
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604736/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effects of a MATE Protein Inhibitor, Pyrimethamine, on the Renal Elimination of Metformin at Oral Microdose and at Therapeutic Dose in Healthy Subjects. Clinical Pharmacology and Therapeutics, 2011, 89, 837-844.	4.7	196
2	Competitive Inhibition of the Luminal Efflux by Multidrug and Toxin Extrusions, but Not Basolateral Uptake by Organic Cation Transporter 2, Is the Likely Mechanism Underlying the Pharmacokinetic Drug-Drug Interactions Caused by Cimetidine in the Kidney. Journal of Pharmacology and Experimental Therapeutics, 2012, 340, 393-403.	2.5	183
3	Potent and Specific Inhibition of mMate1-Mediated Efflux of Type I Organic Cations in the Liver and Kidney by Pyrimethamine. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 341-350.	2.5	139
4	Identification and Functional Characterization of Rat Riboflavin Transporter 2. Journal of Biochemistry, 2009, 145, 437-443.	1.7	116
5	GWAS of clinically defined gout and subtypes identifies multiple susceptibility loci that include urate transporter genes. Annals of the Rheumatic Diseases, 2017, 76, 869-877.	0.9	114
6	Molecular Basis for Pharmacokinetics and Pharmacodynamics of Methotrexate in Rheumatoid Arthritis Therapy. Drug Metabolism and Pharmacokinetics, 2014, 29, 12-19.	2.2	113
7	Functional Characterization of Human Proton-Coupled Folate Transporter/Heme Carrier Protein 1 Heterologously Expressed in Mammalian Cells as a Folate Transporter. Journal of Pharmacology and Experimental Therapeutics, 2007, 322, 469-476.	2.5	104
8	The Inhibition of Human Multidrug and Toxin Extrusion 1 Is Involved in the Drug-Drug Interaction Caused by Cimetidine. Drug Metabolism and Disposition, 2009, 37, 555-559.	3.3	97
9	N-Methylnicotinamide Is an Endogenous Probe for Evaluation of Drug–Drug Interactions Involving Multidrug and Toxin Extrusions (MATE1 and MATE2-K). Clinical Pharmacology and Therapeutics, 2012, 92, 635-641.	4.7	90
10	Molecular Identification and Functional Characterization of Rat Multidrug and Toxin Extrusion Type Transporter 1 as an Organic Cation/H+ Antiporter in the Kidney. Drug Metabolism and Disposition, 2006, 34, 1868-1874.	3.3	84
11	Functional characterization of PCFT/HCP1 as the molecular entity of the carrier-mediated intestinal folate transport system in the rat model. American Journal of Physiology - Renal Physiology, 2008, 294, G660-G668.	3.4	84
12	Identification and Functional Characterization of the First Nucleobase Transporter in Mammals. Journal of Biological Chemistry, 2010, 285, 6522-6531.	3.4	75
13	Functional Characteristics of the Human Ortholog of Riboflavin Transporter 2 and Riboflavin-Responsive Expression of Its Rat Ortholog in the Small Intestine Indicate Its Involvement in Riboflavin Absorption , ,. Journal of Nutrition, 2010, 140, 1722-1727.	2.9	63
14	Molecular Identification and Functional Characterization of the Human Colonic Thiamine Pyrophosphate Transporter. Journal of Biological Chemistry, 2014, 289, 4405-4416.	3.4	60
15	Evaluation of 4′,6-Diamidino-2-phenylindole as a Fluorescent Probe Substrate for Rapid Assays of the Functionality of Human Multidrug and Toxin Extrusion Proteins. Drug Metabolism and Disposition, 2010, 38, 715-721.	3.3	54
16	Investigation of Endogenous Compounds for Assessing the Drug Interactions in the Urinary Excretion Involving Multidrug and Toxin Extrusion Proteins. Pharmaceutical Research, 2014, 31, 136-147.	3.5	51
17	Influence of anesthetic regimens on intestinal absorption in rats. Pharmaceutical Research, 1993, 10, 884-888.	3.5	49
