
## Seong-Hyeon Hong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1605019/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Scalable synthesis of silicon nanosheets from sand as an anode for Li-ion batteries. Nanoscale, 2014, 6,<br>4297.                                                                                            | 2.8 | 149       |
| 2  | SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Research, 2014, 7, 1128-1136.                                                                                 | 5.8 | 123       |
| 3  | Gas sensing properties of MoO3 nanoparticles synthesized by solvothermal method. Journal of<br>Nanoparticle Research, 2010, 12, 1889-1896.                                                                   | 0.8 | 114       |
| 4  | New Insight into Microstructure Engineering of Niâ€Rich Layered Oxide Cathode for High Performance<br>Lithium Ion Batteries. Advanced Functional Materials, 2021, 31, 2010095.                               | 7.8 | 113       |
| 5  | Synthesis of SnO2 nano hollow spheres and their size effects in lithium ion battery anode application.<br>Journal of Power Sources, 2013, 225, 108-112.                                                      | 4.0 | 110       |
| 6  | Anisotropic Grain Growth in Diphasicâ€Gelâ€Đerived Titaniaâ€Doped Mullite. Journal of the American<br>Ceramic Society, 1998, 81, 1269-1277.                                                                  | 1.9 | 97        |
| 7  | Calcium Phosphate Bioceramics with Various Porosities and Dissolution Rates. Journal of the American Ceramic Society, 2002, 85, 3129-3131.                                                                   | 1.9 | 96        |
| 8  | Influence of Minor Ions on the Stability and Hydration Rates of βâ€Đicalcium Silicate. Journal of the<br>American Ceramic Society, 2004, 87, 900-905.                                                        | 1.9 | 92        |
| 9  | Spark Plasma Sintering (SPS) of NASICON Ceramics. Journal of the American Ceramic Society, 2004, 87, 305-307.                                                                                                | 1.9 | 88        |
| 10 | Spark Plasma Sintering of LiTi2(PO4)3-Based Solid Electrolytes. Journal of the American Ceramic Society, 2005, 88, 1803-1807.                                                                                | 1.9 | 86        |
| 11 | Sn <sub>4</sub> P <sub>3</sub> –C nanospheres as high capacitive and ultra-stable anodes for sodium ion batteries. Journal of Materials Chemistry A, 2018, 6, 17437-17443.                                   | 5.2 | 82        |
| 12 | A nanopore-embedded graphitic carbon shell on silicon anode for high performance lithium ion<br>batteries. Journal of Materials Chemistry A, 2018, 6, 8013-8020.                                             | 5.2 | 81        |
| 13 | Anisotropic Abnormal Grain Growth in TiO <sub>2</sub> /SiO <sub>2</sub> â€Doped Alumina. Journal of the American Ceramic Society, 2000, 83, 2809-2812.                                                       | 1.9 | 77        |
| 14 | Stable Silicon Anode for Lithium-Ion Batteries through Covalent Bond Formation with a Binder via<br>Esterification. ACS Applied Materials & Interfaces, 2019, 11, 26753-26763.                               | 4.0 | 75        |
| 15 | Substantially improved room temperature NO <sub>2</sub> sensing in 2-dimensional SnS <sub>2</sub> nanoflowers enabled by visible light illumination. Journal of Materials Chemistry A, 2021, 9, 11168-11178. | 5.2 | 75        |
| 16 | Revisiting Primary Particles in Layered Lithium Transitionâ€Metal Oxides and Their Impact on Structural Degradation. Advanced Science, 2019, 6, 1800843.                                                     | 5.6 | 68        |
| 17 | Electric and Dielectric Properties of Nb-Doped CaCu3Ti4O12Ceramics. Journal of the American Ceramic Society, 2007, 90, 2118-2121.                                                                            | 1.9 | 67        |
| 18 | Meso-porous silicon-coated carbon nanotube as an anode for lithium-ion battery. Nano Research, 2016, 9, 2174-2181                                                                                            | 5.8 | 67        |

| #  | Article                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Effect of Liquid Content on the Abnormal Grain Growth of Alumina. Journal of the American Ceramic<br>Society, 2001, 84, 1597-1600.                                                                                                                  | 1.9 | 65        |
| 20 | An approach to flexible Na-ion batteries with exceptional rate capability and long lifespan using<br>Na <sub>2</sub> FeP <sub>2</sub> O <sub>7</sub> nanoparticles on porous carbon cloth. Journal of<br>Materials Chemistry A, 2017, 5, 5502-5510. | 5.2 | 64        |
