Svetlana Puchovskaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structures and properties of spatially distorted porphyrins. Russian Chemical Reviews, 2005, 74, 249-264.	6.5	37
2	Catalytic Properties of Cobalt meso-Tetrakis(4-methylpyridiniumyl)Âporphyrin Tetratosylate in the Oxidation of Sodium Diethyldithiocarbamate. Macroheterocycles, 2012, 5, 72-75.	0.5	23
3	Silica nanoparticles doped by cobalt(II) sulfosubstituted phthalocyanines: Sol–gel synthesis and catalytic activity. Journal of Non-Crystalline Solids, 2014, 406, 5-10.	3.1	19
4	Novel aqueous soluble cobalt(II) phthalocyanines of tetracarboxyl-substituted: Synthesis and catalytic activity on oxidation of sodium diethyldithiocarbamate. Journal of Porphyrins and Phthalocyanines, 2015, 19, 573-581.	0.8	18
5	Acid–base equilibria and coordination chemistry of the 5,10,15,20-tetraalkyl-porphyrins: implications for metalloporphyrin synthesis. RSC Advances, 2015, 5, 26125-26131.	3.6	17
6	Self-association of sulfo derivatives of cobalt phthalocyanine in aqueous solution. Russian Journal of General Chemistry, 2014, 84, 1777-1781.	0.8	15
7	Coordination and acid-base properties of <i>meso</i> -nitro derivatives of β-octaethylporphyrin. Journal of Porphyrins and Phthalocyanines, 2015, 19, 858-864.	0.8	15
8	Dependence of the basic properties of meso-nitro-substituted derivatives of β-octaethylporphyrin on the nature of substituents. Russian Journal of Physical Chemistry A, 2014, 88, 1670-1676.	0.6	14
9	Catalytic properties of polymer matrix-immobilized cobalt complexes with sulfonated phthalocyanines. Petroleum Chemistry, 2013, 53, 197-200.	1.4	13
10	Acid-Base Properties of Sterically Strained Tetraethyltetramethylporphyrin Derivatives. Russian Journal of General Chemistry, 2003, 73, 473-477.	0.8	12
11	Synthesis and physicochemical properties of girded porphyrins. Russian Journal of General Chemistry, 2004, 74, 1610-1615.	0.8	10
12	Kinetics of the formation of copper β-octaphenylporphyrin complexes in pyridine and acetic acid. Russian Journal of Inorganic Chemistry, 2010, 55, 1494-1498.	1.3	10
13	Influence of substituents structure and their electronic effects on acid-base and complexing properties of 5,10,15,20-tetranitro-2,3,7,8,12,13,17,18-octaethylporphyrin. Russian Journal of General Chemistry, 2014, 84, 939-945.	0.8	10
14	Effect of structural and electronic properties of substituents on the metal porphyrin formation kinetics. Russian Journal of Inorganic Chemistry, 2013, 58, 406-410.	1.3	9
15	Catalytic properties of cobalt complexes with tetrapyrazino porphyrazine and phthalocyanine derivatives. Russian Journal of Physical Chemistry A, 2014, 88, 2064-2067.	0.6	8
16	Rate-acidity hysteresis and enthalpy-entropy compensation upon metalloporphyrin formation: Implication for the metal ion coordination mechanism. Journal of Molecular Liquids, 2019, 275, 491-498.	4.9	8
17	Sulfonated Co(II) phthalocyanines covalently anchored at organic polymers as catalyst for mild oxidation of mercaptans. Journal of Porphyrins and Phthalocyanines, 2015, 19, 1159-1167.	0.8	7
18	Porphyrin acidity and metal ion coordination revisited: electronic substitution effects. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 89, 325-332.	1.6	7

#	Article	IF	CITATIONS
19	A new procedure for the spectrophotometric determination of nitrogen(II) oxide in solutions. Journal of Analytical Chemistry, 2005, 60, 21-23.	0.9	6
20	Study of acidity and coordination properties of 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-tetraphenylporphyrin in the system of 1,8-diazabicyclo[5.4.0]undec-7-ene-acetonitrile. Russian Journal of General Chemistry, 2013, 83, 1406-1409.	0.8	6