18	Functional identification of SLC43A3 as an equilibrative nucleobase transporter involved in purine salvage in mammals. Scientific Reports, 2015, 5, 15057.	3.3	47

#	Article	IF	CITATIONS
19	Functional Characterization of Multidrug and Toxin Extrusion Protein 1 as a Facilitative Transporter for Fluoroquinolones. Journal of Pharmacology and Experimental Therapeutics, 2009, 328, 628-634.	2.5	38
20	Functional Characteristics of Two Human MATE Transporters: Kinetics of Cimetidine Transport and Profiles of linhibition by Various Compounds. Journal of Pharmacy and Pharmaceutical Sciences, 2009, 12, 388.	2.1	34
21	Molecular and Functional Characteristics of Proton-Coupled Folate Transporter. Journal of Pharmaceutical Sciences, 2009, 98, 1608-1616.	3.3	33
22	Pharmacokinetic functions of human induced pluripotent stem cell-derived small intestinal epithelial cells. Drug Metabolism and Pharmacokinetics, 2020, 35, 374-382.	2.2	33
23	Determination of kinetic parameters of a carrier-mediated transport in the perfused intestine by two-dimensional laminar flow model: effects of the unstirred water layer. Biochimica Et Biophysica Acta - Biomembranes, 1986, 856, 219-230.	2.6	31
24	Peptide carrier-mediated transport in intestinal brush border membrane vesicles of rats and rabbits: cephradine uptake and inhibition. Pharmaceutical Research, 1993, 10, 400-404.	3.5	31
25	Intestinal Brush Border Transport Mechanism of 5-Fluorouracil in Rats Biological and Pharmaceutical Bulletin, 1996, 19, 94-99.	1.4	30
26	Transport Functions of Riboflavin Carriers in the Rat Small Intestine and Colon: Site Difference and Effects of Tricyclic-Type Drugs. Drug Delivery, 2001, 8, 119-124.	5.7	28
27	Characteristic Analysis of Intestinal Transport in Enterocyte-Like Cells Differentiated from Human Induced Pluripotent Stem Cells. Drug Metabolism and Disposition, 2016, 44, 0-0.	3.3	28
28	Metabolic Extraction of Nifedipine during Absorption from the Rat Small Intestine. Drug Metabolism and Pharmacokinetics, 2002, 17, 546-553.	2.2	27
29	Effect of the Fluoroquinolone Antibacterial Agent DX-619 on the Apparent Formation and Renal Clearances of 6β-Hydroxycortisol, an Endogenous Probe for CYP3A4 Inhibition, in Healthy Subjects. Pharmaceutical Research, 2013, 30, 447-457.	3.5	27
30	Functional Identification of Plasma Membrane Monoamine Transporter (PMAT/SLC29A4) as an Atenolol Transporter Sensitive to Flavonoids Contained in Apple Juice. Journal of Pharmaceutical Sciences, 2017, 106, 2592-2598.	3.3	26
31	Isolation of a novel glycyrrhizin metabolite as a causal candidate compound for pseudoaldosteronism. Scientific Reports, 2018, 8, 15568.	3.3	26
32	Effects of Potential Damaging Agents on the Microclimate-pH in the Rat Jejunum. Journal of Pharmaceutical Sciences, 1986, 75, 1162-1165.	3.3	25
33	18β-glycyrrhetyl-3-O-sulfate would be a causative agent of licorice-induced pseudoaldosteronism. Scientific Reports, 2019, 9, 1587.	3.3	25
34	Evaluation of Milk Fat-Globule Membrane (MFGM) Emulsion for Oral Administration: Absorption of .ALPHALinolenic Acid in Rats and the Effect of Emulsion Droplet Size Biological and Pharmaceutical Bulletin, 1994, 17, 756-758.	1.4	24
35	Glycerol Absorption by Na+-Dependent Carrier-Mediated Transport in the Closed Loop of the Rat Small Intestine. Biological and Pharmaceutical Bulletin, 2005, 28, 553-555.	1.4	24
36	Functional Characterization of the Carrier-Mediated Transport System for Glycerol in Everted Sacs of the Rat Small Intestine. Biological and Pharmaceutical Bulletin, 2004, 27, 1826-1830.	1.4	22

