Wataru Nomura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604322/publications.pdf Version: 2024-02-01

WATARI NOMURA

#	Article	IF	CITATIONS
1	Bivalent Ligands of CXCR4 with Rigid Linkers for Elucidation of the Dimerization State in Cells. Journal of the American Chemical Society, 2010, 132, 15899-15901.	13.7	81
2	In Vivo Site-Specific DNA Methylation with a Designed Sequence-Enabled DNA Methylase. Journal of the American Chemical Society, 2007, 129, 8676-8677.	13.7	63
3	CD4 mimics targeting the mechanism of HIV entry. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 354-358.	2.2	61
4	Cell-Permeable Stapled Peptides Based on HIV-1 Integrase Inhibitors Derived from HIV-1 Gene Products. ACS Chemical Biology, 2013, 8, 2235-2244.	3.4	53
5	Small molecular CD4 mimics as HIV entry inhibitors. Bioorganic and Medicinal Chemistry, 2011, 19, 6735-6742.	3.0	44
6	Fluorophore Labeling Enables Imaging and Evaluation of Specific CXCR4â^'Ligand Interaction at the Cell Membrane for Fluorescence-Based Screening. Bioconjugate Chemistry, 2008, 19, 1917-1920.	3.6	42
7	CD4 mimics targeting the HIV entry mechanism and their hybrid molecules with a CXCR4 antagonist. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5853-5858.	2.2	39
8	Peptide HIV-1 Integrase Inhibitors from HIV-1 Gene Products. Journal of Medicinal Chemistry, 2010, 53, 5356-5360.	6.4	37
9	CD4 mimics as HIV entry inhibitors: Lead optimization studies of the aromatic substituents. Bioorganic and Medicinal Chemistry, 2013, 21, 2518-2526.	3.0	35
10	Fluorogenically Active Leucine Zipper Peptides as Tag–Probe Pairs for Protein Imaging in Living Cells. Angewandte Chemie - International Edition, 2009, 48, 9164-9166.	13.8	32
11	Smallâ€Molecule CD4 Mimics Containing Mono yclohexyl Moieties as HIV Entry Inhibitors. ChemMedChem, 2016, 11, 940-946.	3.2	32
12	A Synthetic C34 Trimer of HIVâ€∃ gp41 Shows Significant Increase in Inhibition Potency. ChemMedChem, 2012, 7, 205-208.	3.2	31
13	Benzolactam-related compounds promote apoptosis of HIV-infected human cells via protein kinase C–induced HIV latency reversal. Journal of Biological Chemistry, 2019, 294, 116-129.	3.4	31
14	Significant Effect of Linker Sequence on DNA Recognition by Multi-Zinc Finger Protein. Biochemical and Biophysical Research Communications, 2001, 282, 1001-1007.	2.1	26
15	A minimally cytotoxic CD4 mimic as an HIV entry inhibitor. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 397-400.	2.2	26
16	Microwave-Assisted Synthesis of Azacoumarin Fluorophores and the Fluorescence Characterization. Journal of Organic Chemistry, 2017, 82, 2739-2744.	3.2	25
17	Azamacrocyclic Metal Complexes as CXCR4 Antagonists. ChemMedChem, 2011, 6, 834-839.	3.2	24
18	A cell cycle-dependent CRISPR-Cas9 activation system based on an anti-CRISPR protein shows improved genome editing accuracy. Communications Biology, 2020, 3, 601.	4.4	23

