Isabel C Santos

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/1605132/isabel-c-santos-publications-by-year.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

171
papers2,842
citations30
h-index42
g-index175
ext. papers3,035
ext. citations3.6
avg, IF4.55
L-index

#	Paper	IF	Citations
171	C⊞?N?C hydrogen bonding in cyanobenzene-ethylenedithio-tetrathiafulvalene compounds. <i>CrystEngComm</i> , 2022 , 24, 1145-1155	3.3	O
170	Correlation between Supramolecular Connectivity and Magnetic Behaviour of [FeIII(5-X-qsal)2]+-Based Salts Prone to Exhibit SCO Transition. <i>Magnetochemistry</i> , 2022 , 8, 1	3.1	1
169	Gallium and indium complexes with new hexadentate bis(semicarbazone) and bis(thiosemicarbazone) chelators. <i>Dalton Transactions</i> , 2021 , 50, 1631-1640	4.3	4
168	New series of BODIPY dyes: Synthesis, characterization and applications in photovoltaic cells and light-emitting diodes. <i>Dyes and Pigments</i> , 2021 , 193, 109517	4.6	3
167	Structural diversity in conducting bilayer salts (CNB-EDT-TTF)4A. CrystEngComm, 2020, 22, 8313-8321	3.3	2
166	[Co/Fe(HAlkyl-tpdt)]: Alkyl-Substituted Cobalt and Iron Bis-dithiolenethiophenic Complexes. <i>Inorganic Chemistry</i> , 2020 , 59, 9261-9269	5.1	
165	Bilayer Molecular Metal with a Polymeric Anion, 🕾 - (CNB-EDT-TTF) 6 Ag~7.951~9.19. <i>Crystal Growth and Design</i> , 2020 , 20, 4224-4227	3.5	3
164	On the path to gold: Monoanionic Au bisdithiolate complexes with antimicrobial and antitumor activities. <i>Journal of Inorganic Biochemistry</i> , 2020 , 202, 110904	4.2	9
163	CO conversion to phenyl isocyanates by uranium(vi) bis(imido) complexes. <i>Chemical Communications</i> , 2020 , 56, 431-434	5.8	9
162	Conducting neutral gold bisdithiolene complex [Au(dspdt)][]Dalton Transactions, 2020, 49, 13737-13743	3 4.3	3
161	Bromide and Tribromide 4-Cyanobenzene-Ethylenedithio-Tetrathiafulvalene Radical Salts by Chemical and Electrochemical Routes. <i>Crystal Growth and Design</i> , 2019 , 19, 5768-5775	3.5	4
160	Tetrathiafulvalene and Tetramethyltetraselenafulvalene Salts with [M(dcdmp)2] Anions (M = Au, Cu, and Ni): High Conductivity and Unusual Stoichiometries. <i>Crystal Growth and Design</i> , 2019 , 19, 6493-6	5 <i>5</i> 052	2
159	A 4-cyanobenzene-ethylenedithio-TTF electron donor and its (1 : 1) triiodide radical cation salt; isomer effects in CN?HC interactions. <i>CrystEngComm</i> , 2019 , 21, 637-647	3.3	8
158	Radical Cation Salts of Cyanobenzene-Ethylenedithio-TTF Electron Donors with Halide (Cu and Hg) Binuclear Anions. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 1875-1883	2.3	6
157	Nickel Complexes Bearing SNN and SS Donor Atom Ligands: Synthesis, Structural Characterization and Biological activity. <i>Applied Organometallic Chemistry</i> , 2019 , 33, e5088	3.1	2
156	Double Layer Conducting Salts: (CNB-EDT-TTF)4X, X = ClO4PReO4Pand SbF6PElectrical Transport and Infrared Properties. <i>Crystals</i> , 2019 , 9, 608	2.3	4
155	Structural relations in (1 : 1) and (2 : 1) cyanobenzene-ethylenedithio-TTF radical salts; the role of CN?H interactions. <i>CrystEngComm</i> , 2019 , 21, 7489-7497	3.3	4

(2016-2019)