#	Article	IF	CITATIONS
37	Dual Functional Characteristic of Human Aquaporin 10 for Solute Transport. Cellular Physiology and Biochemistry, 2011, 27, 749-756.	1.6	22
38	Saturable Absorption of Glycerol in the Rat Intestine. Biological and Pharmaceutical Bulletin, 2003, 26, 1633-1636.	1.4	21
39	Functional Characteristics of Aquaporin 7 as a Facilitative Glycerol Carrier. Drug Metabolism and Pharmacokinetics, 2014, 29, 244-248.	2.2	21
40	Carrier-mediated transport of riboflavin in the rat colon. Biopharmaceutics and Drug Disposition, 2000, 21, 77-82.	1.9	20
41	Characterization of Human OCT1-Mediated Transport of DAPI as a Fluorescent Probe Substrate. Journal of Pharmaceutical Sciences, 2011, 100, 4006-4012.	3.3	20
42	Functional Characterization of Human Aquaporin 9 as a Facilitative Glycerol Carrier. Drug Metabolism and Pharmacokinetics, 2008, 23, 279-284.	2.2	19
43	Influence of Anesthetic Regimens on the Intestinal Absorption of 5-Fluorouracil in Rats Biological and Pharmaceutical Bulletin, 1995, 18, 747-752.	1.4	18
44	Effect of Dosing Volume on Gastrointestinal Absorption in Rats: Analysis of the Gastrointestinal Disposition of L-Glucose and Estimation of in Vivo Intestinal Membrane Permeability. Journal of Pharmaceutical Sciences, 1995, 84, 476-481.	3.3	18
45	Uptake of Fractionated [3H]Heparin by Rat Parenchymal Hepatocytes in Primary Culture: Effects of αâ€Globulin, Temperature, and pH. Journal of Pharmaceutical Sciences, 1992, 81, 513-517.	3.3	17
46	Dose Adjustment Strategy for Oral Microemulsion Formulation of Cyclosporine. Therapeutic Drug Monitoring, 2004, 26, 287-294.	2.0	17
47	Glycerol Uptake in HCT-15 Human Colon Cancer Cell Line by Na+-Dependent Carrier-Mediated Transport. Biological and Pharmaceutical Bulletin, 2006, 29, 150-154.	1.4	16
48	Comparative assessment of the resistance of the unstirred water layer to solute transport between two different intestinal perfusion systems. Biochimica Et Biophysica Acta - Biomembranes, 1988, 938, 189-198.	2.6	15
49	Uptake Mechanism of Fractionated (3H) Heparin in Rat Parenchymal Hepatocytes in Primary Culture: Effect of Transport Inhibitors on the Uptake Biological and Pharmaceutical Bulletin, 1993, 16, 497-500.	1.4	15
50	Transcriptional regulation of PCFT by KLF4, HNF4α, CDX2 and C/EBPα: Implication in its site-specific expression in the small intestine. Biochemical and Biophysical Research Communications, 2013, 431, 158-163.	2.1	15
51	Dose-Dependent Uptake of Radioactivity by Liver Parenchymal and Non-parenchymal Cells after Intravenous Administration of Fractionated 3H-Heparin to Rats Biological and Pharmaceutical Bulletin, 1993, 16, 1031-1034.	1.4	14
52	Dose-Dependent Gastrointestinal Absorption of 5-Fluorouracil in Rats in Vivo Biological and Pharmaceutical Bulletin, 1996, 19, 1494-1498.	1.4	14
53	Uptake Mechanism of Fractionated (3H)Heparin in Isolated Rat Kupffer Cells: Involvement of Scavenger Receptors Biological and Pharmaceutical Bulletin, 1996, 19, 581-586.	1.4	14
54	Development of Emulsion Type New Vehicle for Soft Gelatin Capsule. I. Selection of Surfactants for Development of New Vehicle and Its Physicochemical Properties Chemical and Pharmaceutical Bulletin, 1998, 46, 309-313.	1.3	14

#	Article	IF	CITATIONS
55	Effect of Lactobacillus casei on the Absorption of Nifedipine from Rat Small Intestine. Drug Metabolism and Pharmacokinetics, 2007, 22, 96-102.	2.2	14
56	pH-dependent pyridoxine transport by SLC19A2 and SLC19A3: Implications for absorption in acidic microclimates. Journal of Biological Chemistry, 2020, 295, 16998-17008.	3.4	14