WATARU NOMURA

#	Article	IF	CITATIONS
19	Multimerized CHR-derived peptides as HIV-1 fusion inhibitors. Bioorganic and Medicinal Chemistry, 2013, 21, 4452-4458.	3.0	22
20	Conjugation of cell-penetrating peptides leads to identification of anti-HIV peptides from matrix proteins. Bioorganic and Medicinal Chemistry, 2012, 20, 1468-1474.	3.0	20
21	Structure-activity relationship study of CXCR4 antagonists bearing the cyclic pentapeptide scaffold: identification of the new pharmacophore. Organic and Biomolecular Chemistry, 2008, 6, 4374.	2.8	19
22	Peptidic HIV integrase inhibitors derived from HIV gene products: Structure–activity relationship studies. Bioorganic and Medicinal Chemistry, 2010, 18, 6771-6775.	3.0	19
23	Remodeling of Dynamic Structures of HIV-1 Envelope Proteins Leads to Synthetic Antigen Molecules Inducing Neutralizing Antibodies. Bioconjugate Chemistry, 2010, 21, 709-714.	3.6	19
24	A CD4 mimic as an HIV entry inhibitor: Pharmacokinetics. Bioorganic and Medicinal Chemistry, 2013, 21, 7884-7889.	3.0	19
25	The successes and failures of HIV drug discovery. Expert Opinion on Drug Discovery, 2011, 6, 1067-1090.	5.0	18
26	Synthetic Caged DAGâ€lactones for Photochemically Controlled Activation of Protein Kinase C. ChemBioChem, 2011, 12, 535-539.	2.6	18
27	Multiconnection of Identical Zinc Finger: Implication for DNA Binding Affinity and Unit Modulation of the Three Zinc Finger Domainâ€. Biochemistry, 2001, 40, 2932-2941.	2.5	17
28	Synthesis of protein kinase Cδ C1b domain by native chemical ligation methodology and characterization of its folding and ligand binding. Journal of Peptide Science, 2009, 15, 642-646.	1.4	16
29	Structure-activity relationship study on artificial CXCR4 ligands possessing the cyclic pentapeptide scaffold: the exploration of amino acid residues of pentapeptides by substitutions of several aromatic amino acids. Organic and Biomolecular Chemistry, 2009, 7, 3805.	2.8	16
30	Development of crosslinkâ€ŧype tagâ€probe pairs for fluorescent imaging of proteins. Biopolymers, 2010, 94, 843-852.	2.4	16
31	Development of the 8-aza-3-bromo-7-hydroxycoumarin-4-ylmethyl group as a new entry of photolabile protecting groups. Tetrahedron, 2014, 70, 4400-4404.	1.9	16
32	Utilization of the Heavy Atom Effect for the Development of a Photosensitive 8-Azacoumarin-Type Photolabile Protecting Group. Organic Letters, 2015, 17, 5372-5375.	4.6	16
33	An In-Cell Fluorogenic Tag–Probe System for Protein Dynamics Imaging Enabled by Cell-Penetrating Peptides. Bioconjugate Chemistry, 2015, 26, 1080-1085.	3.6	15
34	Design, synthesis and biological evaluation of low molecular weight CXCR4 ligands. Bioorganic and Medicinal Chemistry, 2019, 27, 1130-1138.	3.0	15
35	Fluorescence-Quenching Screening of Protein Kinase C Ligands with an Environmentally Sensitive Fluorophore. Bioconjugate Chemistry, 2011, 22, 923-930.	3.6	14
36	Evaluation of a synthetic C34 trimer of HIV-1 gp41 as AIDS vaccines. Bioorganic and Medicinal Chemistry, 2012, 20, 3287-3291.	3.0	14

WATARU NOMURA

#	Article	IF	CITATIONS
37	<scp>D</scp> evelopment of antiâ€HIV peptides based on a viral capsid protein. Biopolymers, 2017, 108, e22920.	2.4	14
38	Anti-HIV screening for cell-penetrating peptides using chloroquine and identification of anti-HIV peptides derived from matrix proteins. Bioorganic and Medicinal Chemistry, 2015, 23, 4423-4427.	3.0	12
39	Development of a NanoBRET-Based Sensitive Screening Method for CXCR4 Ligands. Bioconjugate Chemistry, 2019, 30, 1442-1450.	3.6	12
40	Interconversion between Serine and Aspartic Acid in the α Helix of the N-Terminal Zinc Finger of Sp1: Implication for General Recognition Code and for Design of Novel Zinc Finger Peptide Recognizing Complementary Strand. Biochemistry, 2002, 41, 8819-8825.	2.5	11
41	Intense Blue Fluorescence in a Leucine Zipper Assembly. ChemBioChem, 2011, 12, 691-694.	2.6	11
42	Effects of DNA Binding of the Zinc Finger and Linkers for Domain Fusion on the Catalytic Activity of Sequence-Specific Chimeric Recombinases Determined by a Facile Fluorescent System. Biochemistry, 2012, 51, 1510-1517.	2.5	11
43	Development of a traceable linker containing a thiol-responsive amino acid for the enrichment and selective labelling of target proteins. Organic and Biomolecular Chemistry, 2014, 12, 3821.	2.8	11
44	Discovery of a Macropinocytosisâ€Inducing Peptide Potentiated by Mediumâ€Mediated Intramolecular Disulfide Formation. Angewandte Chemie - International Edition, 2021, 60, 11928-11936.	13.8	11
45	Effects of Length and Position of an Extended Linker on Sequence-Selective DNA Recognition of Zinc Finger Peptides. Biochemistry, 2003, 42, 14805-14813.	2.5	10
46	Effects of linking 15-zinc finger domains on DNA binding specificity and multiple DNA binding modes. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2197-2201.	2.2	10
47	Synthesis of a Chloroalkene Dipeptide Isostere-Containing Peptidomimetic and Its Biological Application. ACS Medicinal Chemistry Letters, 2018, 9, 6-10.	2.8	10
48	Inhibition of EGFR Activation by Bivalent Ligands Based on a Cyclic Peptide Mimicking the Dimerization Arm Structure of EGFR. Chemical and Pharmaceutical Bulletin, 2018, 66, 1083-1089.	1.3	10
49	Efficient and Orthogonal Transcription Regulation by Chemically Inducible Artificial Transcription Factors. Biochemistry, 2018, 57, 6452-6459.	2.5	10
50	Dimeric C34 Derivatives Linked through Disulfide Bridges as New HIVâ€I Fusion Inhibitors. ChemBioChem, 2019, 20, 2101-2108.	2.6	10
51	Pharmacophore-based small molecule CXCR4 ligands. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 4169-4172.	2.2	9
52	Development of a fluoride-responsive amide bond cleavage device that is potentially applicable to a traceable linker. Tetrahedron, 2014, 70, 5122-5127.	1.9	9
53	Influence of TFIIIA-type linker at the N- or C-terminal of nine-zinc finger protein on DNA-binding site. Biochemical and Biophysical Research Communications, 2003, 300, 87-92.	2.1	8
54	CXCR4-derived synthetic peptides inducing anti-HIV-1 antibodies. Bioorganic and Medicinal Chemistry, 2013, 21, 6878-6885.	3.0	8