154	Unravelling the antitumoral potential of novel bis(thiosemicarbazonato) Zn(II) complexes: structural and cellular studies. <i>Journal of Biological Inorganic Chemistry</i> , 2019 , 24, 71-89	3.7	6	
153	Magnetic and structural correlations in [Fe(nsal2trien)] salts: the role of cationInion interactions in the spin crossover phenomenon. <i>CrystEngComm</i> , 2018 , 20, 2465-2475	3.3	5	
152	Uranium(iii) complexes supported by hydrobis(mercaptoimidazolyl)borates: synthesis and oxidation chemistry. <i>Dalton Transactions</i> , 2018 , 47, 10601-10612	4.3	3	
151	E(CNB-EDT-TTF)4BF4; Anion Disorder Effects in Bilayer Molecular Metals. <i>Crystals</i> , 2018 , 8, 142	2.3	7	
150	Synthesis and Characterization of Charge Transfer Salts Based on [M(dcdmp)2] (M = Au, Cu and Ni) with TTF Type Donors. <i>Crystals</i> , 2018 , 8, 141	2.3	5	
149	Synthesis, structural studies and antimicrobial activities of manganese, nickel and copper complexes of two new tridentate 2-formylpyridine thiosemicarbazone ligands. <i>Inorganic Chemistry Communication</i> , 2018 , 96, 194-201	3.1	14	
148	Enhanced physical properties of potassium zinc sulphate hydrate single crystal following iodide doping. <i>Materials Research Express</i> , 2018 , 5, 066207	1.7	2	
147	Gold and Nickel Extended Thiophenic-TTF Bisdithiolene Complexes. <i>Molecules</i> , 2018 , 23,	4.8	5	
146	Cyanobenzene E thylenedithio T etrathiafulvalene Salts with ClO4EBilayer Polymorphs and Different Stoichiometries. <i>Crystal Growth and Design</i> , 2017 , 17, 2801-2808	3.5	11	
145	Gold and nickel alkyl substituted bis-thiophenedithiolene complexes: anionic and neutral forms. <i>Inorganic Chemistry Frontiers</i> , 2017 , 4, 270-280	6.8	11	
144	Biophysical characterization and antineoplastic activity of new bis(thiosemicarbazonato) Cu(II) complexes. <i>Journal of Inorganic Biochemistry</i> , 2017 , 167, 68-79	4.2	11	
143	The Solid Solutions (Per)2[PtxAu(1日)(mnt)2]; Alloying Para- and Diamagnetic Anions in Two-Chain Compounds. <i>Magnetochemistry</i> , 2017 , 3, 22	3.1	2	
142	Polymorphism and Superconductivity in Bilayer Molecular Metals (CNB-EDT-TTF)I. <i>Inorganic Chemistry</i> , 2016 , 55, 10343-10350	5.1	13	
141	Anthracene-terpyridine metal complexes as new G-quadruplex DNA binders. <i>Journal of Inorganic Biochemistry</i> , 2016 , 160, 275-86	4.2	32	
140	DT-TTF Salts with [Cu(dcdmp)2][IThe Richness of Different Stoichiometries. <i>Crystal Growth and Design</i> , 2016 , 16, 3924-3931	3.5	7	
139	Charge-Transfer Salts Based on a Dissymmetrical Cyano-Substituted Tetrathiafulvalene Donor. European Journal of Inorganic Chemistry, 2016 , 2016, 1287-1292	2.3	9	
138	A novel samarium(ii) complex bearing a dianionic bis(phenolate) cyclam ligand: synthesis, structure and electron-transfer reactions. <i>Dalton Transactions</i> , 2016 , 45, 3778-90	4.3	15	
137	Synthesis and structural characterization of polynuclear divalent ytterbium complexes supported by a bis(phenolate) cyclam ligand. <i>Polyhedron</i> , 2016 , 119, 277-285	2.7	3	

136	Chemical, radiochemical and biological studies of new gallium(III) complexes with hexadentate chelators. <i>Dalton Transactions</i> , 2015 , 44, 3342-55	4.3	3
135	Dithiophene-TTF Salts; New Ladder Structures and Spin-Ladder Behavior. <i>Inorganic Chemistry</i> , 2015 , 54, 7000-6	5.1	7
134	Bilayer Molecular Metals Based on Dissymmetrical Electron Donors. <i>Inorganic Chemistry</i> , 2015 , 54, 6677	-9.1	15
133	Crystal structure of bis[1-{(3,5-dimethyl-1H-pyrazol-1-yl)methyl}-3,5-dimethyl-1H-pyrazol-2-ium] hexachlorouranate(IV): [H2C(3,5-Me2pz)(3,5-Me2pzH)]2[UCl6]. <i>Journal of Structural Chemistry</i> , 2015 , 56, 181-185	0.9	1
132	Uranium(III) redox chemistry assisted by a hemilabile bis(phenolate) cyclam ligand: uranium-nitrogen multiple bond formation comprising a trans-{RN?U(VI)?NR}(2+) complex. <i>Inorganic Chemistry</i> , 2015 , 54, 9115-26	5.1	31
131	Impact of Molecular Organization on Exciton Diffusion in Photosensitive Single-Crystal Halogenated Perylenediimides Charge Transfer Interfaces. <i>ACS Applied Materials & Comp; Interfaces</i> , 2015 , 7, 27720-9	9.5	6
130	Crystal structure and spin crossover behavior of the [Fe(5-Cl-qsal)2][Ni(dmit)2]DCH3CN complex. <i>Polyhedron</i> , 2015 , 85, 643-651	2.7	13
129	A Mononuclear Uranium(IV) Single-Molecule Magnet with an Azobenzene Radical Ligand. <i>Chemistry - A European Journal</i> , 2015 , 21, 17817-26	4.8	25
128	A Methyl-Substituted Thiophenelletralthiafulvalene Donor and Its Salts. <i>European Journal of Inorganic Chemistry</i> , 2015 , 2015, 5003-5010	2.3	2
127	Synthesis and characterization of the cyanobenzene-ethylenedithio-TTF donor. <i>Beilstein Journal of Organic Chemistry</i> , 2015 , 11, 951-6	2.5	14
126	TTFs nonsymmetrically fused with alkylthiophenic moieties. <i>Beilstein Journal of Organic Chemistry</i> , 2015 , 11, 628-37	2.5	5
125	Effect of Molecular Stacking on Exciton Diffusion in Crystalline Organic Semiconductors. <i>Journal of the American Chemical Society</i> , 2015 , 137, 7104-10	16.4	32
124	Complexes with pyrazine-tetrathiafulvalene-dithiolate (pztdt) ligand [M(pztdt)2], M = Ni, Pd, Pt; Synthesis and characterisation. <i>Inorganic Chemistry Communication</i> , 2015 , 58, 87-90	3.1	2
123	Thermal hysteresis in a spin-crossover Fe(III) quinolylsalicylaldimine complex, Fe(III)(5-Br-qsal)2Ni(dmit)2lbolv: solvent effects. <i>Inorganic Chemistry</i> , 2015 , 54, 1354-62	5.1	31
122	Re(I) and 99mTc(I) tricarbonyl complexes with ether-containing pyrazolyl-based chelators: Chemistry, biodistribution and metabolism. <i>Journal of Organometallic Chemistry</i> , 2014 , 760, 138-148	2.3	5
121	Slow magnetic relaxation in lanthanide ladder type coordination polymers. <i>Dalton Transactions</i> , 2014 , 43, 1897-905	4.3	42
120	New ternary bipyridineEerpyridine copper(II) complexes as self-activating chemical nucleases. <i>RSC Advances</i> , 2014 , 4, 61363-61377	3.7	21
119	Two-electron versus one-electron reduction of chalcogens by uranium(III): synthesis of a terminal U(V) persulfide complex. <i>Chemical Science</i> , 2014 , 5, 841-846	9.4	54