57	Relationship between the first-order intestinal absorption rate constant in vivo and the membrane permeability clearance in a perfusion system: An intragastric administration method in vivo Journal of Pharmacobio-dynamics, 1989, 12, 264-271.	0.5	13
58	Carrier-Mediated Transport of Glycerol in the Perfused Rat Small Intestine. Biological and Pharmaceutical Bulletin, 2006, 29, 785-789.	1.4	13
59	Functional identification of organic cation transporter 1 as an atenolol transporter sensitive to flavonoids. Biochemistry and Biophysics Reports, 2015, 2, 166-171.	1.3	13
60	Uptake of fractionated 3H-heparin by isolated rat Kupffer cells. Pharmaceutical Research, 1995, 12, 1092-1095.	3.5	12
61	Physiological mechanism-based analysis of dose-dependent gastrointestinal absorption ofl-carnitine in rats. , 1998, 19, 465-472.		12
62	Macromolecule-Macromolecule Interaction in Drug Distribution. II. Effect of .ALPHAGlobulin on Saturable Uptake of Fractionated (3H)Heparin by Rat Parenchymal Hepatocytes in Primary Culture Chemical and Pharmaceutical Bulletin, 1992, 40, 3052-3055.	1.3	11
63	Molecular Weight Dependency in the Uptake of Fractionated (3H)Heparin in Isolated Rat Kupffer Cells Biological and Pharmaceutical Bulletin, 1996, 19, 864-868.	1.4	11
64	Comparative Assessment of D-Xylose Absorption between Small Intestine and Large Intestine. Journal of Pharmacy and Pharmacology, 2011, 49, 26-29.	2.4	11
65	Relationship between In Vivo First-Order Intestinal Absorption Rate Constant and the Membrane Permeability Clearance. Journal of Pharmaceutical Sciences, 1989, 78, 922-924.	3.3	10
66	Emulsion Type New Vehicle for Soft Gelatin Capsule Available for Preclinical and Clinical Trials: Effects of PEG 6000 and PVP K30 on Physicochemical Stability of New Vehicle Chemical and Pharmaceutical Bulletin, 1999, 47, 492-497.	1.3	10
67	Role of Equilibrative Nucleobase Transporter 1/SLC43A3 as a Ganciclovir Transporter in the Induction of Cytotoxic Effect of Ganciclovir in a Suicide Gene Therapy with Herpes Simplex Virus Thymidine Kinase. Journal of Pharmacology and Experimental Therapeutics, 2017, 360, 59-68.	2.5	9
68	Urate transport function of rat sodium-dependent nucleobase transporter 1. Physiological Reports, 2018, 6, e13714.	1.7	9
69	Determination of the membrane permeability coefficient and the reflection coefficient by the two-dimensional laminar flow model for intestinal perfusion experiments. Biochimica Et Biophysica Acta - Biomembranes, 1986, 854, 191-197.	2.6	8
70	Variation in d-glucose uptake along the intestinal tract Journal of Pharmacobio-dynamics, 1987, 10, 452-455.	0.5	8
71	Uptake of Low Molecular Weight Fractionated (3H)Heparin by Rat Hepatocytes in the Primary Culture Biological and Pharmaceutical Bulletin, 1995, 18, 443-446.	1.4	8
72	Effects of Ageing on the Oral Absorption of d-Xylose in Rats: Analysis of Gastrointestinal Disposition. Journal of Pharmacy and Pharmacology, 2011, 47, 576-580.	2.4	8

#	Article	IF	CITATIONS
73	Nicotinate Uptake by Two Kinetically Distinct Na+-Dependent Carrier-Mediated Transport Systems in the Rat Small Intestine. Drug Metabolism and Pharmacokinetics, 2012, 27, 255-262.	2.2	8
74	Sustained inhibition of proton-coupled folate transporter by myricetin. Drug Metabolism and Pharmacokinetics, 2015, 30, 154-159.	2.2	8
75	Identification of the amino acid residue responsible for the myricetin sensitivity of human proton-coupled folate transporter. Scientific Reports, 2019, 9, 18105.	3.3	8
76	A laminar flow absorption model for a carrier-mediated transport in the intestinal tract Journal of Pharmacobio-dynamics, 1984, 7, 604-606.	0.5	7
