William J Mitsch

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The value of wetlands: importance of scale and landscape setting. Ecological Economics, 2000, 35, 25-33.	2.9	771
2	Wetlands, carbon, and climate change. Landscape Ecology, 2013, 28, 583-597.	1.9	727
3	Reducing Nitrogen Loading to the Gulf of Mexico from the Mississippi River Basin: Strategies to Counter a Persistent Ecological Problem. BioScience, 2001, 51, 373.	2.2	650
4	Restoration of the Mississippi Delta: Lessons from Hurricanes Katrina and Rita. Science, 2007, 315, 1679-1684.	6.0	644
5	Current state of knowledge regarding the world's wetlands and their future under global climate change: a synthesis. Aquatic Sciences, 2013, 75, 151-167.	0.6	468
6	Improving the Success of Wetland Creation and Restoration with Know-How, Time, and Self-Design. , 1996, 6, 77-83.		319
7	Ecological engineering: A field whose time has come. Ecological Engineering, 2003, 20, 363-377.	1.6	291
8	What is ecological engineering?. Ecological Engineering, 2012, 45, 5-12.	1.6	239
9	Greenhouse gas emission in constructed wetlands for wastewater treatment: A review. Ecological Engineering, 2014, 66, 19-35.	1.6	237
10	The effects of season and hydrologic and chemical loading on nitrate retention in constructed wetlands: a comparison of low- and high-nutrient riverine systems. Ecological Engineering, 1999, 14, 77-91.	1.6	232
11	Creating and Restoring Wetlands. BioScience, 1998, 48, 1019-1030.	2.2	231
12	Nitrate-nitrogen retention in wetlands in the Mississippi River Basin. Ecological Engineering, 2005, 24, 267-278.	1.6	217
13	Creating riverine wetlands: Ecological succession, nutrient retention, and pulsing effects. Ecological Engineering, 2005, 25, 510-527.	1.6	215
14	Ecosystem services of wetlands. International Journal of Biodiversity Science, Ecosystem Services & Management, 2015, 11, 1-4.	2.9	215
15	Restoration of wetlands in the Mississippi–Ohio–Missouri (MOM) River Basin: Experience and needed research. Ecological Engineering, 2006, 26, 55-69.	1.6	207
16	Comparing carbon sequestration in temperate freshwater wetland communities. Global Change Biology, 2012, 18, 1636-1647.	4.2	199
17	Ecosystem Dynamics and a Phosphorus Budget of an Alluvial Cypress Swamp in Southern Illinois. Ecology, 1979, 60, 1116.	1.5	182
18	The carbon sequestration potential of terrestrial ecosystems. Journal of Soils and Water Conservation, 2018, 73, 145A-152A.	0.8	180

#	Article	IF	CITATIONS
19	Tropical wetlands: seasonal hydrologic pulsing, carbon sequestration, and methane emissions. Wetlands Ecology and Management, 2010, 18, 573-586.	0.7	173
20	Creating Wetlands: Primary Succession, Water Quality Changes, and Self-Design over 15 Years. BioScience, 2012, 62, 237-250.	2.2	173
21	Characterization of bacterial communities in soil and sediment of a created riverine wetland complex using high-throughput 16S rRNA amplicon sequencing. Ecological Engineering, 2014, 72, 56-66.	1.6	166
22	Landscape and climate change threats to wetlands of North and Central America. Aquatic Sciences, 2013, 75, 133-149.	0.6	157
23	Denitrification in created riverine wetlands: Influence of hydrology and season. Ecological Engineering, 2007, 30, 78-88.	1.6	156
24	A comparison of soil carbon pools and profiles in wetlands in Costa Rica and Ohio. Ecological Engineering, 2008, 34, 311-323.	1.6	155
25	Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica. Ecological Engineering, 2006, 28, 246-257.	1.6	141
26	Phosphorus Retention in Constructed Freshwater Riparian Marshes. , 1995, 5, 830-845.		139
27	Coastal protection from tsunamis and cyclones provided by mangrove wetlands – a review. International Journal of Biodiversity Science, Ecosystem Services & Management, 2015, 11, 71-83.	2.9	138
28	How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal?ÂA systematic review. Environmental Evidence, 2016, 5, .	1.1	132
29	Ecological Engineering A Cooperative Role with the Planetary Life-Support System. Environmental Science & Technology, 1993, 27, 438-445.	4.6	121
30	Seasonal and storm event nutrient removal by a created wetland in an agricultural watershed. Ecological Engineering, 2004, 23, 313-325.	1.6	121
31	Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Research, 1998, 32, 1888-1900.	5.3	120
32	Effects of soil chemical characteristics and water regime on denitrification genes (nirS, nirK, and) Tj ETQq0 0 0 rg	gBT_/Overlo	ock 10 Tf 50 2
33	Methane flux from created riparian marshes: Relationship to intermittent versus continuous inundation and emergent macrophytes. Ecological Engineering, 2006, 28, 224-234.	1.6	116
34	Implications of global climatic change and energy cost and availability for the restoration of the Mississippi delta. Ecological Engineering, 2005, 24, 253-265.	1.6	114
35	A new vision for New Orleans and the Mississippi delta: applying ecological economics and ecological engineering. Frontiers in Ecology and the Environment, 2006, 4, 465-472.	1.9	108
36	Methane emissions from freshwater riverine wetlands. Ecological Engineering, 2011, 37, 16-24.	1.6	98