| 21 | The Role of Zr Doping in Stabilizing<br>Li[Ni <sub>0.6</sub> Co <sub>0.2</sub> Mn <sub>0.2</sub> ]O <sub>2</sub> as a Cathode Material for<br>Lithiumâ€lon Batteries. ChemSusChem, 2019, 12, 2439-2446.                                             | 3.6 | 61        |
| 22 | Mullite Transformation Kinetics in P <sub>2</sub> O <sub>5</sub> â€, TiO <sub>2</sub> â€, and<br>B <sub>2</sub> O <sub>3</sub> â€Doped Aluminosilicate Gels. Journal of the American Ceramic Society,<br>1997, 80, 1551-1559.                       | 1.9 | 59        |
| 23 | H2 and C2H5OH sensing characteristics of mesoporous p-type CuO films prepared via a novel precursor-based ink solution route. Sensors and Actuators B: Chemical, 2013, 178, 395-403.                                                                | 4.0 | 58        |
| 24 | CuBi <sub>2</sub> O <sub>4</sub> Prepared by the Polymerized Complex Method for Gas-Sensing Applications. ACS Applied Materials & amp; Interfaces, 2018, 10, 14901-14913.                                                                           | 4.0 | 57        |
| 25 | Revisiting the role of Zr doping in Ni-rich layered cathodes for lithium-ion batteries. Journal of<br>Materials Chemistry A, 2021, 9, 17415-17424.                                                                                                  | 5.2 | 56        |
| 26 | Effect of the Liquidâ€Forming Additive Content on the Kinetics of Abnormal Grain Growth in Alumina.<br>Journal of the American Ceramic Society, 2003, 86, 1421-1423.                                                                                | 1.9 | 54        |
| 27 | Effect of the Amine Concentration on Phase Evolution and Densification in Printed Films Using Cu(II)<br>Complex Ink. Langmuir, 2015, 31, 8101-8110.                                                                                                 | 1.6 | 54        |
| 28 | Challenges and recent progress in LiNixCoyMn1â^'xâ^'yO2 (NCM) cathodes for lithium ion batteries.<br>Journal of the Korean Ceramic Society, 2021, 58, 1-27.                                                                                         | 1.1 | 49        |
| 29 | Highly stable SnO <sub>2</sub> –Fe <sub>2</sub> O <sub>3</sub> –C hollow spheres for reversible<br>lithium storage with extremely long cycle life. Nanoscale, 2018, 10, 4370-4376.                                                                  | 2.8 | 46        |
| 30 | p-Type aliovalent Li(I) or Fe(III)-doped CuO hollow spheres self-organized by cationic complex ink<br>printing: Structural and gas sensing characteristics. Sensors and Actuators B: Chemical, 2017, 243,<br>262-270.                               | 4.0 | 44        |
| 31 | Synthetic Mechanism Discovery of Monophase Cuprous Oxide for Record High Photoelectrochemical<br>Conversion of CO <sub>2</sub> to Methanol in Water. ACS Nano, 2018, 12, 8187-8196.                                                                 | 7.3 | 44        |
| 32 | Apatite Induction on Ca-Containing Titania Formed by Micro-Arc Oxidation. Journal of the American<br>Ceramic Society, 2005, 88, 2642-2644.                                                                                                          | 1.9 | 42        |
| 33 | Direct Printing Synthesis of Self-Organized Copper Oxide Hollow Spheres on a Substrate Using<br>Copper(II) Complex Ink: Gas Sensing and Photoelectrochemical Properties. Langmuir, 2014, 30, 700-709.                                               | 1.6 | 41        |
| 34 | Coarsening Behavior of Tricalcium Silicate (C <sub>3</sub> S) and Dicalcium Silicate (C <sub>2</sub> S)<br>Grains Dispersed in a Clinker Melt. Journal of the American Ceramic Society, 2000, 83, 1247-1252.                                        | 1.9 | 40        |
| 35 | Effect of Al Doping on the Electric and Dielectric Properties of<br>CaCu <sub>3</sub> Ti <sub>4</sub> O <sub>12</sub> . Journal of the American Ceramic Society, 2007, 90,<br>4009-4011.                                                            | 1.9 | 38        |
| 36 | Fabrication of Ga <sub>2</sub> O <sub>3</sub> /SnO <sub>2</sub> core–shell nanowires and their ethanol gas sensing properties. Journal of Materials Research, 2011, 26, 2322-2327.                                                                  | 1.2 | 36        |

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Stepwise Dopant Selection Process for Highâ€Nickel Layered Oxide Cathodes. Advanced Energy<br>Materials, 2022, 12, .                                                                                                                      | 10.2 | 35        |