118	5-Methylthiophene-2,3-dithiolene Transition Metal Complexes. <i>European Journal of Inorganic Chemistry</i> , 2014 , 2014, 3989-3999	2.3	10
117	Yttrium and samarium complexes with a linked 1,4,7-triazacyclononane-aryloxide ancillary ligand. <i>Journal of Structural Chemistry</i> , 2014 , 55, 941-945	0.9	
116	CyanobenzeneTTF-type donors; synthesis and characterization. <i>Tetrahedron Letters</i> , 2014 , 55, 6992-699	972	4
115	Rare earth metal complexes anchored on a new dianionic bis(phenolate)dimethylamineCyclam ligand. <i>Journal of Organometallic Chemistry</i> , 2013 , 728, 57-67	2.3	12
114	Crystal structure diversity in the bis[hydrotris(3,5-dimethylpyrazolyl)borate]iodouranium(III) complex: from neutral to cationic forms. <i>Dalton Transactions</i> , 2013 , 42, 8861-7	4.3	24
113	Extended TTF-type donors fused with pyrazine units; synthesis and characterization. <i>Tetrahedron Letters</i> , 2013 , 54, 6635-6639	2	4
112	Diamine bis(phenolate) samarium complexes: Synthesis and structures. <i>Inorganica Chimica Acta</i> , 2013 , 407, 175-180	2.7	3
111	[Fe(nsal2trien)]SCN, a new two-step iron(III) spin crossover compound, with symmetry breaking spin-state transition and an intermediate ordered state. <i>Inorganic Chemistry</i> , 2013 , 52, 3845-50	5.1	52
110	(DT-TTF)2[Au(mnt)2]: a weakly disordered molecular spin-ladder system. <i>Inorganic Chemistry</i> , 2013 , 52, 5300-6	5.1	19
109	Diamine Bis(phenolate) as Supporting Ligands in Organoactinide(IV) Chemistry. Synthesis, Structural Characterization, and Reactivity of Stable Dialkyl Derivatives. <i>Organometallics</i> , 2013 , 32, 140	9 ³ 1822	32
108	⊕ithiophene-tetrathiafulvalene 🗈 Detailed Study of an Electronic Donor and Its Derivatives. European Journal of Inorganic Chemistry, 2013 , 2013, 2440-2446	2.3	9
107	An Electropolymerisable Pyridine-Functionalised Gold Bis(dithiolene) Complex. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 3133-3136	2.3	5
106	HOLZ rings in EBSD patterns of the UFeBltompound: association with a random distribution of planar defects. <i>Microscopy and Microanalysis</i> , 2013 , 19, 1204-10	0.5	1
105	Bisdithiolene complexes based on an extended ligand with TTF and pyridine moieties. <i>Inorganic Chemistry Communication</i> , 2012 , 15, 102-105	3.1	7
104	Neutral gold and nickel bis[1-(pyridin-4-yl)-ethylene-1,2-dithiolene] complexes: Synthesis, structure and physical properties. <i>Polyhedron</i> , 2012 , 39, 91-98	2.7	18
103	Crystal structure and magnetism of UFe3B2. <i>Journal of Magnetism and Magnetic Materials</i> , 2012 , 324, 2649-2653	2.8	1
102	Synthesis, structure and physical properties of transition metal bis 4-cyanobenzene-1,2-dithiolate complexes [M(cbdt)2]z[M=Zn, Co, Cu, Au, Ni, Pd, z=0, 1, 2). <i>Polyhedron</i> , 2012 , 44, 228-237	2.7	15
101	X-ray Diffraction Structures of Regioisomers of N-Methylated Benzimidazole Compounds with Interest for the Design of Amyloid-Avid Probes. <i>Journal of Chemical Crystallography</i> , 2012 , 42, 1052-105	59 ^{0.5}	1

