
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1605010/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of Genetic Modification Tools for Hanseniasporauvarum. International Journal of Molecular Sciences, 2021, 22, 1943.	4.1	19
2	Role of RIM101 for Sporulation at Alkaline pH in Ashbya gossypii. Journal of Fungi (Basel, Switzerland), 2021, 7, 527.	3.5	4
3	Sporulation in Ashbya gossypii. Journal of Fungi (Basel, Switzerland), 2020, 6, 157.	3.5	9
4	Homologous Recombination: A GRAS Yeast Genome Editing Tool. Fermentation, 2020, 6, 57.	3.0	13
5	Effect of Isomixing on Grape Must Fermentations of ATF1–Overexpressing Wine Yeast Strains. Foods, 2020, 9, 717.	4.3	6
6	Characterization of Old Wine Yeasts Kept for Decades under a Zero-Emission Maintenance Regime. Fermentation, 2020, 6, 9.	3.0	4
7	Blending wine yeast phenotypes with the aid of CRISPR DNA editing technologies. International Journal of Food Microbiology, 2020, 324, 108615.	4.7	24
8	Snails as Taxis for a Large Yeast Biodiversity. Fermentation, 2020, 6, 90.	3.0	9
9	Overexpression of RAD51 Enables PCR-Based Gene Targeting in Lager Yeast. Microorganisms, 2019, 7, 192.	3.6	8
10	A script for initiating molecular biology studies with non-conventional yeasts based on Saccharomycopsis schoenii. Microbiological Research, 2019, 229, 126342.	5.3	7
11	Multi-omics characterization of the necrotrophic mycoparasite Saccharomycopsis schoenii. PLoS Pathogens, 2019, 15, e1007692.	4.7	18
12	The Whiff of Wine Yeast Innovation: Strategies for Enhancing Aroma Production by Yeast during Wine Fermentation. Journal of Agricultural and Food Chemistry, 2019, 67, 13496-13505.	5.2	63
13	Draft Genome Sequence of <i>Saccharomycopsis fermentans</i> CBS 7830, a Predacious Yeast Belonging to the <i>Saccharomycetales</i> . Genome Announcements, 2018, 6, .	0.8	9
14	Expansion of a Telomeric FLO/ALS-Like Sequence Gene Family in Saccharomycopsis fermentans. Frontiers in Genetics, 2018, 9, 536.	2.3	5
15	The mycoparasitic yeast Saccharomycopsis schoenii predates and kills multi-drug resistant Candida auris. Scientific Reports, 2018, 8, 14959.	3.3	15
16	Adding Flavor to Beverages with Non-Conventional Yeasts. Fermentation, 2018, 4, 15.	3.0	38
17	Differential stress response of Saccharomyces hybrids revealed by monitoring Hsp104 aggregation and disaggregation. Microbiological Research, 2017, 200, 53-63.	5.3	14
18	The APSES protein Sok2 is a positive regulator of sporulation in <i>Ashbya gossypii</i> . Molecular Microbiology, 2017, 106, 949-960.	2.5	10

