
Jiaxi Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604288/publications.pdf Version: 2024-02-01

Ιμανί Ζησι

#	Article	IF	CITATIONS
1	Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms. Journal of Sound and Vibration, 2015, 346, 53-69.	3.9	329
2	Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic. Journal of Sound and Vibration, 2013, 332, 3377-3389.	3.9	250
3	A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. Journal of Sound and Vibration, 2017, 394, 59-74.	3.9	148
4	Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Composite Structures, 2020, 236, 111862.	5.8	132
5	Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness. Nonlinear Dynamics, 2017, 87, 633-646.	5.2	111
6	On the analytical and experimental assessment of the performance of a quasi-zero-stiffness isolator. JVC/Journal of Vibration and Control, 2014, 20, 2314-2325.	2.6	109
7	A torsion quasi-zero stiffness vibration isolator. Journal of Sound and Vibration, 2015, 338, 121-133.	3.9	106
8	Design and experimental investigation of ultra-low frequency vibration isolation during neonatal transport. Mechanical Systems and Signal Processing, 2020, 139, 106633.	8.0	103
9	A semi-active metamaterial beam with electromagnetic quasi-zero-stiffness resonators for ultralow-frequency band gap tuning. International Journal of Mechanical Sciences, 2020, 176, 105548.	6.7	101
10	A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dynamics, 2019, 96, 647-665.	5.2	89
11	Local resonator with high-static-low-dynamic stiffness for lowering band gaps of flexural wave in beams. Journal of Applied Physics, 2017, 121, .	2.5	84
12	A nonlinear ultra-low-frequency vibration isolator with dual quasi-zero-stiffness mechanism. Nonlinear Dynamics, 2020, 101, 755-773.	5.2	83
13	Low-frequency band gaps in a metamaterial rod by negative-stiffness mechanisms: Design and experimental validation. Applied Physics Letters, 2019, 114, .	3.3	77
14	Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mechanical Systems and Signal Processing, 2019, 124, 664-678.	8.0	74
15	A quasi-zero-stiffness dynamic vibration absorber. Journal of Sound and Vibration, 2021, 494, 115859.	3.9	66
16	Mathematical modeling and analysis of a meta-plate for very low-frequency band gap. Applied Mathematical Modelling, 2019, 73, 581-597.	4.2	61
17	A Six Degrees-of-Freedom Vibration Isolation Platform Supported by a Hexapod of Quasi-Zero-Stiffness Struts. Journal of Vibration and Acoustics, Transactions of the ASME, 2017, 139, .	1.6	58
18	A dual quasi-zero-stiffness sliding-mode triboelectric nanogenerator for harvesting ultralow-low frequency vibration energy. Mechanical Systems and Signal Processing, 2021, 151, 107368.	8.0	58

Јіахі Zhou

#	Article	IF	CITATIONS
19	Bio-inspired bistable piezoelectric vibration energy harvester: Design and experimental investigation. Energy, 2021, 228, 120595.	8.8	58
20	Sensitivity analysis of parametric errors on the performance of a torsion quasi-zero-stiffness vibration isolator. International Journal of Mechanical Sciences, 2017, 134, 336-346.	6.7	56
21	Vibration isolation in neonatal transport by using a quasi-zero-stiffness isolator. JVC/Journal of Vibration and Control, 2018, 24, 3278-3291.	2.6	53
22	Low-frequency locally resonant band gap of the two-dimensional quasi-zero-stiffness metamaterials. International Journal of Mechanical Sciences, 2022, 222, 107230.	6.7	49
23	Bow-type bistable triboelectric nanogenerator for harvesting energy from low-frequency vibration. Nano Energy, 2022, 92, 106746.	16.0	48
24	Tunable ultralow frequency wave attenuations in one-dimensional quasi-zero-stiffness metamaterial. International Journal of Mechanics and Materials in Design, 2021, 17, 285-300.	3.0	44
25	Flexural wave attenuation by metamaterial beam with compliant quasi-zero-stiffness resonators. Mechanical Systems and Signal Processing, 2022, 174, 109119.	8.0	42
26	Fabrication, dynamic properties and multi-objective optimization of a metal origami tube with Miura sheets. Thin-Walled Structures, 2019, 144, 106352.	5.3	39
27	Limb-inspired bionic quasi-zero stiffness vibration isolator. Acta Mechanica Sinica/Lixue Xuebao, 2021, 37, 1152-1167.	3.4	39
28	Multi-low-frequency flexural wave attenuation in Euler–Bernoulli beams using local resonators containing negative-stiffness mechanisms. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3141-3148.	2.1	38
29	A brief review of metamaterials for opening low-frequency band gaps. Applied Mathematics and Mechanics (English Edition), 2022, 43, 1125-1144.	3.6	28
30	Theoretical and experimental investigations on semi-active quasi-zero-stiffness dynamic vibration absorber. International Journal of Mechanical Sciences, 2022, 214, 106892.	6.7	26
31	A nonlinear hybrid energy harvester with high ultralow-frequency energy harvesting performance. Meccanica, 2021, 56, 461-480.	2.0	25
32	A non-smooth quasi-zero-stiffness isolator with displacement constraints. International Journal of Mechanical Sciences, 2022, 225, 107351.	6.7	23
33	Tunable low-frequency torsional-wave band gaps in a meta-shaft. Journal Physics D: Applied Physics, 2019, 52, 055104.	2.8	22
34	Elastic structural response of prismatic metal sandwich tubes to internal moving pressure loading. International Journal of Solids and Structures, 2009, 46, 2354-2371.	2.7	19
35	Wave propagation analysis in nonlinear curved single-walled carbon nanotubes based on nonlocal elasticity theory. Physica E: Low-Dimensional Systems and Nanostructures, 2015, 66, 283-292.	2.7	19
36	Design and experimental study of a compact quasi-zero-stiffness isolator using wave springs. Science China Technological Sciences, 2021, 64, 2255-2271.	4.0	18