100	(DT-TTF)2[Pd(mnt)2]: An unusual ionic salt. <i>Physica Status Solidi C: Current Topics in Solid State Physics</i> , 2012 , 9, 1134-1136		8
99	Uranium(III, IV) and thorium(IV) pyrazolylmethane complexes: Synthesis and structures. <i>Inorganica Chimica Acta</i> , 2012 , 385, 53-57	2.7	7
98	99mTc(I) scorpionate complexes for brain imaging: synthesis, characterization and biological evaluation. <i>Current Radiopharmaceuticals</i> , 2012 , 5, 150-7	1.8	3
97	[U(Tp(Me2))2(bipy)]+: a cationic uranium(III) complex with single-molecule-magnet behavior. <i>Inorganic Chemistry</i> , 2011 , 50, 9915-7	5.1	111
96	99mTc(CO)3-labeled pamidronate and alendronate for bone imaging. <i>Dalton Transactions</i> , 2011 , 40, 278	37 .9 6	34
95	Synthesis and in vitro evaluation of fluorinated styryl benzazoles as amyloid-probes. <i>Bioorganic and Medicinal Chemistry</i> , 2011 , 19, 7698-710	3.4	20
94	99mTcI/ReI Tricarbonyl Complexes with Tridentate Cysteamine Based Ligands: Synthesis, Characterization and in vitro/in vivo Evaluation. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 5405-5413	2.3	10
93	Ni-2,3-thiophenedithiolate Anions in New Architectures: An In-Line Mixed-Valence Ni Dithiolene (Ni4B12) Cluster. <i>European Journal of Inorganic Chemistry</i> , 2011 , 2011, 4807-4815	2.3	9
92	Pt(II) complexes with bidentate and tridentate pyrazolyl-containing chelators: synthesis, structural characterization and biological studies. <i>Dalton Transactions</i> , 2011 , 40, 5781-92	4.3	21
91	Targeting nitric oxide synthase with 99mTc/Re-tricarbonyl complexes containing pendant guanidino or isothiourea moieties. <i>Journal of Organometallic Chemistry</i> , 2011 , 696, 1057-1065	2.3	20
90	Copper(II) complexes with tridentate pyrazole-based ligands: synthesis, characterization, DNA cleavage activity and cytotoxicity. <i>Journal of Inorganic Biochemistry</i> , 2011 , 105, 637-44	4.2	60
89	Syntheses of bifunctional 2,3-diamino propionic acid-based chelators as small and strong tripod ligands for the labelling of biomolecules with (99m)Tc. <i>Organic and Biomolecular Chemistry</i> , 2010 , 8, 282	: 3 :39	14
88	Studies on the new UFe2B6 phase. <i>Journal of Alloys and Compounds</i> , 2010 , 492, L13-L15	5.7	3
87	Synthesis, characterization and biological evaluation of In(III) complexes anchored by DOTA-like chelators bearing a quinazoline moiety. <i>Metallomics</i> , 2010 , 2, 571-80	4.5	13
86	A unique co-crystallisation motif for bis(4-pyridyl)acetylene involving S?spC interactions with a fused 1,3-dithiole ring. <i>CrystEngComm</i> , 2010 , 12, 3397	3.3	1
85	Lanthanide(III) complexes of 4,10-bis(phosphonomethyl)-1,4,7,10-tetraazacyclododecane-1,7-diacetic acid (trans-H6do2a2p) in solution and in the solid state: structural studies along the series. <i>Chemistry - A European Journal</i> ,	4.8	41
84	Synthesis, characterization and cytotoxic activity of gallium(III) complexes anchored by tridentate pyrazole-based ligands. <i>Journal of Inorganic Biochemistry</i> , 2010 , 104, 523-32	4.2	22
83	Pyridine-Functionalised (Vinylenedithio)tetrathiafulvalene (VDTITF) Derivatives and Their Dithiolene Analogues. <i>European Journal of Inorganic Chemistry</i> , 2009 , 2009, 3084-3093	2.3	16

(2008-2009)

82	Synthesis and characterization of Fe(III)(3-CH3O-qsal)2PF6hH2O (n=0, 2). <i>Inorganica Chimica Acta</i> , 2009 , 362, 2076-2079	2.7	19	
81	Synthesis and structural studies of mixed-ligand rhenium(V) complexes anchored by tridentate pyrazole-based ligands. <i>Inorganica Chimica Acta</i> , 2009 , 362, 2807-2813	2.7	12	
80	Complexes based on asymmetrically substituted pyridinedithiolene ligands [M(4-pedt)2] (M=Au, Cu, Ni; 4-pedt=1-(pyridin-4-yl)-ethylene-1,2-dithiolate): Synthesis, structure and physical properties. <i>Polyhedron</i> , 2009 , 28, 1069-1078	2.7	24	
79	Influence of the ligand donor atoms on the in vitro stability of rhenium(I) and technetium (I)-99m complexes with pyrazole-containing chelators: Experimental and DFT studies. <i>Journal of Organometallic Chemistry</i> , 2009 , 694, 950-958	2.3	17	
78	Diamine Bis(phenolate) M(III) (Y, Ti) Complexes: Synthesis, Structures, and Reactivity. Organometallics, 2009 , 28, 3449-3458	3.8	40	
77	Rhenium(I) tricarbonyl complexes with poly(azolyl)borates generated in situ from an organometallic precursor containing the B-HRe coordination motif. <i>Inorganic Chemistry</i> , 2009 , 48, 425	1 ⁵ 7	23	
76	Crystal structure of (RBzPy)n[Ni(4-pedt)2] salts engineering by pyridine ring arrangements. <i>CrystEngComm</i> , 2009 , 11, 2154	3.3	5	
75	A new hybrid material exhibiting room temperature spin-crossover and ferromagnetic cluster-glass behavior. <i>CrystEngComm</i> , 2009 , 11, 2160	3.3	28	
74	Cation and ligand roles in the coordination of FeIII bisdithiolene complexes; the crystal structures of (BrBzPy)2[Fe(qdt)2]2 and [Fe(\pdt)2]22\partial alts. CrystEngComm, 2009, 11, 1046	3.3	12	
73	Tris(pyrazolyl)methane 99mtc tricarbonyl complexes for myocardial imaging. <i>Dalton Transactions</i> , 2009 , 603-6	4.3	31	
72	Counterion dimerisation effects in the two-chain compound (Per)2[Co(mnt)2]: structure and anomalous pressure dependence of the electrical transport properties. <i>CrystEngComm</i> , 2009 , 11, 1103	3.3	7	
71	Rhenium and technetium complexes bearing quinazoline derivatives: progress towards a 99mTc biomarker for EGFR-TK imaging. <i>Dalton Transactions</i> , 2008 , 3215-25	4.3	34	
70	The family of molecular conductors [(n-Bu)4N]2[M(dcbdt)2]5, M = Cu, Ni, Au; band filling and stacking modulation effects. <i>Journal of Materials Chemistry</i> , 2008 , 18, 2825		18	
69	Magnetic Coupling and Anisotropy in a Series of Mixed Chain Charge-Transfer Salts [M(Cp*)2][M?(tds)2] (M = Fe, Mn, Cr; M? = Ni, Pt). <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 3839-3851	2.3	8	
68	Metallocenium Salts of Nickel Bis(Ethiophenedithiolate) [M(Cp*)2][Ni(Epdt)2] (M = Fe, Mn, Cr) [] Metamagnetism and Magnetic Frustration. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 5327-5	3 ² 3 ² 7	14	
67	Tetrapyridine and Tetrapyrazine TTF Derivatives: Synthesis, Characterization and Preparation of a Bimetallic CoII Complex. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 4728-4734	2.3	16	
66	Thio-azo proligands based on 5,6-derivatives-1,10-phenanthroline and their use for iron(II) complexes: Synthesis, characterization and crystal structures. <i>Polyhedron</i> , 2008 , 27, 1999-2006	2.7	13	
65	(n-Bu4N)[Fe(cbdt)2]: Synthesis, crystal structure and magnetic characterisation of a new FeIII bisdithiolene complex. <i>Inorganica Chimica Acta</i> , 2008 , 361, 3836-3841	2.7	16	