#	Article	IF	CITATIONS
19	Draft Genome Sequence of <i>Saccharomycopsis fodiens</i> CBS 8332, a Necrotrophic Mycoparasite with Biocontrol Potential. Genome Announcements, 2017, 5, .	0.8	7
20	An Arf-GAP promotes endocytosis and hyphal growth of Ashbya gossypii. FEMS Microbiology Letters, 2017, 364, .	1.8	5
21	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxideâ€Đerived Copper. Angewandte Chemie, 2016, 128, 1472-1476.	2.0	39
22	Acetaldehyde as an Intermediate in the Electroreduction of Carbon Monoxide to Ethanol on Oxideâ€Đerived Copper. Angewandte Chemie - International Edition, 2016, 55, 1450-1454.	13.8	166
23	Development of brewing science in (and since) the late 19th century: Molecular profiles of 110–130year old beers. Food Chemistry, 2015, 183, 227-234.	8.2	15
24	Developmental Growth Control Exerted via the Protein A Kinase Tpk2 in Ashbya gossypii. Eukaryotic Cell, 2015, 14, 593-601.	3.4	4
25	An indirect assay for volatile compound production in yeast strains. Scientific Reports, 2015, 4, 3707.	3.3	9
26	Major contribution of the Ehrlich pathway for 2-phenylethanol/rose flavor production in <i>Ashbya gossypii</i> . FEMS Yeast Research, 2014, 14, 833-844.	2.3	33
27	Chromosome Number Reduction in Eremothecium coryli by Two Telomere-to-Telomere Fusions. Genome Biology and Evolution, 2014, 6, 1186-1198.	2.5	10
28	Genome Sequence of <i>Saccharomyces carlsbergensis</i> , the World's First Pure Culture Lager Yeast. G3: Genes, Genomes, Genetics, 2014, 4, 783-793.	1.8	129
29	Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genetics and Biology, 2014, 70, 42-67.	2.1	133
30	Lager Yeast Comes of Age. Eukaryotic Cell, 2014, 13, 1256-1265.	3.4	50
31	Analysis of the cell wall integrity pathway of Ashbya gossypii. Microbiological Research, 2013, 168, 607-614.	5.3	14
32	Subcellular localization of the fatty acyl reductase involved inÂpheromone biosynthesis in the tobacco budworm, Heliothis virescens (Noctuidae: Lepidoptera). Insect Biochemistry and Molecular Biology, 2013, 43, 510-521.	2.7	23
33	Molecular Determinants of Sporulation in <i>Ashbya gossypii</i> . Genetics, 2013, 195, 87-99.	2.9	20
34	Yap1-dependent oxidative stress response provides a link to riboflavin production in Ashbya gossypii. Fungal Genetics and Biology, 2012, 49, 697-707.	2.1	36
35	Sulfite Action in Glycolytic Inhibition: In Vivo Realâ€īrime Observation by Hyperpolarized ¹³ C NMR Spectroscopy. ChemBioChem, 2012, 13, 2265-2269.	2.6	11
36	Breeding of lager yeast with <i>Saccharomyces cerevisiae</i> improves stress resistance and fermentation performance. Yeast, 2012, 29, 343-355.	1.7	65

#	Article	IF	CITATIONS
37	Characterization of α-factor pheromone and pheromone receptor genes of Ashbya gossypii. FEMS Yeast Research, 2011, 11, 418-429.	2.3	17
38	The Ashbya gossypii fimbrin SAC6 is required for fast polarized hyphal tip growth and endocytosis. Microbiological Research, 2011, 166, 137-145.	5.3	14
39	Dualâ€colour fluorescence microscopy using yEmCherryâ€/GFPâ€tagging of eisosome components Pil1 and Lsp1 in <i>Candida albicans</i> . Yeast, 2011, 28, 331-338.	1.7	28
40	Genome Evolution in the <i>Eremothecium</i> Clade of the <i>Saccharomyces</i> Complex Revealed by Comparative Genomics. G3: Genes, Genomes, Genetics, 2011, 1, 539-548.	1.8	40
41	Candida albicans SH3-domain proteins involved in hyphal growth, cytokinesis, and vacuolar morphology. Current Genetics, 2010, 56, 309-319.	1.7	14
42	Functional analysis of Candida albicans genes encoding SH3-domain-containing proteins. FEMS Yeast Research, 2010, 10, 452-461.	2.3	10
43	Forward genetics in <i>Candida albicans</i> that reveals the Arp2/3 complex is required for hyphal formation, but not endocytosis. Molecular Microbiology, 2010, 75, 1182-1198.	2.5	52
44	Candida albicans Vrp1 is required for polarized morphogenesis and interacts with Wal1 and Myo5. Microbiology (United Kingdom), 2010, 156, 2962-2969.	1.8	17
45	Analysis of flocculins in Ashbya gossypii reveals FIG2 regulation by TEC1. Fungal Genetics and Biology, 2010, 47, 619-628.	2.1	11
46	<i>N</i> -Acetylglucosamine Utilization by <i>Saccharomyces cerevisiae</i> Based on Expression of <i>Candida albicans NAG</i> Genes. Applied and Environmental Microbiology, 2009, 75, 5840-5845.	3.1	55
47	Comparative genomics of MAP kinase and calcium–calcineurin signalling components in plant and human pathogenic fungi. Fungal Genetics and Biology, 2009, 46, 287-298.	2.1	302
48	PCR-based gene targeting in Candida albicans. Nature Protocols, 2008, 3, 1414-1421.	12.0	37
49	An Ashbya gossypii cts2 mutant deficient in a sporulation-specific chitinase can be complemented by Candida albicans CHT4. Microbiological Research, 2008, 163, 701-710.	5.3	25
50	Hyphal Growth and Virulence in Candida albicans. , 2008, , 95-114.		1
51	<i>Candida albicans</i> Sfl1 Suppresses Flocculation and Filamentation. Eukaryotic Cell, 2007, 6, 1736-1744.	3.4	55
52	Candida albicans Rho-Type GTPase-Encoding Genes Required for Polarized Cell Growth and Cell Separation. Eukaryotic Cell, 2007, 6, 844-854.	3.4	42
53	Functional analysis ofCandida albicans genes whoseSaccharomyces cerevisiae homologues are involved in endocytosis. Yeast, 2007, 24, 511-522.	1.7	31
54	A molecular toolbox for manipulating Eremothecium coryli. Microbiological Research, 2007, 162, 299-307.	5.3	7

