergosterol levels, inhibits growth and causes loss of mtDNA inCandida glabrata. FEMS Yeast Research, 2007, 7, 436-441.	1.1	62

#	Article	IF	CITATIONS
73	Alzheimer's Aβ fused to green fluorescent protein induces growth stress and a heat shock response. FEMS Yeast Research, 2007, 7, 1230-1236.	1.1	69
74	Therapeutic products from yeast. Microbiology Australia, 2007, 28, 82.	0.1	1
75	Isolation of the Pneumocystis carinii dihydrofolate synthase gene and functional complementation in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2006, 256, 244-250.	0.7	15
76	Growth inhibition ofCandidaspecies andAspergillus fumigatusby statins. FEMS Microbiology Letters, 2006, 262, 9-13.	0.7	117
77	Novel endoperoxides: Synthesis and activity against Candida species. Bioorganic and Medicinal Chemistry Letters, 2006, 16, 920-922.	1.0	14
78	Mutations in the Pneumocystis jirovecii DHPS Gene Confer Cross-Resistance to Sulfa Drugs. Antimicrobial Agents and Chemotherapy, 2005, 49, 741-748.	1.4	38
79	Analysis ofPneumocystis jiroveciiDHPS Alleles Implicated in Sulfamethoxazole Resistance Using anEscherichia coliModel System. Microbial Drug Resistance, 2005, 11, 1-8.	0.9	20
80	Defining and Detecting Emergence in Complex Networks. Lecture Notes in Computer Science, 2005, , 573-580.	1.0	23
81	The Three-dimensional Structure of the Bifunctional 6-Hydroxymethyl-7,8-Dihydropterin Pyrophosphokinase/Dihydropteroate Synthase of Saccharomyces cerevisiae. Journal of Molecular Biology, 2005, 348, 655-670.	2.0	56
82	Purification, properties, and crystallization of Saccharomyces cerevisiae dihydropterin pyrophosphokinase-dihydropteroate synthase. Protein Expression and Purification, 2005, 41, 355-362.	0.6	12
83	Dihydropteroate Synthase Mutations in Pneumocystis jiroveci Can Affect Sulfamethoxazole Resistance in a Saccharomyces cerevisiae Model. Antimicrobial Agents and Chemotherapy, 2004, 48, 2617-2623.	1.4	42
84	Over-production of dihydrofolate reductase leads to sulfa-dihydropteroate resistance in yeast. FEMS Microbiology Letters, 2004, 236, 301-305.	0.7	9
85	Sulfa drugs strike more than once. Trends in Parasitology, 2004, 20, 1-3.	1.5	50
86	Analysis in Escherichia coli of Plasmodium falciparum dihydropteroate synthase (DHPS) alleles implicated in resistance to sulfadoxine. International Journal for Parasitology, 2004, 34, 95-100.	1.3	35
87	Novel Endoperoxide Antimalarials:  Synthesis, Heme Binding, and Antimalarial Activity. Journal of Medicinal Chemistry, 2004, 47, 1833-1839.	2.9	29
88	Cloning of the Pneumocystis jirovecii trifunctional FAS gene and complementation of its DHPS activity in Escherichia coli. Fungal Genetics and Biology, 2004, 41, 1053-1062.	0.9	12
89	Over-production of dihydrofolate reductase leads to sulfa-dihydropteroate resistance in yeast. FEMS Microbiology Letters, 2004, 236, 301-305.	0.7	0
90	Saccharomyces cerevisiae expression vectors with thrombin-cleavable N- and C-terminal 6x(His) tags. Biotechnology Letters, 2003, 25, 331-334.	1.1	14