64	Mixed-Ligand Rhenium Tricarbonyl Complexes Anchored on a (🛭-H,S) Trihydro(mercaptoimidazolyl)borate: A Missing Binding Motif for Soft Scorpionates. Organometallics, 2008, 27, 1334-1337	3.8	14
63	Rhenium and technetium tricarbonyl complexes anchored by pyrazole-based tripods: novel lead structures for the design of myocardial imaging agents. <i>Dalton Transactions</i> , 2007 , 3010-9	4.3	54
62	Transition metal bisdithiolene complexes based on extended ligands with fused tetrathiafulvalene and thiophene moieties: new single-component molecular metals. <i>Chemistry - A European Journal</i> , 2007 , 13, 9841-9	4.8	54
61	A new approach to divalent thio-azo ligands; Ni(dpesdt)2. <i>Inorganica Chimica Acta</i> , 2007 , 360, 3797-380	12.7	14
60	Crystal structure and magnetic behavior of decamethylferrocenium bis(2-thioxo-1,3-dithiole-4,5-diselenolato)nickelate(III). <i>Inorganica Chimica Acta</i> , 2007 , 360, 3855-3860	2.7	6
59	Searching for switchable molecular conductors: Salts of [M(dcbdt)2] (M = Ni, Au) anions with [Fe(sal2-trien)]+ and [Fe(phen)3]2+. <i>Inorganica Chimica Acta</i> , 2007 , 360, 3887-3895	2.7	21
58	Synthesis and characterization of the novel extended TTF-type donors with thiophenic units. <i>Inorganica Chimica Acta</i> , 2007 , 360, 3909-3914	2.7	12
57	Study of the cyclen derivative 2-[1,4,7,10-tetraazacyclododecan-1-yl]-ethanethiol and its complexation behaviour towards d-transition metal ions. <i>Polyhedron</i> , 2007 , 26, 3763-3773	2.7	14
56	A new bisphosphonate-containing (99m)Tc(I) tricarbonyl complex potentially useful as bone-seeking agent: synthesis and biological evaluation. <i>Journal of Biological Inorganic Chemistry</i> , 2007 , 12, 667-79	3.7	37
55	Rhenium(V) oxocomplexes with novel pyrazolyl-based N4- and N3S-donor chelators. <i>Dalton Transactions</i> , 2006 , 5630-40	4.3	10
54	Very small and soft scorpionates: water stable technetium tricarbonyl complexes combining a bis-agostic (k(3)-H, H, S) binding motif with pendant and integrated bioactive molecules. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14590-8	16.4	53
53	Synthesis and reactivity of uranium(IV) amide complexes supported by a triamidotriazacyclononane ligand. <i>Dalton Transactions</i> , 2006 , 3368-74	4.3	19
52	[Fe(qdt)2][salts; an undimerised FeIII bisdithiolene complex stabilised by cation interactions. <i>CrystEngComm</i> , 2006 , 8, 658-661	3.3	12
51	Magnetic properties of RBzPy[Ni(Epdt)2] (R = H, Br, F): effects of cisErans disorder. <i>Journal of Materials Chemistry</i> , 2006 , 16, 2746-2756		16
50	Decamethylferrocenium bis(2-oxo-1,3-dithiole-4,5-dithiolato-kappa(2)S(4),S(5))nickelate(III) tetrahydrofuran solvate. <i>Acta Crystallographica Section C: Crystal Structure Communications</i> , 2006 , 62, m278-80		3
49	Synthesis, crystal structure and magnetic properties of bis(3,4;3?,4?-ethylenedithio)2,2?,5,5?-tetrathiafulvalene-bis(cyanoimidodithiocarbonate)aurate(III), (bedt-ttf)[Au(cdc)2]. <i>Polyhedron</i> , 2006 , 25, 1209-1214	2.7	6
48	Synthesis and structural studies of rhenium(I) tricarbonyl complexes with thione containing chelators. <i>Journal of Organometallic Chemistry</i> , 2006 , 691, 4773-4778	2.3	48
47	Multistability in a family of DTIITF organic radical based compounds (DTIITF)4[M(L)2]3 (M = Au, Cu; L = pds, pdt, bdt). <i>Journal of Materials Chemistry</i> , 2005 , 15, 3187		26