#	Article	IF	CITATIONS
37	Hydrology and nutrient biogeochemistry in a created river diversion oxbow wetland. Ecological Engineering, 2007, 30, 93-102.	1.6	97
38	A detailed ecosystem model of phosphorus dynamics in created riparian wetlands. Ecological Modelling, 2000, 126, 101-130.	1.2	94
39	Influence of hydrologic pulses, flooding frequency, and vegetation on nitrous oxide emissions from created riparian marshes. Wetlands, 2006, 26, 862-877.	0.7	94
40	Validation of the ecosystem services of created wetlands: Two decades of plant succession, nutrient retention, and carbon sequestration in experimental riverine marshes. Ecological Engineering, 2014, 72, 11-24.	1.6	92
41	Ecological engineering—the 7-year itch. Ecological Engineering, 1998, 10, 119-130.	1.6	91
42	Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Global Change Biology, 2011, 17, 1321-1334.	4.2	91
43	Pulsing hydrology, methane emissions and carbon dioxide fluxes in created marshes: A 2-year ecosystem study. Wetlands, 2008, 28, 423-438.	0.7	87
44	Different responses of denitrification rates and denitrifying bacterial communities to hydrologic pulsing in created wetlands. Soil Biology and Biochemistry, 2010, 42, 1721-1727.	4.2	87
45	Comparative Biomass and Growth of Cypress in Florida Wetlands. American Midland Naturalist, 1979, 101, 417.	0.2	84
46	Modelling nutrient retention of a freshwater coastal wetland: estimating the roles of primary productivity, sedimentation, resuspension and hydrology. Ecological Modelling, 1991, 54, 151-187.	1.2	83
47	Sediment, carbon, and nutrient accumulation at two 10-year-old created riverine marshes. Wetlands, 2006, 26, 779-792.	0.7	82
48	Sediment deposition patterns in restored freshwater wetlands using sediment traps. Ecological Engineering, 1994, 3, 409-428.	1.6	80
49	Phosphorus removal in created wetland ponds receiving river overflow. Ecological Engineering, 1999, 14, 107-126.	1.6	80
50	Estimating primary productivity of forested wetland communities in different hydrologic landscapes. Landscape Ecology, 1991, 5, 75-92.	1.9	78
51	Denitrification Potential and Organic Matter as Affected by Vegetation Community, Wetland Age, and Plant Introduction in Created Wetlands. Journal of Environmental Quality, 2007, 36, 333-342.	1.0	77
52	Macroinvertebrate community structure in high-and low-nutrient constructed wetlands. Wetlands, 2000, 20, 716-729.	0.7	71
53	Scaling considerations of mesocosm wetlands in simulating large created freshwater marshes. Ecological Engineering, 2002, 18, 327-342.	1.6	68
54	Wetland creation, restoration, and conservation: A Wetland Invitational at the Olentangy River Wetland Research Park. Ecological Engineering, 2005, 24, 243-251.	1.6	67

