Xiaoli Meng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604281/publications.pdf

Version: 2024-02-01

414414 430874 1,100 41 18 32 citations h-index g-index papers 41 41 41 1036 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Inhibition mechanism of SARS-CoV-2 main protease by ebselen and its derivatives. Nature Communications, 2021, 12, 3061.	12.8	149
2	Mass Spectrometric Characterization of Circulating and Functional Antigens Derived from Piperacillin in Patients with Cystic Fibrosis. Journal of Immunology, 2011, 187, 200-211.	0.8	101
3	Direct Evidence for the Formation of Diastereoisomeric Benzylpenicilloyl Haptens from Benzylpenicillin and Benzylpenicillenic Acid in Patients. Journal of Pharmacology and Experimental Therapeutics, 2011, 338, 841-849.	2.5	78
4	Definition of the Nature and Hapten Threshold of the \hat{l}^2 -Lactam Antigen Required for T Cell Activation In Vitro and in Patients. Journal of Immunology, 2017, 198, 4217-4227.	0.8	54
5	Mass Spectrometric and Functional Aspects of Drug–Protein Conjugation. Chemical Research in Toxicology, 2016, 29, 1912-1935.	3.3	48
6	Amoxicillin and Clavulanate Form Chemically and Immunologically Distinct Multiple Haptenic Structures in Patients. Chemical Research in Toxicology, 2016, 29, 1762-1772.	3.3	48
7	Promiscuous T-cell responses to drugs and drug-haptens. Journal of Allergy and Clinical Immunology, 2015, 136, 474-476.e8.	2.9	41
8	Detection of Drug Bioactivation in Vivo: Mechanism of Nevirapine–Albumin Conjugate Formation in Patients. Chemical Research in Toxicology, 2013, 26, 575-583.	3.3	39
9	Dapsone―and nitroso dapsoneâ€specific activation of T cells from hypersensitive patients expressing the risk allele HLAâ€B*13:01. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1533-1548.	5.7	37
10	Auto-oxidation of Isoniazid Leads to Isonicotinic-Lysine Adducts on Human Serum Albumin. Chemical Research in Toxicology, 2015, 28, 51-58.	3.3	33
11	Exosomal Transport of Hepatocyteâ€Derived Drugâ€Modified Proteins to the Immune System. Hepatology, 2019, 70, 1732-1749.	7.3	33
12	From the Cover: Characterization of Isoniazid-Specific T-Cell Clones in Patients with anti-Tuberculosis Drug-Related Liver and Skin Injury. Toxicological Sciences, 2017, 155, 420-431.	3.1	31
13	CDDO-imidazolide Targets Multiple Amino Acid Residues on the Nrf2 Adaptor, Keap1. Journal of Medicinal Chemistry, 2020, 63, 9965-9976.	6.4	28
14	Mechanisms leading to T-cell activation in drug hypersensitivity. Current Opinion in Allergy and Clinical Immunology, 2018, 18, 317-324.	2.3	25
15	Characterization of Peroxidases Expressed in Human Antigen Presenting Cells and Analysis of the Covalent Binding of Nitroso Sulfamethoxazole to Myeloperoxidase. Chemical Research in Toxicology, 2015, 28, 144-154.	3.3	22
16	Mass Spectrometric Characterization of Circulating Covalent Protein Adducts Derived from Epoxide Metabolites of Carbamazepine in Patients. Chemical Research in Toxicology, 2017, 30, 1419-1435.	3.3	22
17	Abacavir Forms Novel Cross-Linking Abacavir Protein Adducts in Patients. Chemical Research in Toxicology, 2014, 27, 524-535.	3.3	21
18	Immune dysregulation increases the incidence of delayedâ€ŧype drug hypersensitivity reactions. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 781-797.	5.7	21