(2003-2005)

The uranium-nitrogen bond in U IV complexes supported by the hydrotris(3,5-dimethylpyrazolyl)borate ligand. <i>Dalton Transactions</i> , 2005 , 3353-8	4.3	17
A N,N?-diacetate benzodioxotetraazamacrocycle and its transition metal complexes. <i>Polyhedron</i> , 2005 , 24, 451-461	2.7	5
Synthesis and characterization of copper complexes with the 2,3-dicyano-5,6-dimercaptopyrazine ligand: Magnetic properties of a ferrocenium salt. <i>Polyhedron</i> , 2005 , 24, 2035-2042	2.7	15
Synthesis and characterization of uranium(III) compounds supported by the hydrotris(3,5-dimethyl-pyrazolyl)borate ligand: Crystal structures of [U(TpMe2)2(X)] complexes (X = OC6H2-2,4,6-Me3, dmpz, Cl). <i>Polyhedron</i> , 2005 , 24, 3038-3045	2.7	24
Copper, Cobalt and Platinum Complexes with Dithiothiophene-Based Ligands. <i>European Journal of Inorganic Chemistry</i> , 2005 , 2005, 3337-3345	2.3	22
Organic Spin Ladders from Tetrathiafulvalene (TTF) Derivatives. <i>Advanced Functional Materials</i> , 2005 , 15, 1023-1035	15.6	31
5,6-Dihydrothieno[2,3-d][1,3]dithiol-2-one. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2005 , 61, o2161-o2163		1
The low and high temperature phase transitions in the family of compounds (DT-TTF)4[M(L)2]3, M康和, Cu and L康内ds, pdt. <i>European Physical Journal Special Topics</i> , 2004 , 114, 539-537		2
Structural and electrical properties of (DT-TTF)2[Cu(mnt)2]. European Physical Journal Special Topics, 2004 , 114, 497-499		3
A Series of Transition Metal Bis(dicyanobenzenedithiolate) Complexes [M(dcbdt)2] (M = Fe, Co, Ni, Pd, Pt, Cu, Au and Zn). <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 1318-1329	2.3	50
5,6-Dicyano-2,3-dithiopyrazine (dcdmp) chemistry: synthesis and crystal structure of Au(III)(dcdmp)2 complexes and 2,3,7,8-tetracyano-1,4,6,9-tetraazothianthrene. <i>Polyhedron</i> , 2004 , 23, 1351-1359	2.7	13
Alkaline side-coordination strategy for the design of nickel(II) and nickel(III) bis(1,2-diselenolene) complex based materials. <i>Inorganic Chemistry</i> , 2004 , 43, 3631-41	5.1	32
Magnetic and electrical properties of (DT-TTF) 4 [Au(pds) 2] 3. Polyhedron, 2003, 22, 2447-2452	2.7	12
(n-Bu4N)2[Fe(dcbdt)2]2. Synthesis, crystal structure and magnetic characterisation. <i>Polyhedron</i> , 2003 , 22, 2481-2486	2.7	25
Synthesis and crystal structure of copper and gold complexes of 1,2,5-thiadiazole-3,4-dithiolate. Charge transfer salt with TTF. <i>Inorganic Chemistry Communication</i> , 2003 , 6, 565-568	3.1	9
Conductors based on metal-bisdicyanobenzodithiolate complexes. <i>Synthetic Metals</i> , 2003 , 133-134, 39	7-3.89	12
Charge transfer salts based on M(dcbdt)2 complexes (M=Au and Ni). <i>Synthetic Metals</i> , 2003 , 135-136, 543-544	3.6	8
Structural and Magnetic Characterisation of [Fe(Cp*)2][Ni(dmio)2][THF. Synthetic Metals, 2003, 135-136, 695-696	3.6	4
	hydrotris(3,5-dimethylpyrazolyl)borate ligand. <i>Dalton Transactions</i> , 2005, 3353-8 A N,N?-diacetate benzodioxotetraazamacrocycle and its transition metal complexes. <i>Polyhedron</i> , 2005, 24, 451-461 Synthesis and characterization of copper complexes with the 2,3-dicyano-5,6-dimercaptopyrazine ligand. Magnetic properties of a ferrocenium salt. <i>Polyhedron</i> , 2005, 24, 2035-2042 Synthesis and characterization of uranium(iii) compounds supported by the hydrotris(3,5-dimethyt-pyrazolyl)borate ligand: Crystal structures of [U(TpMe2)2(X)] complexes (X = OC6H2-2,4,6-Me3, dmpz, Cl). <i>Polyhedron</i> , 2005, 24, 3038-3045 Copper, Cobalt and Platinum Complexes with Dithiothiophene-Based Ligands. <i>European Journal of Inorganic Chemistry</i> , 2005, 2005, 3337-3345 Organic Spin Ladders from Tetrathiafulvalene (TTF) Derivatives. <i>Advanced Functional Materials</i> , 2005, 15, 1023-1035 5,6-Dihydrothieno[2,3-d][1,3]dithiol-2-one. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2005, 61, 02161-02163 The low and high temperature phase transitions in the family of compounds (DT-TTF)4[M(L)2]3, MIEIAu, Cu and LiEjds, pdt. <i>European Physical Journal Special Topics</i> , 2004, 114, 539-537 Structural and electrical properties of (DT-TTF)2[Cu(mnt)2]. <i>European Physical Journal Special Topics</i> , 2004, 114, 497-499 A Series of Transition Metal Bis(dicyanobenzenedithiolate) Complexes [M(dcbdt)2] (M = Fe, Co, NI, Pd, Pt, Cu, Au and Zn). <i>European Journal of Inorganic Chemistry</i> , 2004, 2004, 1318-1329 5,6-Dicyano-2,3-dithiopyrazine (dcdmp) chemistry: synthesis and crystal structure of Au(III))(dcdmp)2 complexes and 2,3,7,8-tetracyano-1,4,6,9-tetraazothianthrene. <i>Polyhedron</i> , 2004, 23, 1351-1359 Alkaline side-coordination strategy for the design of nickel(III) and nickel(III) bis(1,2-diselenolene) complex based materials. <i>Inorganic Chemistry</i> , 2004, 43, 3631-41 Magnetic and electrical properties of (DT-TTF) 4 [Au(pds) 2] 3. <i>Polyhedron</i> , 2003, 22, 2447-2452 (n-Bu4N)2[Fe(dcbdt)2]2. Synthesis, crystal structure and magnetic charact	hydrotris(3,5-dimethylpyrazolyl)borate ligand. <i>Daltan Transactions</i> , 2005, 3353-8 A N,N?-diacetate benzodioxotetrazzamacrocycle and its transition metal complexes. <i>Polyhedron</i> , 2005, 24, 451-461 Synthesis and characterization of copper complexes with the 2,3-dicyano-5,6-dimercaptopyrazine ligand: Magnetic properties of a ferrocenium salt. <i>Polyhedron</i> , 2005, 24, 2035-2042 27 Synthesis and characterization of uranium(III) compounds supported by the hydrotris(3,5-dimethyl-pyrazolyl)borate ligand: Crystal structures of [U(TpMe2)2(X)] complexes (X = 2,7 OCGH2-2,4,6-Me3, dmpz, Cl). <i>Polyhedron</i> , 2005, 24, 3038-3045 Copper, Cobalt and Platinum Complexes with Dihitothiophene-Based Ligands. <i>European Journal of Inorganic Chemistry</i> , 2005, 2005, 3337-3345 Organic Spin Ladders from Tetrathiafulvalene (TTF) Derivatives. <i>Advanced Functional Materials</i> , 2005, 15, 1023-1035 5,6-Dihydrothieno[2,3-d][1,3]dithiol-2-one. <i>Acta Crystallographica Section E: Structure Reports Online</i> , 2005, 61, 02161-02163 The low and high temperature phase transitions in the family of compounds (DT-TTF)4[M(L)2]3, MI=Ru, Cu and LI=Rybs, pdt. <i>European Physical Journal Special Topics</i> , 2004, 114, 539-537 Structural and electrical properties of (DT-TTF)2[Cu(mnt)2]. <i>European Physical Journal Special Topics</i> , 2004, 114, 497-499 A Series of Transition Metal Bis(dicyanobenzenedithiolate) Complexes [M(dcbdt)2] (M = Fe, Co, Ni, P, Pc, Cu, Au and Zn). <i>European Journal of Inorganic Chemistry</i> , 2004, 2004, 1318-1329 5,6-Dicyano-2,3-dithiopyrazine (dcdmp) chemistry: synthesis and crystal structure of Au(III)(dcdmp)2 complexes and 2,3,7,8-tetracyano-1,4,6,9-tetraazothianthrene. <i>Polyhedron</i> , 2004, 23, 1351-1359 Alkaline side-coordination strategy for the design of nickel(III) and nickel(III) bis(1,2-diselenolene) complex based materials. <i>Inorganic Chemistry</i> , 2004, 43, 3631-41 Magnetic and electrical properties of (DT-TTF) 4 [Au(pds) 2] 3. <i>Polyhedron</i> , 2003, 22, 2447-2452 2,7 Synthesis and crystal structure of copper and gold complexes of