#	Article	IF	CITATIONS
55	Ecology in Times of Scarcity. BioScience, 2009, 59, 321-331.	2.2	66
56	Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands, 1998, 18, 9-20.	0.7	64
57	Salt marsh vegetation recovery at salt hay farm wetland restoration sites on Delaware Bay. Ecological Engineering, 2005, 25, 240-251.	1.6	64
58	Temporal and Spatial Development of Surface Soil Conditions at Two Created Riverine Marshes. Journal of Environmental Quality, 2005, 34, 2072-2081.	1.0	64
59	Carbon sequestration in freshwater wetlands in Costa Rica and Botswana. Biogeochemistry, 2013, 115, 77-93.	1.7	62
60	Seasonal and spatial variations of denitrification and denitrifying bacterial community structure in created riverine wetlands. Ecological Engineering, 2012, 38, 130-134.	1.6	61
61	Methane Emissions From Created Riverine Wetlands. Wetlands, 2010, 30, 783-793.	0.7	56
62	Carbon Sequestration and Sedimentation in Mangrove Swamps Influenced by Hydrogeomorphic Conditions and Urbanization in Southwest Florida. Forests, 2016, 7, 116.	0.9	55
63	Modelling hydrological processes in created freshwater wetlands: an integrated system approach. Environmental Modelling and Software, 2005, 20, 935-946.	1.9	54
64	When will ecologists learn engineering and engineers learn ecology?. Ecological Engineering, 2014, 65, 9-14.	1.6	49
65	Climate regulation by free water surface constructed wetlands for wastewater treatment and created riverine wetlands. Ecological Engineering, 2014, 72, 103-115.	1.6	49
66	Aquatic metabolism in four newly constructed freshwater wetlands with different hydrologic inputs. Ecological Engineering, 1994, 3, 449-468.	1.6	48
67	Pollution control by wetlands. Ecological Engineering, 2009, 35, 153-158.	1.6	47
68	Functional assessment of five wetlands constructed to mitigate wetland loss in Ohio, USA. Wetlands, 1996, 16, 436-451.	0.7	45
69	The genetic potential of N2 emission via denitrification and ANAMMOX from the soils and sediments of a created riverine treatment wetland complex. Ecological Engineering, 2015, 80, 181-190.	1.6	45
70	Tropical wetlands for climate change research, water quality management and conservation education on a university campus in Costa Rica. Ecological Engineering, 2008, 34, 276-288.	1.6	44
71	METHANE AND CARBON DIOXIDE DYNAMICS IN WETLAND MESOCOSMS: EFFECTS OF HYDROLOGY AND SOILS. Ecological Applications, 2008, 18, 1307-1320.	1.8	44
72	Ecological engineering of floodplains. Ecohydrology and Hydrobiology, 2008, 8, 139-147.	1.0	42

#	Article	IF	CITATIONS
73	Long-term denitrification rates in created riverine wetlands and their relationship with environmental factors. Ecological Engineering, 2014, 72, 40-46.	1.6	42
74	Aquatic metabolism as an indicator of the ecological effects of hydrologic pulsing in flow-through wetlands. Ecological Indicators, 2008, 8, 795-806.	2.6	41
75	Protecting the Florida Everglades wetlands with wetlands: Can stormwater phosphorus be reduced to oligotrophic conditions?. Ecological Engineering, 2015, 80, 8-19.	1.6	41
76	Carbon Sequestration in Two Created Riverine Wetlands in the Midwestern United States. Journal of Environmental Quality, 2013, 42, 1236-1244.	1.0	39
77	Optimizing Ecosystem Services in China. Science, 2008, 322, 528-528.	6.0	38
78	Denitrification and a Nitrogen Budget of Created Riparian Wetlands. Journal of Environmental Quality, 2012, 41, 2024-2032.	1.0	38
79	Solving Lake Erie's harmful algal blooms by restoring the Great Black Swamp in Ohio. Ecological Engineering, 2017, 108, 406-413.	1.6	37
80	Functional analysis of a two-year-old created in-stream wetland: Hydrology, phosphorus retention, and vegetation survival and growth. Wetlands, 1995, 15, 212-225.	0.7	35
81	Patterns of Shortâ€Term Sedimentation in a Freshwater Created Marsh. Journal of Environmental Quality, 2003, 32, 325-334.	1.0	35
82	Wetlands and carbon revisited. Ecological Engineering, 2018, 114, 1-6.	1.6	35
83	Hydrology, Physiochemistry, and Amphibians in Natural and Created Vernal Pool Wetlands. Restoration Ecology, 2010, 18, 843-854.	1.4	34
84	Structural and functional vegetation development in created and restored wetland mitigation banks of different ages. Ecological Engineering, 2012, 39, 104-112.	1.6	34
85	Dynamics of Mixtures of Typha latifolia and Schoenoplectus tabernaemontani in Nutrient-enrichment Wetland Experiments. American Midland Naturalist, 2001, 145, 309-324.	0.2	32
86	Tree Growth Responses of Populus deltoides and Juglans nigra to Streamflow and Climate in a Bottomland Hardwood Forest in Central Ohio. American Midland Naturalist, 1998, 140, 233-244.	0.2	30
87	Hydroperiods of created and natural vernal pools in central Ohio: A comparison of depth and duration of inundation. Wetlands Ecology and Management, 2009, 17, 385-395.	0.7	29
88	Ecological engineering $\hat{a} \in $ contrasting experiences in China with the West. Ecological Engineering, 1993, 2, 177-191.	1.6	28
89	Restoration of our lakes and rivers with wetlands – an important application of ecological engineering. Water Science and Technology, 1995, 31, 167-177.	1.2	28
90	Removal of nutrients from urban stormwater runoff by storm-pulsed and seasonally pulsed created wetlands in the subtropics. Ecological Engineering, 2017, 108, 414-424.	1.6	28