#	Article	IF	CITATIONS
55	Use of MET3 promoters for regulated gene expression in Ashbya gossypii. Current Genetics, 2007, 52, 1-10.	1.7	26
56	New pFA-cassettes for PCR-based gene manipulation inCandida albicans. Journal of Basic Microbiology, 2006, 46, 416-429.	3.3	75
57	Use of the Porcine Intestinal Epithelium (PIE)-Assay to analyze early stages of colonization by the human fungal pathogenCandida albicans. Journal of Basic Microbiology, 2006, 46, 513-523.	3.3	9
58	The SH3/PH Domain Protein AgBoi1/2 Collaborates with the Rho-Type GTPaseAgRho3 To Prevent Nonpolar Growth at Hyphal Tips of Ashbyagossypii. Eukaryotic Cell, 2006, 5, 1635-1647.	3.4	23
59	Ashbya gossypii: a model for fungal developmental biology. Nature Reviews Microbiology, 2005, 3, 421-429.	28.6	85
60	Initial molecular characterization of a novel Rho-type GTPase RhoH in the filamentous ascomycete Ashbya gossypii. Current Genetics, 2005, 48, 247-255.	1.7	10
61	The putative vacuolar ATPase subunit Vma7p of Candida albicans is involved in vacuole acidification, hyphal development and virulence. Microbiology (United Kingdom), 2005, 151, 1645-1655.	1.8	52
62	Ras1-Induced Hyphal Development in Candida albicans Requires the Formin Bni1. Eukaryotic Cell, 2005, 4, 1712-1724.	3.4	56
63	Candida albicans CHT3 encodes the functional homolog of the Cts1 chitinase of Saccharomyces cerevisiae. Fungal Genetics and Biology, 2005, 42, 935-947.	2.1	88
64	Apical localization of actin patches and vacuolar dynamics in Ashbya gossypii depend on the WASP homolog Wal1p. Journal of Cell Science, 2004, 117, 4947-4958.	2.0	41
65	A Ras-like GTPase Is Involved in Hyphal Growth Guidance in the Filamentous Fungus Ashbya gossypii. Molecular Biology of the Cell, 2004, 15, 4622-4632.	2.1	69
66	An improved transformation protocol for the human fungal pathogen Candida albicans. Current Genetics, 2003, 42, 339-343.	1.7	193
67	PCR-based methods facilitate targeted gene manipulations and cloning procedures. Current Genetics, 2003, 44, 115-123.	1.7	68
68	New modules for PCR-based gene targeting inCandida albicans: rapid and efficient gene targeting using 100 bp of flanking homology region. Yeast, 2003, 20, 1339-1347.	1.7	176
69	Analysis of the landmark protein Bud3 of Ashbya gossypii reveals a novel role in septum construction. EMBO Reports, 2003, 4, 200-204.	4.5	35
70	Septation and cytokinesis in fungi. Fungal Genetics and Biology, 2003, 40, 187-196.	2.1	61
71	An IQGAP-related protein, encoded by AgCYK1, is required for septation in the filamentous fungus Ashbya gossypii. Fungal Genetics and Biology, 2002, 37, 81-88.	2.1	32
72	Comparison of Morphogenetic Networks of Filamentous Fungi and Yeast. Fungal Genetics and Biology, 2001, 34, 63-82.	2.1	102

JüRGEN WENDLAND

#	Article	IF	CITATIONS
73	PCR-based gene targeting in the filamentous fungus Ashbya gossypii. Gene, 2000, 242, 381-391.	2.2	123
74	Isolation of tef1 encoding translation elongation factor EF1α from the homobasidiomycete Schizophyllum commune. Mycological Research, 1997, 101, 798-802.	2.5	42
75	An instant preparation method for nucleic acids of filamentous fungi. Fungal Genetics Reports, 1996, 43, 54-55.	0.6	17
76	Tip Growth and Endocytosis in Fungi. , 0, , 293-310.		4