28	Synthesis, Structure and Physical Properties of Tetrabutylammonium Salts of Nickel Complexes with the New Ligand dcbdt = 4,5-dicyanobenzene-1,2-dithiolate, [Ni(dcbdt)2]z[(z = 0.4, 1, 2). European Journal of Inorganic Chemistry, 2001, 2001, 3119-3126	2.3	32
27	Preparation, structural, electrical and magnetic properties of tetrathiafulvalene-Au(pds)2 salts (pds = pyrazine-2,3-diselenolate). <i>Journal of Materials Chemistry</i> , 2001 , 11, 2108-2117		15
26	Synthesis and Magnetic Properties of Decamethylmetallocenium Salts of the Monoanionic Complex [Ni(tds)2] [Molecular Crystals and Liquid Crystals, 1999, 335, 81-90		12
25	Charge transfer salts based on Cu(qdt)2, Ni(qdt)2 and Au(qdt)2 anions. Synthetic Metals, 1999 , 102, 16	13 ₃ ,1661	4 6
24	Synthesis and characterisation of charge transfer salts based on Au(dcdmp)2 and TTF type donors. <i>Synthetic Metals</i> , 1999 , 102, 1751-1752	3.6	17
23	Magnetic properties of [Fe(Cp*)2]+ salts of M(dmit)2 and M(dmio)2 (M = Ni, Pd and Pt) anions. Synthetic Metals, 1999, 103, 2302-2303	3.6	12
22	Synthesis of tris(quinoxaline-2,3-dithiolato)manganese(IV) and its reaction with [Cu(CH3COO)2H2O]2. Crystal structure of [MnII(DMF)4(H2O)2][CuIII(qdt)2]2. <i>Polyhedron</i> , 1998 , 17, 402	23 ² 4703	1 ⁷
21	Ferromagnetism in Charge Transfer Salts Based on Metallocenes and Nickel Bis-Dithiolenes. <i>Molecular Crystals and Liquid Crystals</i> , 1997 , 306, 17-24		14
20	Perylene derivative charge transfer salts: synthesis, crystal structure and characterisation of (pet)3[Ni(mnt)2]2. <i>Journal of Materials Chemistry</i> , 1997 , 7, 2387-2392		10
19	New compounds based on tetrathiafulvalene and Au(pds)2[pds = pyrazine-2,3-diselenolate. <i>Synthetic Metals</i> , 1997 , 86, 2187-2188	3.6	7
18	Crystal Structure and Magnetic Behavior of [(C(2)H(5))(4)N](2)Cu(5)Cl(12). A Novel Two-Dimensional Copper(II) Halide Network Derived from the CuCl(2) Structure. <i>Inorganic Chemistry</i> , 1996 , 35, 168-172	5.1	16
17	Synthesis and structure of a new nickel(II) complex [NBu4]2[Ni{Se2C2(CN)2}2]. <i>Chemical Communications</i> , 1996 , 1837-1838	5.8	4
16	Hall effect in RBa2Cu3O7 (R=Y,Yb) thin films in high magnetic fields. <i>European Physical Journal D</i> , 1996 , 46, 1753-1754		1
15	Perylene salts with tetrahalogenoferrate(III) anions. Synthesis, crystal structure of [(C20H12)3][FeCl4] and characterisation. <i>Journal of the Chemical Society Dalton Transactions</i> , 1995 , 354	43-354	9 ¹⁹
14	Electrochemical and structural studies of nickel(II) complexes with N2O2 Schiff base ligands 2. Crystal and molecular structure of N,N?-l,2-ethane-1,2-diyl-bis(2-hydroxyacetophenonylideneiminate)nickel(II), N, N?-1,2-cis	2.7	73
13	cyclohexane-1,2-diyl-bis(2-hydroxyacetophenonylideneiminate)- nickel(II) and Synthesis, structure and properties of [Hpy]2[{M(mnt)2}2](M = Co of Fe, Hpy = pyridinium; mnt = maleonitriledithiolate). <i>Journal of the Chemical Society Dalton Transactions</i> , 1994 , 2655		34
12	Molecular Metals Based on 1,2,7,8-Tetrahydrodicyclopenta[cd:lm]perylene and Iodine, (CPP)2(I3)1delta <i>Chemistry of Materials</i> , 1994 , 6, 2309-2316	9.6	6
11	A perylene conductor with a gold cyanodithiocarbimate counterion: (Perylene)2Au(cdc)2. <i>Synthetic Metals</i> , 1993 , 56, 1688-1693	3.6	6