| 38 | p-Type CuBi 2 O 4 thin films prepared by flux-mediated one-pot solution process with improved structural and photoelectrochemical characteristics. Materials Letters, 2017, 188, 192-196.                                                 | 1.3  | 34        |
| 39 | Manganese Tetraphosphide (MnP <sub>4</sub> ) as a High Capacity Anode for Lithiumâ€lon and Sodiumâ€lon<br>Batteries. Advanced Energy Materials, 2021, 11, 2003609.                                                                        | 10.2 | 34        |
| 40 | Characterization of Ca <sub>2</sub> SiO <sub>4</sub> :Eu <sup>2+</sup> Phosphors Synthesized by Polymeric Precursor Process. Journal of the American Ceramic Society, 2009, 92, 2025-2028.                                                | 1.9  | 33        |
| 41 | Fabrication of Silicon Nitride Nanoceramics and their Tribological Properties. Journal of the American Ceramic Society, 2010, 93, 1461-1466.                                                                                              | 1.9  | 33        |
| 42 | Reversible storage of Li-ion in nano-Si/SnO2 core–shell nanostructured electrode. Journal of<br>Materials Chemistry A, 2013, 1, 3733.                                                                                                     | 5.2  | 33        |
| 43 | Synthesis and Photoluminescence Properties of Eu3+-Doped Calcium Phosphates. Journal of the American Ceramic Society, 2007, 90, 2795-2798.                                                                                                | 1.9  | 32        |
| 44 | Photoluminescence Characteristics of Sr3SiO5:Eu2+ Yellow Phosphors Synthesized by Solid-State<br>Method and Pechini Process. Journal of the Electrochemical Society, 2011, 158, J330.                                                     | 1.3  | 32        |
| 45 | Microscopic Evidence for Strong Interaction between Pd and Graphene Oxide that Results in<br>Metalâ€Decorationâ€Induced Reduction of Graphene Oxide. Advanced Materials, 2017, 29, 1605929.                                               | 11.1 | 32        |
| 46 | Dielectric and magnetic properties in Ta-substituted BiFeO <sub>3</sub> ceramics. Journal of Materials<br>Research, 2007, 22, 3397-3403.                                                                                                  | 1.2  | 31        |
| 47 | <i>An in situ</i> formed graphene oxide–polyacrylic acid composite cage on silicon microparticles<br>for lithium ion batteries <i>via</i> an esterification reaction. Journal of Materials Chemistry A, 2019,<br>7, 12763-12772.          | 5.2  | 31        |
| 48 | Uniform Coating of Nanometer-Scale BaTiO3 Layer on Spherical Ni Particles via Hydrothermal<br>Conversion of Ti-Hydroxide. Journal of the American Ceramic Society, 2005, 88, 303-307.                                                     | 1.9  | 29        |
| 49 | CO gas sensing properties in Pd-added ZnO sensors. Journal of Electroceramics, 2009, 23, 196-199.                                                                                                                                         | 0.8  | 29        |
| 50 | Superior sodium storage performance of reduced graphene oxide-supported<br>Na <sub>3.12</sub> Fe <sub>2.44</sub> (P <sub>2</sub> O <sub>7</sub> ) <sub>2</sub> /C nanocomposites.<br>Chemical Communications, 2017, 53, 9316-9319.        | 2.2  | 25        |
| 51 | Photoelectrochemical hydrogen production at neutral pH phosphate buffer solution using TiO2<br>passivated InAs Nanowire/p-Si heterostructure photocathode. Chemical Engineering Journal, 2020, 392,<br>123688.                            | 6.6  | 23        |
| 52 | Enhanced Lithium Storage in Reduced Graphene Oxide-supported M-phase Vanadium(IV) Dioxide<br>Nanoparticles. Scientific Reports, 2016, 6, 30202.                                                                                           | 1.6  | 22        |
| 53 | V4P7@C nanocomposite as a high performance anode material for lithium-ion batteries. Journal of Power Sources, 2018, 400, 204-211.                                                                                                        | 4.0  | 22        |
| 54 | A P2-type Na <sub>0.7</sub> (Ni <sub>0.6</sub> Co <sub>0.2</sub> Mn <sub>0.2</sub> )O <sub>2</sub><br>cathode with excellent cyclability and rate capability for sodium ion batteries. Chemical<br>Communications, 2019, 55, 11575-11578. | 2.2  | 22        |

| #  | Article                                                                                                                                                                                                               | IF           | CITATIONS         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------------------|