#	Article	IF	CITATIONS
91	Promoter Strength of Folic Acid Synthesis Genes Affects Sulfa Drug Resistance in Saccharomyces cerevisiae. Microbial Drug Resistance, 2003, 9, 249-255.	0.9	18
92	Inhibition Studies of Sulfonamide-Containing Folate Analogs in Yeast. Microbial Drug Resistance, 2003, 9, 139-146.	0.9	28
93	Folic acid antagonism of sulfa drug treatments. Trends in Parasitology, 2002, 18, 49-50.	1.5	7
94	Direct integrin $\hat{I} \pm v \hat{I}^2 6$ -ERK binding: implications for tumour growth. Oncogene, 2002, 21, 1370-1380.	2.6	90
95	Cytotoxicity of dihydropteroate inSaccharomyces cerevisiae. FEMS Microbiology Letters, 2002, 213, 189-192.	0.7	10
96	Title is missing!. Biotechnology Letters, 2002, 24, 657-662.	1.1	5
97	Novel Approaches to Tackling Malarial Drug Resistance Using Yeast. IUBMB Life, 2001, 52, 285-289.	1.5	12
98	Sulfa drug screening in yeast: fifteen sulfa drugs compete with p-aminobenzoate in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2001, 199, 181-184.	0.7	30
99	Folic acid utilisation related to sulfa drug resistance in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2001, 204, 387-390.	0.7	27
100	Sulfa drug screening in yeast: fifteen sulfa drugs compete with p-aminobenzoate in Saccharomyces cerevisiae. FEMS Microbiology Letters, 2001, 199, 181-184.	0.7	2
101	Residues within the HFRIGC Sequence of HIV-1 Vpr Involved in Growth Arrest Activities. Biochemical and Biophysical Research Communications, 1999, 264, 287-290.	1.0	17
102	Solution structure of peptides from HIV-1 Vpr protein that cause membrane permeabilization and growth arrest. Journal of Peptide Science, 1998, 4, 426-435.	0.8	9
103	Expression of HIV-1nefin yeast causes membrane perturbation and release of the myristylated Nef protein. Journal of Biomedical Science, 1998, 5, 203-210.	2.6	8
104	Expression of HIV-1 <i>nef</i> in Yeast Causes Membrane Perturbation and Release of the Myristylated Nef Protein. Journal of Biomedical Science, 1998, 5, 203-210.	2.6	8
105	Design and Assay of Inhibitors of HIV-1 Vpr Cell Killing and Growth Arrest Activity Using Microbial Assay Systems. Journal of Biomolecular Screening, 1998, 3, 299-304.	2.6	3
106	Structural Requirements for the Cytotoxicity of the N-Terminal Region of HIV Type 1 Nef. AIDS Research and Human Retroviruses, 1998, 14, 1543-1551.	0.5	8
107	Cytotoxic Activity of the Amino-Terminal Region of HIV Type 1 Nef Protein. AIDS Research and Human Retroviruses, 1997, 13, 1213-1220.	0.5	11
108	Cytotoxicity Resulting from Addition of HIV-1 Nef N-Terminal Peptides to Yeast and Bacterial Cells. Biochemical and Biophysical Research Communications, 1997, 232, 707-711.	1.0	13

#	Article	IF	CITATIONS
109	HIV-1 protein Vpr causes gross mitochondrial dysfunction in the yeastSaccharomyces cerevisiae. FEBS Letters, 1997, 410, 145-149.	1.3	41
110	A C-terminal domain of HIV-1 accessory protein Vpr is involved in penetration, mitochondrial dysfunction and apoptosis of human CD4+ lymphocytes. Apoptosis: an International Journal on Programmed Cell Death, 1997, 2, 69-76.	2.2	55
111	Recombinant Human PhenylethanolamineN-Methyltransferase: Overproduction inEscherichia coli,Purification, and Characterization. Protein Expression and Purification, 1996, 8, 160-166.	0.6	20
112	Extracellular addition of a domain of HIV-1 Vpr containing the amino acid sequence motif H(S/F)RIG causes cell membrane permeabilization and death. Molecular Microbiology, 1996, 19, 1185-1192.	1.2	46
113	Expression and analysis of the NS2 protein of influenza A virus. Archives of Virology, 1995, 140, 2067-2073.	0.9	42
114	Secretion and affinity purification of glutathione S-transferase fusion proteins from yeast. Biotechnology Letters, 1995, 9, 821-826.	0.5	1
115	A domain of human immunodeficiency virus type 1 Vpr containing repeated H(S/F)RIG amino acid motifs causes cell growth arrest and structural defects Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 2770-2774.	3.3	135
116	Expression and characterisation of the influenza A virus non-structural protein NS1 in yeast. Archives of Virology, 1994, 138, 299-314.	0.9	15
117	Suppression of a yeast mitochondrial RNA processing defect by nuclear mutations. Current Genetics, 1994, 25, 239-244.	0.8	1
118	Vectors for Cu2+-inducible production of glutathioneS-transferase-fusion proteins for single-step purification from yeast. Yeast, 1994, 10, 441-449.	0.8	30
119	Nef 27, but Not the Nef 25 Isoform of Human Immunodeficiency Virus-Type 1 pNL4.3 Down-Regulates Surface CD4 and IL-2R Expression in Peripheral Blood Mononuclear Cells and Transformed T Cells. Virology, 1994, 198, 245-256.	1.1	73
120	High-level secretion of correctly processed Î ² -lactamase from Saccharomyces cerevisiae using a high-copy-number secretion vector. Gene, 1994, 142, 113-117.	1.0	18
121	Secretion of ?-lactamase from K. lactis using pEPS1, a convenient episomal vector designed for the secretion of foreign proteins. Biotechnology Letters, 1993, 15, 213-218.	1.1	5
122	Expression of HIV-1nef in yeast: The 27 kDa nef protein is myristylated and fractionates with the nucleus. Yeast, 1993, 9, 565-573.	0.8	16
123	Complete nucleotide sequence of the non-structural gene of the human influenza virus strain A/WS/33. Nucleic Acids Research, 1993, 21, 2257-2257.	6.5	4
124	Cloning system for Candida glabrata using elements from the metallothionein-lla-encoding gene that confer autonomous replication. Gene, 1992, 113, 119-124.	1.0	30
125	Disruption analysis of metallothionein-encoding genes in Candida glabrata. Gene, 1992, 114, 75-80.	1.0	33
126	High-frequency binding of IgE to the Der p allergen expressed in yeast*3. Journal of Allergy and Clinical Immunology, 1992, 89, 95-102.	1.5	54