LIST OF PUBLICATIONS

10	The (Per)2M(mnt)2 series: The interaction of 1D conduction electrons with localised spin chains. <i>Synthetic Metals</i> , 1993 , 56, 1846-1851	3.6	6
9	Low-dimensional molecular metals bis(maleonitriledithiolato)bis(perylene)metal, metal = iron and cobalt. <i>Inorganic Chemistry</i> , 1992 , 31, 2598-2604	5.1	51
8	Low-dimensional molecular conductors (Per)2M(mnt)2, Per = perylene, mnt = maleonitrile dithiolate, M = copper or nickel: low- and high-conductivity phases. <i>The Journal of Physical Chemistry</i> , 1991 , 95, 4263-4267		33
7	Synthesis and characterization of a BEDT-TTF salt with a metal-bis(dithiolate) as counterion: (BEDT-TTF)2[Au2(imnt)2]. <i>Synthetic Metals</i> , 1991 , 42, 2155-2158	3.6	7
6	Purification of metallurgical grade silicon by acid leaching. <i>Hydrometallurgy</i> , 1990 , 23, 237-246	4	84
5	Bi-Ca-Sr-Cu-O superconductors obtained by glass crystallisation; Effect of potassium doping. <i>Physica C: Superconductivity and Its Applications</i> , 1989 , 159, 273-276	1.3	2
4	Preparation of superconductors of the BiSrCaCuO system by glass crystallization. <i>Journal of the Less Common Metals</i> , 1989 , 150, 305-310		4
3	Physical properties of the series of oxides Y1-xPrxBa2Cu3O7[[0?x?1]). <i>Physica C: Superconductivity and Its Applications</i> , 1988 , 153-155, 910-911	1.3	7
2	Effect of oxygen content in the thermoelectric power of YBa2Cu3O7\(\textit{IPhysica C:}\) Superconductivity and Its Applications, 1988 , 153-155, 1345-1346	1.3	5
1	Transport properties of the oxides Y1-xPrxBa2Cu3O7- delta (0 . <i>Physical Review B</i> , 1988 , 37, 7476-7481	3.3	146