| 55 | Alternative Explanation for the Role of Magnesia in the Sintering of Alumina Containing Small<br>Amounts of a Liquid Phase. Journal of the American Ceramic Society, 2003, 86, 634-39.                                | 1.9          | 21                |
| 56 | Coating of TiO2 nanolayer on spherical Ni particles using a novel sol-gel route. Journal of Materials<br>Research, 2004, 19, 1669-1675.                                                                               | 1.2          | 20                |
| 57 | Blueâ€emitting AlN:Eu <sup>2+</sup> Powder Phosphor Prepared by Spark Plasma Sintering. Journal of the American Ceramic Society, 2010, 93, 356-358.                                                                   | 1.9          | 20                |
| 58 | Tribological Properties of<br><scp><scp>Si<sub>3</sub>N<sub>4</sub></scp></scp> <scp>SiC</scp> Nano–Nano<br>Composite Ceramics. Journal of the American Ceramic Society, 2011, 94, 3683-3685.                         | 1.9          | 20                |
| 59 | Effect of Surface Impurities on the Microstructure Development during Sintering of Alumina. Journal of the American Ceramic Society, 2001, 84, 1386-1388.                                                             | 1.9          | 19                |
| 60 | TiO2@SnO2@TiO2 triple-shell nanotube anode for high-performance lithium-ion batteries. Journal of Solid State Electrochemistry, 2017, 21, 2365-2371.                                                                  | 1.2          | 17                |
| 61 | Electrical Transport and Thermoelectric Properties of SnSe–SnTe Solid Solution. Materials, 2019, 12, 3854.                                                                                                            | 1.3          | 17                |
| 62 | Mesoporous Nanoâ€ <b>s</b> i Anode for Liâ€ion Batteries Produced by Magnesioâ€Mechanochemical Reduction of<br>Amorphous SiO <sub>2</sub> . Energy Technology, 2013, 1, 327-331.                                      | 1.8          | 16                |
| 63 | Effect of ultra-thin SnO2 coating on Pt catalyst for energy applications. International Journal of<br>Precision Engineering and Manufacturing, 2016, 17, 691-694.                                                     | 1.1          | 16                |
| 64 | A MnV <sub>2</sub> O <sub>6</sub> /graphene nanocomposite as an efficient electrocatalyst for the oxygen evolution reaction. Nanoscale, 2020, 12, 16028-16033.                                                        | 2.8          | 16                |
| 65 | Tunable conductivity at LaAlO3/SrxCa1â^'xTiO3 (0 â‰≇€‰x â‰≇€‰1) heterointerfaces. Applied Phy<br>102, 012903.                                                                                                         | sics Letters | s, 2 <u>0</u> 13, |
| 66 | Synthesis and hydration behavior of calcium zirconium aluminate (Ca7ZrAl6O18) cement. Cement and<br>Concrete Research, 2014, 56, 106-111.                                                                             | 4.6          | 14                |
| 67 | Solid solution phosphide (Mn <sub>1â^'x</sub> Fe <sub>x</sub> P) as a tunable conversion/alloying<br>hybrid anode for lithium-ion batteries. Nanoscale, 2019, 11, 13494-13501.                                        | 2.8          | 14                |
| 68 | Visible Light Driven Ultrasensitive and Selective NO <sub>2</sub> Detection in Tin Oxide Nanoparticles<br>with Sulfur Doping Assisted by <scp>l</scp> ysteine. Small, 2022, 18, e2106613.                             | 5.2          | 14                |
| 69 | Superior electrochemical sodium storage of V <sub>4</sub> P <sub>7</sub> nanoparticles as an anode for rechargeable sodium-ion batteries. Chemical Communications, 2019, 55, 3207-3210.                               | 2.2          | 13                |
| 70 | Electrochemical Properties and Reaction Mechanism of NiTi <sub>2</sub> S <sub>4</sub> Ternary Metal<br>Sulfide as an Anode for Lithium Ion Battery. ACS Sustainable Chemistry and Engineering, 2021, 9,<br>9680-9688. | 3.2          | 13                |
| 71 | Mesoporous Si–Cu nanocomposite anode for a lithium ion battery produced by magnesiothermic reduction and electroless deposition. Nanotechnology, 2019, 30, 405401.                                                    | 1.3          | 12                |
| 72 | Preparation of SnO2 whiskers via the decomposition of tin oxalate. Journal of Electroceramics, 2006, 17, 895-898.                                                                                                     | 0.8          | 11                |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Nanoscale ZnO and Alâ€Doped ZnO Coatings on ZnS:Ag Phosphors and their Cathodoluminescent<br>Properties. Journal of the American Ceramic Society, 2008, 91, 451-455.                                                              | 1.9  | 11        |