77	Uptake of Fluorescein Isothiocyanate (FITC)-Fractionated Heparin by Rat Parenchymal Hepatocytes in Primary Culture Biological and Pharmaceutical Bulletin, 1993, 16, 939-941.	1.4	7
78	Are Novel Scavenger-Like Receptors Involved in the Hepatic Uptake of Heparin?. Drug Metabolism and Pharmacokinetics, 2003, 18, 273-286.	2.2	7
79	Enhanced Uptake of Glycerol by Butyrate Treatment in HCT-15 Human Colon Cancer Cell Line. Drug Metabolism and Pharmacokinetics, 2007, 22, 195-198.	2.2	7
80	First-pass Metabolism of 5-Fluorouracil in Rats. Journal of Pharmacy and Pharmacology, 2011, 50, 1019-1025.	2.4	7
81	Noncompetitive Inhibition of Proton-coupled Folate Transporter by Myricetin. Drug Metabolism and Pharmacokinetics, 2014, 29, 312-316.	2.2	7
82	Organic anion transporter 1 (OAT1/SLC22A6) enhances bioluminescence based on d-luciferin–luciferase reaction in living cells by facilitating the intracellular accumulation of d-luciferin. Biochemical and Biophysical Research Communications, 2018, 495, 2152-2157.	2.1	7
83	Inter-organ relation between salivary gland and kidney in lithium excretion. I. Effects of continuous stimulation of salivation on salivary, renal and systemic clearances of lithium in dog Journal of Pharmacobio-dynamics, 1988, 11, 801-807.	0.5	6
84	Investigation on interaction of fractionated 3H-heparin with plasma proteins by gel filtration chromatography Journal of Pharmacobio-dynamics, 1989, 12, 416-422.	0.5	6
85	Influence of Urethane Anesthesia and Abdominal Surgery on Gastrointestinal Motility in Rats Biological and Pharmaceutical Bulletin, 1994, 17, 1309-1312.	1.4	6
86	Kinetic Characterization of Binding and Internalization of Fractionated (3H)Heparin in Rat Liver Parenchymal Cells in Primary Culture Biological and Pharmaceutical Bulletin, 1997, 20, 680-683.	1.4	6
87	Uptake of Fractionated Heparin by Two Types of Scavenger Receptors in Isolated Rat Kupffer Cells Biological and Pharmaceutical Bulletin, 2000, 23, 743-747.	1.4	6
88	Search for Carrier-Mediated Transport Systems in the Rat Colon Biological and Pharmaceutical Bulletin, 2003, 26, 274-277.	1.4	6
89	Effects of Ageing on the Oral Absorption of D-Xylose in Rats. Journal of Pharmacy and Pharmacology, 2011, 47, 373-378.	2.4	6
90	Intestinal absorption by carrier-mediated transports: Two-dimensional laminar flow model. Journal of Theoretical Biology, 1986, 119, 25-36.	1.7	5

#	Article	IF	CITATIONS
91	Dose-dependent salivary excretion following bolus intravenous administration of lithium in dog Chemical and Pharmaceutical Bulletin, 1988, 36, 3105-3112.	1.3	5
92	Gastric Emptying-Limited Oral Absorption of .ALPHALinolenic Acid Administered as a Milk Fat-Globule Membrane (MFGM) Emulsion in Rats Biological and Pharmaceutical Bulletin, 1994, 17, 1262-1266.	1.4	5
93	Internalization of Fractionated3H-Heparin by the Scavenger-Like Receptor in Rat Liver Parenchymal Cells in Primary Culture. Drug Delivery, 1997, 4, 181-185.	5.7	5
94	Kinetic Characterization of Carrier-Mediated Transport Systems for D-Glucose and Taurocholate in the Everted Sacs of the Rat Colon. Biological and Pharmaceutical Bulletin, 2003, 26, 899-901.	1.4	5
95	Competitive Inhibition of AQP7-mediated Glycerol Transport by Glycerol Derivatives. Drug Metabolism and Pharmacokinetics, 2014, 29, 348-351.	2.2	5
96	Identification of the amino acid residues involved in the species-dependent differences in the pyridoxine transport function of SLC19A3. Journal of Biological Chemistry, 2022, 298, 102161.	3.4	5
97	Macromolecule-macromolecule interaction in drug distribution: Effect of .ALPHAglobulin concentration on the hepatic uptake of fractionated 3H-heparin by perfused rat liver Chemical and Pharmaceutical Bulletin, 1990, 38, 2821-2824.	1.3	4