#	Article	IF	CITATIONS
127	Production of HIV-1 Vpu with pYEULCBX, a convenient vector for the production of non-fused proteins in yeast. Biotechnology Letters, 1992, 14, 639-642.	1.1	13
128	Stable synthesis of viral protein 2 of infectious bursal disease virus in Saccharomyces cerevisiae. Gene, 1991, 108, 275-279.	1.0	4
129	Improved shuttle vectors for cloning and high-level Cu2+ -mediated expression of foreign genes in yeast. Gene, 1991, 104, 107-111.	1.0	49
130	A recombinant subunit vaccine that protects progeny chickens from infectious bursal disease. Avian Pathology, 1991, 20, 447-460.	0.8	24
131	Physicochemical and immunological characterization of recombinant host-protective antigen (VP2) of infectious bursal disease virus. Vaccine, 1991, 9, 715-722.	1.7	43
132	Protection against cadmium toxicity in yeast by alcohol dehydrogenase. Journal of Inorganic Biochemistry, 1991, 44, 155-161.	1.5	15
133	Internal initiation and frameshifting in infectious bursal disease virus sequence expressed in Escherichia coli. Virology, 1991, 184, 773-776.	1.1	7
134	Constitutive expression of theSaccharomyces cerevisiae CUP1 gene inKluyveromyces lactis. Yeast, 1991, 7, 127-135.	0.8	20
135	Yeast vectors for cloning and copper-inducible expression of foreign genes. Nucleic Acids Research, 1990, 18, 1078-1078.	6.5	15
136	Expression and characterization of infectious bursal disease virus polyprotein in yeast. Gene, 1990, 95, 179-186.	1.0	14
137	Passive protection against infectious bursal disease virus by viral VP2 expressed in yeast. Vaccine, 1990, 8, 549-552.	1.7	50
138	Versatile cassettes designed for the copper inducible expression of proteins in yeast. Plasmid, 1989, 21, 147-150.	0.4	28
139	Sequence of the small double-stranded RNA genomic segment of infectious bursal disease virus and its deduced 90-kDa product. Virology, 1988, 163, 240-242.	1.1	91
140	Transposition of an intron in yeast mitochondria requires a protein encoded by that intron. Cell, 1985, 41, 395-402.	13.5	173
141	var1 gene on the mitochondrial genome of Torulopsis glabrata. Journal of Molecular Biology, 1985, 184, 565-576.	2.0	29
142	Biogenesis of mitochondria: genetic and molecular analysis of the oli2 region of mitochondrial DNA in Saccharomyces cerevisiae. Current Genetics, 1984, 8, 243-243.	0.8	0
143	Biogenesis of Mitochondria: Genetic and molecular analysis of the oli2 region of mitochondrial DNA in Saccharomyces cerevisiae. Current Genetics, 1984, 8, 135-146.	0.8	34
144	Biogenesis of mitochondria: the mitochondrial gene (aap1) coding for mitochondrial ATPase subunit 8 inSaccharomyces cerevisiae. Nucleic Acids Research, 1983, 11, 4435-4451.	6.5	166

#	Article	IF	CITATIONS
145	Biogenesis of mitochondria: A temperature sensitivity mutation affecting the mitochondrially synthesized var1 protein of Saccharomyces cerevisiae. Archives of Biochemistry and Biophysics, 1980, 203, 260-270.	1.4	40
146	Biogenesis of mitochondria. Oli2 mutations affecting the coupling of oxidation to phosphorylation in Saccharomyces cerevisiae. Biochimica Et Biophysica Acta - Bioenergetics, 1980, 592, 431-444.	0.5	21