| 74 | Texture Evolution of Abnormal Grains with Post-Deposition Annealing Temperature in<br>Nanocrystalline Cu Thin Films. Metallurgical and Materials Transactions A: Physical Metallurgy and<br>Materials Science, 2013, 44, 152-162. | 1.1  | 11        |
| 75 | Giant Electroresistive Ferroelectric Diode on 2DEG. Scientific Reports, 2015, 5, 10548.                                                                                                                                           | 1.6  | 10        |
| 76 | Lateral epitaxial growth of faceted SnO <sub>2</sub> nanowires with self-alignment. CrystEngComm, 2014, 16, 9340-9344.                                                                                                            | 1.3  | 8         |
| 77 | Synthesis and Hydration Characteristics of Alinite Cement. Journal of the American Ceramic Society, 2002, 85, 1941-1946.                                                                                                          | 1.9  | 7         |
| 78 | Novel Calcium Zirconate Silicate Cement Biomineralize and Seal Root Canals. Materials, 2018, 11, 588.                                                                                                                             | 1.3  | 7         |
| 79 | NiP2/C nanocomposite as a high performance anode for sodium ion batteries. Electrochimica Acta, 2022, 403, 139686.                                                                                                                | 2.6  | 7         |
| 80 | Synthesis of well-aligned SnO2 nanowires with branches on r-cut sapphire substrate. CrystEngComm, 2012, 14, 1545.                                                                                                                 | 1.3  | 6         |
| 81 | A Novel Solid Solution Mn1-xVxP Anode with Tunable Alloying/Insertion Hybrid Electrochemical<br>Reaction for High Performance Lithium Ion Batteries. Energy Storage Materials, 2021, 41, 310-320.                                 | 9.5  | 6         |
| 82 | Interfacial precipitation in titania-doped diphasic mullite gels. Journal of Materials Research, 1998, 13,<br>974-978.                                                                                                            | 1.2  | 5         |
| 83 | Hydration behavior and radiopacity of strontium substituted Ca3SiO5 cement. Journal of the Korean<br>Ceramic Society, 2021, 58, 330-336.                                                                                          | 1.1  | 4         |
| 84 | Effect of Co-Precipitation on the Low-Temperature Sintering of Biphasic Calcium Phosphate. Journal of the American Ceramic Society, 2006, 89, 060427083300032-???.                                                                | 1.9  | 3         |
| 85 | Hetero-epitaxial growth of vertically-aligned TiO2 nanorods on an m-cut sapphire substrate with an<br>(001) SnO2 buffer layer. CrystEngComm, 2012, 14, 4963.                                                                      | 1.3  | 3         |
| 86 | Epitaxial recrystallization and luminescence of CaAl2O4:Eu2+ thin films prepared on sapphire substrates. Journal of Electroceramics, 2013, 30, 36-40.                                                                             | 0.8  | 3         |
| 87 | Microstructure Modification of Liquid Phase Sintered Fe–Ni–B–C Alloys for Improved Mechanical<br>Properties. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,<br>2021, 52, 4395-4401.       | 1.1  | 3         |
| 88 | Kinetic stabilization of a topotactically transformed texture morphology <i>via</i> doping in Ni-rich<br>lithium layered oxides. Journal of Materials Chemistry A, 2022, 10, 13735-13743.                                         | 5.2  | 3         |
| 89 | Graphene Oxide: Microscopic Evidence for Strong Interaction between Pd and Graphene Oxide that<br>Results in Metalâ€Decorationâ€Induced Reduction of Graphene Oxide (Adv. Mater. 15/2017). Advanced<br>Materials, 2017, 29, .     | 11.1 | 1         |
| 90 | Mapping the electrocatalytic water splitting activity of VO <sub>2</sub> across its insulator-to-metal phase transition. Nanoscale, 2022, 14, 8281-8290.                                                                          | 2.8  | 1         |

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Characteristics of Liquid Penetration into Undoped and Magnesiaâ€Doped Alumina. Journal of the<br>American Ceramic Society, 2003, 86, 2206-2208.                                           | 1.9 | 0         |
| 92 | Effects of sintering conditions on the microstructure and mechanical properties of SiC prepared using powders recovered from kerf loss sludge. Bulletin of Materials Science, 2018, 41, 1. | 0.8 | 0         |