98	Macromolecul-Macromolecule Interaction in Drug Distribution. III. Kinetic Characterization of the Uptake of Fractionated (3H)Heparin and the Effect of Plasma Proteins in the Perfused Rat Liver Biological and Pharmaceutical Bulletin, 1993, 16, 1035-1039.	1.4	4
99	Uptake of FH by Two Types of Scavenger-Like Receptors in Rat Liver Parenchymal Cells in Primary Culture Biological and Pharmaceutical Bulletin, 2002, 25, 356-360.	1.4	4
100	Effect of Glycerol-Related Compounds on Carrier-Mediated Glycerol Uptake in HCT-15 Human Colon Cancer Cell Line. Drug Metabolism and Pharmacokinetics, 2008, 23, 216-220.	2.2	4
101	Kinetic and time-dependent features of sustained inhibitory effect of myricetin on folate transport by proton-coupled folate transporter. Drug Metabolism and Pharmacokinetics, 2015, 30, 341-346.	2.2	4
102	Functional Analysis of the Role of Equilibrative Nucleobase Transporter 1 (ENBT1/SLC43A3) in Adenine Transport in HepG2ÂCells. Journal of Pharmaceutical Sciences, 2020, 109, 2622-2628.	3.3	4
103	Current Understanding of the Intestinal Absorption of Nucleobases and Analogs. Biological and Pharmaceutical Bulletin, 2020, 43, 1293-1300.	1.4	4
104	Inter-organ relation between salivary gland and kidney in lithium excretion. II. Salivary, renal and systemic clearances of lithium under continuous stimulation of salivation in water loaded dogs Journal of Pharmacobio-dynamics, 1989, 12, 537-543.	0.5	3
105	Salivary Excretion of Drugs. Part XVII. Inter-organ Relation between Salivary Gland and Kidney in Lithium Excretion. IV. Saturation of Inhibitory Effect of NaCl on Ductal Reabsorption of Li+ in Beagle Dogs Biological and Pharmaceutical Bulletin, 1994, 17, 356-358.	1.4	3
106	Macromolecule-Macromolecule Interaction in Drug Distribution. IV. Molecular Weight Dependency in the Interaction of Fractionated (3H)Heparin with Plasma Proteins Biological and Pharmaceutical Bulletin, 1996, 19, 287-290.	1.4	3
107	Comparative Assessment of Intestinal Transport of Hydrophilic Drugs Between Small Intestine and Large Intestine. Drug Delivery, 1997, 4, 269-272.	5.7	3
108	Specific inhibitory effects of myricetin on human proton-coupled folate transporter: Comparison with its effects on rat proton-coupled folate transporter and human riboflavin transporter 3. Drug Metabolism and Pharmacokinetics, 2017, 32, 311-314.	2.2	3

#	Article	IF	CITATIONS
109	Drug Absorption from the Colon In Situ. , 2008, , 77-88.		2
110	Absorption of Vitamin K2 by Dogs after Oral Administration of a Soft Gelatin Capsule Formulation Containing a New Emulsion-type Vehicle. Journal of Pharmacy and Pharmacology, 2010, 51, 1375-1380.	2.4	2
111	Functional characterization of human organic anion transporter 10 (OAT10/SLC22A13) as an orotate transporter. Drug Metabolism and Pharmacokinetics, 2022, 43, 100443.	2.2	2
112	Salivary excretion of drugs. Part XVI. Inter-organ relation between salivary gland and kidney in lithium excretion. III. Enhanced salivary and systemic clearance of Li+ by oral administration of NaCl in dogs Chemical and Pharmaceutical Bulletin, 1990, 38, 3428-3433.	1.3	1
113	Macromolecule-Macromolecule Interaction in Drug Distribution. V. Effects of Plasma Proteins on Uptake of Fractionated (3H)Heparin in Isolated Rat Kupffer Cells Biological and Pharmaceutical Bulletin, 1996, 19, 1352-1356.	1.4	1
114	Animal species differences in the pyridoxine transport function of SLC19A3: Absence of Slc19a3-mediated pyridoxine uptake in the rat small intestine. Drug Metabolism and Pharmacokinetics, 2022, 44, 100456.	2.2	1