Јіахі Zhou

#	Article	IF	CITATIONS
37	Numerical and Experimental Investigations on Tunable Low-frequency Locally Resonant Metamaterials. Acta Mechanica Solida Sinica, 2021, 34, 612-623.	1.9	17
38	Bidirectional deep-subwavelength band gap induced by negative stiffness. Journal of Sound and Vibration, 2021, 515, 116474.	3.9	17
39	Chaotification of vibration isolation floating raft system via nonlinear time-delay feedback control. Chaos, Solitons and Fractals, 2012, 45, 1255-1265.	5.1	15
40	Optimal design of metallic sandwich tubes with prismatic cores to internal moving shock load. Structural and Multidisciplinary Optimization, 2010, 41, 133-150.	3.5	13
41	Nonlinear dynamic analysis of 2-DOF nonlinear vibration isolation floating raft systems with feedback control. Chaos, Solitons and Fractals, 2012, 45, 1092-1099.	5.1	12
42	Dynamic analysis of embedded curved doubleâ€walled carbon nanotubes based on nonlocal Eulerâ€Bernoulli Beam theory. Multidiscipline Modeling in Materials and Structures, 2012, 8, 432-453.	1.3	11
43	Chaotification and optimization design of a nonlinear vibration isolation system. JVC/Journal of Vibration and Control, 2012, 18, 2129-2139.	2.6	10
44	Spectrum optimization-based chaotification using time-delay feedback control. Chaos, Solitons and Fractals, 2012, 45, 815-824.	5.1	10
45	Modeling and analysis of the friction in a non-linear sliding-mode triboelectric energy harvester. Acta Mechanica Sinica/Lixue Xuebao, 2022, 38, .	3.4	9
46	Symplectic analysis for elastic wave propagation in two-dimensional cellular structures. Acta Mechanica Sinica/Lixue Xuebao, 2010, 26, 711-720.	3.4	7
47	Symplectic analysis for wave propagation in one-dimensional nonlinear periodic structures. Applied Mathematics and Mechanics (English Edition), 2010, 31, 1371-1382.	3.6	7
48	Transient thermal response in thick orthotropic hollow cylinders with finite length: High order shell theory. Acta Mechanica Solida Sinica, 2010, 23, 156-166.	1.9	6
49	On theoretical and experimental study of a two-degree-of-freedom anti-resonance floating vibration isolation system. JVC/Journal of Vibration and Control, 2015, 21, 1886-1901.	2.6	6
50	Chaotifing Duffing-type System with Large Parameter Range Based on Optimal Time-Delay Feedback Control. , 2010, , .		5
51	Research Progress on Mechanical Fault Diagnosis of On-load Tap Changer Based on Vibration Analysis. , 2021, , .		5
52	CHAOTIFICATION OF A NONLINEAR VIBRATION ISOLATION SYSTEM BY DUAL TIME DELAYED FEEDBACK CONTROL. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2013, 23, 1350096.	1.7	4
53	Vibration suppression investigation and parametric design of tri-axle straight heavy truck with pitch-resistant hydraulically interconnected suspension. JVC/Journal of Vibration and Control, 2022, 28, 3823-3840.	2.6	4
54	Optimal design of box-section sandwich beams subject to moving load. Structural and Multidisciplinary Optimization, 2010, 42, 531-546.	3.5	3

Јіахі Zhou

#	Article	IF	CITATIONS
55	Thermomechanical response of metallic sandwich tubes with prismatic cores considering active cooling. Archive of Applied Mechanics, 2014, 84, 1145-1164.	2.2	3
56	Design and homogenization of metal sandwich tubes with prismatic cores. Structural Engineering and Mechanics, 2013, 45, 439-454.	1.0	3
57	Critical velocity of sandwich cylindrical shell under moving internal pressure. Applied Mathematics and Mechanics (English Edition), 2008, 29, 1569-1578.	3.6	2
58	High-Efficiency Vibration Isolation for a Three-Phase Power Transformer by a Quasi-Zero-Stiffness Isolator. Shock and Vibration, 2021, 2021, 1-11.	0.6	2
59	A COMPUTATIONAL METHOD FOR HIGHLY STIFF NONLINEAR SPATIOTEMPORAL SYSTEMS. International Journal of Computational Methods, 2010, 07, 609-625.	1.3	1
60	Dynamic response of prismatic metallic sandwich tubes under combined internal shock pressure and thermal load. Composite Structures, 2011, , .	5.8	1