Minggang Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604356/publications.pdf

Version: 2024-02-01

567281 526287 28 910 15 27 h-index g-index citations papers 28 28 28 1409 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	3D graphene foams decorated by CuO nanoflowers for ultrasensitive ascorbic acid detection. Biosensors and Bioelectronics, 2014, 59, 384-388.	10.1	162
2	Preparation of Co 3 O 4 /crumpled graphene microsphere as peroxidase mimetic for colorimetric assay of ascorbic acid. Biosensors and Bioelectronics, 2017, 89, 846-852.	10.1	117
3	Highly sensitive electrochemical detection of circulating tumor DNA based on thin-layer MoS ₂ /graphene composites. RSC Advances, 2016, 6, 22673-22678.	3.6	76
4	Controlled synthesis of spinel ZnFe2O4 decorated ZnO heterostructures as peroxidase mimetics for enhanced colorimetric biosensing. Chemical Communications, 2013, 49, 7656.	4.1	70
5	Construction of hierarchical 2D/2D Ti3C2/MoS2 nanocomposites for high-efficiency solar steam generation. Journal of Colloid and Interface Science, 2021, 584, 125-133.	9.4	66
6	Synthesis of mesoporous multiwall ZnO nanotubes by replicating silk and application for enzymatic biosensor. Biosensors and Bioelectronics, 2013, 49, 318-322.	10.1	58
7	A single mesoporous ZnO/Chitosan hybrid nanostructure for a novel free nanoprobe type biosensor. Biosensors and Bioelectronics, 2013, 43, 226-230.	10.1	45
8	Synthesis of ZnO–CuO porous core–shell spheres and their application for non-enzymatic glucose sensor. Applied Physics A: Materials Science and Processing, 2015, 118, 989-996.	2.3	37
9	Fabrication of the Ni-based composite wires for electrochemical detection of copper(â;) ions. Analytica Chimica Acta, 2021, 1143, 45-52.	5 . 4	28
10	Preparing Co3O4 urchin-like hollow microspheres self-supporting architecture for improved glucose biosensing performance. Sensors and Actuators B: Chemical, 2016, 235, 162-169.	7.8	26
11	Photoenhanced Oxidase–Peroxidase-like NiCo ₂ O ₄ @MnO ₂ Nanozymes for Colorimetric Detection of Hydroquinone. ACS Sustainable Chemistry and Engineering, 2022, 10, 5651-5658.	6.7	26
12	Triggering interface potential barrier: A controllable tuning mechanism for electrochemical detection. Biosensors and Bioelectronics, 2016, 85, 869-875.	10.1	22
13	Preparation of NiMn2O4/C necklace-like microspheres as oxidase mimetic for colorimetric determination of ascorbic acid. Talanta, 2020, 219, 121299.	5. 5	19
14	Self-assemble ZnMn2O4 hierarchical hollow microspheres into self-supporting architecture for enhanced biosensing performance. Biosensors and Bioelectronics, 2014, 61, 443-447.	10.1	18
15	Introducing heterojunction barriers into single kinked nanowires for the probe-free detection of proteins and intracellular recording. Nanoscale, 2014, 6, 4052-4057.	5.6	17
16	Fabrication of the Ni/ZnO/BiOI foam for the improved electrochemical biosensing performance to glucose. Analytica Chimica Acta, 2020, 1095, 93-98.	5.4	17
17	Interfacial potential barrier driven electrochemical detection of Cr6+. Analytica Chimica Acta, 2018, 1029, 8-14.	5.4	14
18	Tuning Interfacial Energy Barriers in Heterojunctions for Antiâ€Interference Sensing. Advanced Functional Materials, 2021, 31, 2008604.	14.9	14

#	Article	IF	CITATIONS
19	Auxetic Thermoresponsive Nanoplasmonic Optical Switch. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22754-22760.	8.0	13
20	Using photo-induced p-n junction interface effect of CoMn2O4 \hat{l}^2 -MnO2 oxidase mimetics for colorimetric determination of hydroquinone in seawater. Analytica Chimica Acta, 2021, 1172, 338695.	5.4	13
21	Multifunctional biosensor based on self-assembled multi-walled carbon nanotubes sponge. Journal of Materials Science: Materials in Electronics, 2016, 27, 6911-6917.	2.2	11
22	Fabrication of CQDs/MoS2/Mo foil for the improved electrochemical detection. Analytica Chimica Acta, 2019, 1079, 79-85.	5.4	10
23	Light regulated heterojunctions with tunable interfacial energy barriers for sensitive and specific detection of copper ions. Chemical Engineering Journal, 2022, 431, 133880.	12.7	10
24	A novel anode modified by 1,5-dihydroxyanthraquinone/multiwalled carbon nanotubes composite in marine sediment microbial fuel cell and its electrochemical performance. International Journal of Energy Research, 2018, 42, 2574-2582.	4.5	9
25	New insights into the electrochemical detection application of p–p junction foam: the effects of the interfacial potential barrier. Analyst, The, 2016, 141, 6515-6520.	3.5	4
26	Fabrication of 3D Ni/NiO/MoS ₂ /rGO foam for enhancing sensing performance. New Journal of Chemistry, 2021, 45, 4387-4392.	2.8	4
27	TiO 2 â€Au NPs Heterojunction Arrays for Sensitive and Specific Detection of Copper Ions. Advanced Materials Interfaces, 0, , 2101169.	3.7	2
28	Dual-Modulated Heterojunctions for Anti-Interference Sensing of Heavy Metals in Seawater. Analytical Chemistry, 2022, 94, 10183-10191.	6.5	2