21	Synthesis and spectrophotometric study of deprotonation of octamethylporphyrin derivatives with 1,8-diazabicyclo[5.4.0]undec-7-ene in acetonitrile. Russian Journal of General Chemistry, 2014, 84, 103-107.	0.8	6
22	Self-association of sulfo derivatives of cobalt phthalocyaninates in the presence of 1,4-diazabicyclo[2.2.2]octane. Russian Journal of General Chemistry, 2015, 85, 1713-1720.	0.8	6
23	Synthesis and Spectral and Coordination Properties of meso-Tetraarylporphyrins. Russian Journal of Organic Chemistry, 2019, 55, 1878-1883.	0.8	6
24	N(II) oxide coordination to Co complexes with water-soluble porphyrin. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2006, 32, 563-566.	1.0	5
25	Dissociation kinetics of cobalt and zinc β-octabromo-meso-tetraphenyl- and β-octaethyl-meso-tetraphenylporphyrin complexes. Kinetics and Catalysis, 2007, 48, 190-193.	1.0	5
26	Electronic and steric effects of substituents on the coordinating properties of porphyrins. Russian Journal of General Chemistry, 2012, 82, 476-481.	0.8	5
27	Heteroatom Role in the Formation of Spectral-Luminescent Properties of 21-Thia- and 21,23-Dithia-5,10,15,20-Tetraphenylporphyrin in Solutions. Journal of Applied Spectroscopy, 2020, 87, 201-207.	0.7	5
28	The Surface Modification of the Polypropylene by Aqueous Soluble Coll Phthalocyanine to Obtain Materials for Catalysis. Macroheterocycles, 2015, 8, 351-357.	0.5	5
29	Dissociation Kinetics of Copper and Cobalt Complexes with Sterically Distorted Porphyrins. Russian Journal of General Chemistry, 2002, 72, 133-136.	0.8	4
30	Coordination of nitrogen-containing ligands by Co complexes with tetra-and dodeca-substituted porphyrins. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2007, 33, 116-119.	1.0	4
31	Heteroatomic substitution of tetraphenylporphyrin as approach for regulating coordination ability. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2020, 97, 43-50.	1.6	4
32	Molecular Complexes of Water-Soluble Cobalt and Zinc Porphyrins with Nitrogen-Containing Bases. Macroheterocycles, 2013, 6, 257-261.	0.5	4
33	Coordination of nitrogen(II) oxide by metal prophyrins. Russian Journal of Inorganic Chemistry, 2007, 52, 293-296.	1.3	3
34	Supramolecular ensembles based on the donor-acceptor interactions of porphyrins. Russian Journal of General Chemistry, 2011, 81, 135-141.	0.8	3
35	Acid–base and coordination properties of Meso-substituted porphyrins in nonaqueous solutions. Russian Journal of Physical Chemistry A, 2017, 91, 1692-1702	0.6	3
36	Aza-substitution, benzo-annulation effects and catalytic activity of Î ² -octaphenyl-substituted tetrapyrrolic macroheterocyclic cobalt complexes. I. heterogeneous catalysis. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2017, 87, 37-43.	1.6	3

#	Article	IF	CITATIONS
37	Enthalpy—entropy compensation upon metal ion coordination with porphyrins: generalization for the free bases and doubly deprotonated macrocycles. Russian Chemical Bulletin, 2020, 69, 1072-1075.	1.5	3
38	Synthesis, Spectral, Acid-Basic, and Coordination Properties of Bromine- and Methoxy-Substituted Tetraphenylporphyrins. Russian Journal of General Chemistry, 2021, 91, 1050-1056.	0.8	3
39	Effect of the Structure of the meso-Alkyl Substituent on the Physicochemical and Coordination Properties of the Porphyrin Ligand. Macroheterocycles, 2019, 12, 135-142.	0.5	3
40	Spectral studies of protonated and anionic forms of porphyrins with an asymmetric substitution system. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2022, 102, 493-505.	1.6	3
41	Title is missing!. Russian Journal of General Chemistry, 2003, 73, 652-654.	0.8	2
42	Effect of the cathode material on the accumulation of hydrogen peroxide in a plasma-solution system. Surface Engineering and Applied Electrochemistry, 2013, 49, 485-487.	0.8	2