#	Article	IF	CITATIONS
19	Identification of Flucloxacillin-Haptenated HLA-B*57:01 Ligands: Evidence of Antigen Processing and Presentation. Toxicological Sciences, 2020, 177, 454-465.	3.1	21
20	Dapsone and Nitroso Dapsone Activation of NaÄ±Ì ve T-Cells from Healthy Donors. Chemical Research in Toxicology, 2017, 30, 2174-2186.	3.3	18
21	New Approaches to Investigate Drug-Induced Hypersensitivity. Chemical Research in Toxicology, 2017, 30, 239-259.	3.3	18
22	Definition of the Chemical and Immunological Signals Involved in Drug-Induced Liver Injury. Chemical Research in Toxicology, 2020, 33, 61-76.	3.3	17
23	Safety perspectives on presently considered drugs for the treatment of COVIDâ€19. British Journal of Pharmacology, 2020, 177, 4353-4374.	5.4	17
24	Definition of Haptens Derived from Sulfamethoxazole: In Vitro and in Vivo. Chemical Research in Toxicology, 2019, 32, 2095-2106.	3.3	14
25	HLA DRB1*15:01-DQB1*06:02-Restricted Human CD4+ T Cells Are Selectively Activated With Amoxicillin-Peptide Adducts. Toxicological Sciences, 2020, 178, 115-126.	3.1	14
26	In-Vitro Approaches to Predict and Study T-Cell Mediated Hypersensitivity to Drugs. Frontiers in Immunology, 2021, 12, 630530.	4.8	13
27	Checkpoint Inhibition Reduces the Threshold for Drug-Specific T-Cell Priming and Increases the Incidence of Sulfasalazine Hypersensitivity. Toxicological Sciences, 2022, 186, 58-69.	3.1	13
28	Drugâ€specific Tâ€cell responses in patients with liver injury following treatment with the BACE inhibitor atabecestat. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 1825-1835.	5.7	12
29	HLA Class-IIâ€'Restricted CD8+ T Cells Contribute to the Promiscuous Immune Response in Dapsone-Hypersensitive Patients. Journal of Investigative Dermatology, 2021, 141, 2412-2425.e2.	0.7	12
30	Detection of Drug-Responsive T-Lymphocytes in a Case of Fatal Antituberculosis Drug-Related Liver Injury. Chemical Research in Toxicology, 2016, 29, 1793-1795.	3.3	11
31	Evaluation of clinical and genetic factors in the population pharmacokinetics of carbamazepine. British Journal of Clinical Pharmacology, 2021, 87, 2572-2588.	2.4	11
32	Characterization of amoxicillin and clavulanic acid specific Tâ€cell clones from patients with immediate drug hypersensitivity. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2562-2573.	5.7	10
33	HLA-A*33:03-Restricted Activation of Ticlopidine-Specific T-Cells from Human Donors. Chemical Research in Toxicology, 2018, 31, 1022-1024.	3.3	9
34	Characterization of Clozapine-Responsive Human T Cells. Journal of Immunology, 2020, 205, 2375-2390.	0.8	9
35	Deciphering Adverse Drug Reactions: <i>In Vitro </i> Vancomycin-Specific T Cells From Healthy Donors Expressing HLA-A*32:01. Toxicological Sciences, 2021, 183, 139-153.	3.1	9
36	Drug haptenâ€specific Tâ€cell activation: Current status and unanswered questions. Proteomics, 2021, 21, e2000267.	2.2	9

XIAOLI MENG

#	Article	IF	CITATIONS
37	No Evidence for Drug-Specific Activation of Circulating T Cells from Patients with <i>HLA-DRB1</i> *07:01-Restricted Lapatinib-Induced Liver Injury. Chemical Research in Toxicology, 2016, 29, 2111-2113.	3.3	8
38	Immune drug-induced liver disease and drugs. Current Opinion in Toxicology, 2018, 10, 46-53.	5.0	8
39	Cell Membrane Transporters Facilitate the Accumulation of Hepatocellular Flucloxacillin Protein Adducts: Implication in Flucloxacillin-Induced Liver Injury. Chemical Research in Toxicology, 2020, 33, 2939-2943.	3.3	7
40	Assessment of Antipiperacillin IgG Binding to Structurally Related Drug Protein Adducts. Chemical Research in Toxicology, 2017, 30, 2097-2099.	3.3	6
41	Characterization of Healthy Donor-Derived T-Cell Responses Specific to Telaprevir Diastereomers. Toxicological Sciences, 2019, 168, 597-609.	3.1	3