WATARU NOMURA

#	Article	IF	CITATIONS
55	Trivalent ligands for CXCR4 bearing polyproline linkers show specific recognition for cells with increased CXCR4 expression. Organic and Biomolecular Chemistry, 2015, 13, 8734-8739.	2.8	8
56	Delivery of a Proapoptotic Peptide to EGFR-Positive Cancer Cells by a Cyclic Peptide Mimicking the Dimerization Arm Structure of EGFR. Bioconjugate Chemistry, 2018, 29, 2050-2057.	3.6	8
57	TALEN-Based Chemically Inducible, Dimerization-Dependent, Sequence-Specific Nucleases. Biochemistry, 2020, 59, 197-204.	2.5	8
58	Lowâ€Molecularâ€Weight CXCR4 Ligands with Variable Spacers. ChemMedChem, 2013, 8, 118-124.	3.2	7
59	Functional evaluation of fluorescein-labeled derivatives of a peptide inhibitor of the EGF receptor dimerization. Bioorganic and Medicinal Chemistry, 2016, 24, 3406-3412.	3.0	7
60	A future perspective on the development of chemokine receptor CXCR4 antagonists. Expert Opinion on Drug Discovery, 2008, 3, 1155-1166.	5.0	6
61	Synthesis and Evaluation of Dimeric Derivatives of Diacylglycerol–Lactones as Protein Kinase C Ligands. Bioconjugate Chemistry, 2017, 28, 2135-2144.	3.6	6
62	Exploration of labeling by near infrared dyes of the polyproline linker for bivalent-type CXCR4 ligands. Bioorganic and Medicinal Chemistry, 2015, 23, 6967-6973.	3.0	5
63	Development of Toolboxes for Precision Genome/Epigenome Editing and Imaging of Epigenetics. Chemical Record, 2018, 18, 1717-1726.	5.8	5
64	Fluorescent-Responsive Synthetic C1b Domains of Protein Kinase Cδas Reporters of Specific High-Affinity Ligand Binding. Bioconjugate Chemistry, 2011, 22, 82-87.	3.6	4
65	Bivalent 14â€mer peptide ligands of CXCR4 with polyproline linkers with antiâ€chemotactic activity against Jurkat cells. Journal of Peptide Science, 2017, 23, 574-580.	1.4	4
66	Antiâ€HIVâ€1 Peptide Derivatives Based on the HIVâ€1 Coâ€receptor CXCR4. ChemMedChem, 2013, 8, 166	8ଶ.୭72.	3
67	Screening for Protein Kinase C Ligands Using Fluorescence Resonance Energy Transfer. Chemical and Pharmaceutical Bulletin, 2014, 62, 1019-1025.	1.3	3
68	Multimerized HIVâ€gp41â€derived peptides as fusion inhibitors and vaccines. Biopolymers, 2016, 106, 622-628.	2.4	3
69	Fluorescence resonance energy transfer-based screening for protein kinase C ligands using 6-methoxynaphthalene-labeled 1,2-diacylglycerol-lactones. Organic and Biomolecular Chemistry, 2021, 19, 8264-8271.	2.8	2
70	Molecular Switch Engineering for Precise Genome Editing. Bioconjugate Chemistry, 2021, 32, 639-648.	3.6	2
71	Discovery of a Macropinocytosisâ€Inducing Peptide Potentiated by Mediumâ€Mediated Intramolecular Disulfide Formation. Angewandte Chemie, 2021, 133, 12035-12043	2.0	2
72	Peptideâ€based ligand screening and functional analysis of protein kinase C. Biopolymers, 2013, 100, 613-620.	2.4	0

#	Article	IF	CITATIONS
73	Synthesis of hydrophilic caged DAG-lactones for chemical biology applications. Organic and Biomolecular Chemistry, 2020, 18, 4217-4223.	2.8	0
74	Chemically ontrolled orthogonal regulation of multiple endogenous genes. FASEB Journal, 2018, 32, .	0.5	0