43	Coordination properties of molecular and anionic forms of 5,10,15,20,21-pentaphenyl-2,3,7,8,12,13,17,18-octaethylporphyrin in acetonitrile. Russian Journal of Inorganic Chemistry, 2017, 62, 123-127.	1.3	2
44	Spectrophotometric Study of Acid-Base Properties of Sulfonated Derivatives of 5,10,15,20-Tetraphenyl-21-thiaand 5,10,15,20-Tetraphenyl-21-oxoporphyrins in the Ethanol–Sulfuric Acid System. Russian Journal of General Chemistry, 2019, 89, 255-260.	0.8	2
45	FLUORESCENT PROPERTIES OF PHENYL - CONTAINING ISOMERS OF PALLADIUM COMPLEXES OF OCTAETHYLPORPHIN IN ACETONITRILE. ChemChemTech, 2019, 63, 71-77.	0.3	2
46	Formation and Bacteriostatic Properties of Ag(II) and Cu(II) Complexes of meso-Tetrakis(N-methyl-4-pyridyl)-porphyrin Tetratosylate. Macroheterocycles, 2014, 7, 272-275.	0.5	2
47	Influence of the Ligand's Basicity on the Kinetics of Complexation of 5,10,15,20-Tetra(trifluoromethyl) and 5,10,15,20-Tetra(iso-butyl)porphine with Copper Acetate. Macroheterocycles, 2018, 11, 73-78.	0.5	2
48	Coordination compounds of cobalt porphyrins with nitrogen monoxide. Russian Chemical Bulletin, 2007, 56, 743-747.	1.5	1
49	Coordination of pyridine and piperidine by cobalt complexes of water-soluble porphyrin and phthalocyanines. Russian Journal of Inorganic Chemistry, 2010, 55, 552-555.	1.3	1
50	Investigation of Kinetics of Coordination of meso-Nitro-Substituted Derivatives of 5-Phenyl-β-octaalkylporphine with Palladium Acetate. Russian Journal of General Chemistry, 2018, 88, 973-977.	0.8	1
51	Effect of Medium Basicity on the Coordination Kinetics of meso-Nitro-Substituted Derivatives of 5-Phenyl-β-Octaalkylporphine with Zinc Acetate. Russian Journal of Inorganic Chemistry, 2018, 63, 764-771.	1.3	1
52	Spectral, Acid, and Coordination Properties of Dodecasubstituted Porphyrins. Russian Journal of General Chemistry, 2019, 89, 586-596.	0.8	1
53	Interdependence between structure of nitro-substituted palladium and zinc porphyrinates and its spectral, coordination and acid-base properties. Journal of Molecular Structure, 2019, 1192, 7-14.	3.6	1
54	Coordinating Properties of Co(II) and Zn(II) Complexes with Sterically Hindered Porphyrins. Russian Journal of Coordination Chemistry/Koordinatsionnaya Khimiya, 2003, 29, 805-809.	1.0	0

Svetlana Puchovskaya

#	Article	IF	CITATIONS
55	Coordination dimer based on zinc octaethylporphyrin and meso-pyridyl-substituted porphyrin. Russian Journal of General Chemistry, 2009, 79, 138-141.	0.8	0
56	Tetrapyrrole macrocycles complexes as a basis for the development of materials with a combined biological action. Russian Journal of General Chemistry, 2012, 82, 1153-1156.	0.8	0
57	Surfactant-modified polypropylene as a catalyst for oxidation of mercaptans. Russian Journal of General Chemistry, 2016, 86, 2203-2208.	0.8	0
58	Basic and Coordination Properties of Tetraphenylporphine Derivatives. Russian Journal of General Chemistry, 2018, 88, 2103-2107.	0.8	0
59	Investigation of Acidic and Coordination Properties of Octabromo-Substituted Porphyrins in the System of 1,8-Diazabicyclo[5,4,0]unde-7-ene-Acetonitrile. Russian Journal of General Chemistry, 2019, 89, 1286-1296.	0.8	0
60	Complexing and Acid-Base Properties of 5,10,15,20-Tetraphenylporphine Oxaderivatives. Russian Journal of General Chemistry, 2020, 90, 1292-1297.	0.8	0
61	SYNTHESIS, COORDINATION AND ACID-BASE PROPERTIES OF MESO-DINITROSUBSTITUTED DERIVATIVES OF 5,15-DIPHENYL-Î2-OCTAALKYLPORPHINE. ChemChemTech, 2018, 61, 17.	0.3	0
62	Spectral and Acid-Base Properties of Tetra-Meso-Alkyl-and Tetra-Meso-Phenyl Substituted Derivatives of Porphyrin. Zhidkie Kristally I Ikh Prakticheskoe Ispol'zovanie, 2019, 19, 87-96.	0.1	0
63	Physicochemical Basis for the Creation of Liquid-Phase Sensor Materials Based on Tetraaryldithiaporphyrins. Russian Journal of General Chemistry, 2022, 92, 231-240.	0.8	0