Shengqiang Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/160479/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient Environmentâ€friendly Leadâ€free Tin Perovskite Solar Cells Enabled by Incorporating <scp>4â€Fluorobenzylammonium</scp> Iodide Additives. Energy and Environmental Materials, 2023, 6, .	12.8	10
2	Ligandâ€Anchoringâ€Induced Oriented Crystal Growth for Highâ€Efficiency Leadâ€Tin Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	14.9	38
3	Enhanced current collection of CdTe solar cells in the long wavelength region by co-evaporation deposition CdSexTe1-x films. Materials Science in Semiconductor Processing, 2021, 121, 105341.	4.0	7
4	Interfacial engineering in lead-free tin-based perovskite solar cells. Journal of Energy Chemistry, 2021, 57, 147-168.	12.9	55
5	Spacer Cation Tuning Enables Vertically Oriented and Graded Quasiâ€2D Perovskites for Efficient Solar Cells. Advanced Functional Materials, 2021, 31, 2008404.	14.9	94
6	Suppression of Nonradiative Recombination by Vacuumâ€Assisted Process for Efficient Leadâ€Free Tin Perovskite Solar Cells. Advanced Materials Interfaces, 2021, 8, 2100135.	3.7	20
7	Unveiling Roles of Tin Fluoride Additives in Highâ€Efficiency Lowâ€Bandgap Mixed Tinâ€Lead Perovskite Solar Cells. Advanced Energy Materials, 2021, 11, 2101045.	19.5	101
8	Low-bandgap Sn–Pb perovskite solar cells. Journal of Semiconductors, 2021, 42, 060202.	3.7	14
9	Reducing the Energy Loss to Achieve High Open•ircuit Voltage and Efficiency by Coordinating Energy‣evel Matching in Sn–Pb Binary Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100287.	5.8	19
10	Wide-bandgap organic–inorganic hybrid and all-inorganic perovskite solar cells and their application in all-perovskite tandem solar cells. Energy and Environmental Science, 2021, 14, 5723-5759.	30.8	114
11	Efficient wide-bandgap perovskite solar cells enabled by doping a bromine-rich molecule. Nanophotonics, 2021, 10, 2059-2068.	6.0	17
12	Synergistic engineering of bromine and cetyltrimethylammonium chloride molecules enabling efficient and stable flexible perovskite solar cells. Journal of Materials Chemistry A, 2020, 8, 19425-19433.	10.3	9
13	Firstprinciple investigation of the surface states of tin dioxide (100). Materials Science in Semiconductor Processing, 2020, 113, 105020.	4.0	4
14	Characterization of co-sputtered MgxZn1-xO thin films and their application in CdTe solar cells. Materials Science in Semiconductor Processing, 2019, 94, 28-34.	4.0	8
15	Application of ALD-Al2O3 in CdS/CdTe Thin-Film Solar Cells. Energies, 2019, 12, 1123.	3.1	7
16	Interface modification to enhance electron extraction by deposition of a ZnMgO buffer on SnO2-coated FTO in CdTe solar cells. Solar Energy, 2019, 177, 545-552.	6.1	34
17	Enhanced thermal stability of (NaCe)â€multidoped CaBi ₂ Nb ₂ O ₉ by Aâ€site vacanciesâ€induced pseudoâ€tetragonal distortion. Journal of the American Ceramic Society, 2018, 101, 4615-4626.	3.8	41
18	Exploring window buffer layer technology to enhance CdTe solar cell performance. Solar Energy, 2018, 164, 180-186.	6.1	59

SHENGQIANG REN

#	Article	IF	CITATIONS
19	Annealing atmosphere effects on the surface properties of Cd2SnO4 thin films obtained by RF sputtering. Materials Science in Semiconductor Processing, 2018, 75, 269-275.	4.0	7
20	Rapid thermal annealing on ZnMgO window layer for improved performance of CdTe solar cells. Solar Energy Materials and Solar Cells, 2018, 187, 97-103.	6.2	42
21	Application of Lithium Chloride Dopant in Fabrication of CdTe Solar Cells. Journal of Electronic Materials, 2017, 46, 1331-1338.	2.2	1
22	Cd ₂ SnO ₄ transparent conductive oxide: a promising alternative candidate for highly efficient hybrid halide perovskite solar cells. RSC Advances, 2017, 7, 8295-8302.	3.6	31
23	Controlling CH ₃ NH ₃ PbI _{3–<i>x</i>} Cl _{<i>x</i>} Film Morphology with Two-Step Annealing Method for Efficient Hybrid Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 16330-16337.	8.0	86