#	Article	IF	CITATIONS
91	Carbon sequestration in different wetland plant communities in the Big Cypress Swamp region of southwest Florida. International Journal of Biodiversity Science, Ecosystem Services & Management, 2015, 11, 17-28.	2.9	27
92	Nutrient retention via sedimentation in a created urban stormwater treatment wetland. Science of the Total Environment, 2020, 727, 138337.	3.9	27
93	A first generation ecosystem model of the Des Plaines River experimental wetlands. Ecological Engineering, 1994, 3, 495-521.	1.6	26
94	A model of macroinvertebrate trophic structure and oxygen demand in freshwater wetlands. Ecological Modelling, 2003, 161, 183-194.	1.2	26
95	Towards sustainable protection of public health: The role of an urban wetland as a frontline safeguard of pathogen and antibiotic resistance spread. Ecological Engineering, 2017, 108, 547-555.	1.6	26
96	The Effect of River Pulsing on Sedimentation and Nutrients in Created Riparian Wetlands. Journal of Environmental Quality, 2008, 37, 1634-1643.	1.0	25
97	Effects of Sewage Effluent Application on Litter Fall and Litter Decomposition in Cypress Swamps. Journal of Applied Ecology, 1980, 17, 397.	1.9	23
98	Ecological engineering strategies to reduce flooding damage to wetland crops in central China. Ecological Engineering, 1998, 11, 231-259.	1.6	23
99	Effects of recycled FGD liner material on water quality and macrophytes of constructed wetlands: A mesocosm experiment. Water Research, 2001, 35, 633-642.	5.3	23
100	Contribution of different wetland plant species to the DOC exported from a mesocosm experiment in the Florida Everglades. Ecological Engineering, 2014, 71, 118-125.	1.6	23
101	Sediment chemistry and nutrient influx in a hydrologically restored bottomland hardwood forest in Midwestern USA. River Research and Applications, 2007, 23, 1026-1037.	0.7	22
102	Modeling phosphorus retention at low concentrations in Florida Everglades mesocosms. Ecological Modelling, 2016, 319, 42-62.	1.2	22
103	Constructed wetlands to solve agricultural drainage pollution in South Florida: Development of an advanced simulation tool for design optimization. Journal of Cleaner Production, 2020, 258, 120868.	4.6	22
104	Effective modelling of a major inland oil spill on the Ohio River. Ecological Modelling, 1990, 51, 161-192.	1.2	21
105	Towards sustainability of engineered processes: Designing self-reliant networks of technological–ecological systems. Computers and Chemical Engineering, 2010, 34, 1413-1420.	2.0	21
106	Sedimentation in created freshwater riverine wetlands: 15 years of succession and contrast of methods. Ecological Engineering, 2014, 72, 25-34.	1.6	21
107	Comparison of nutrient retention efficiency between vertical-flow and floating treatment wetland mesocosms with and without biodegradable plastic. Ecological Engineering, 2019, 131, 120-130.	1.6	21
108	A mangrove creek restoration plan utilizing hydraulic modeling. Ecological Engineering, 2017, 108, 537-546.	1.6	20

#	Article	IF	CITATIONS
109	Regional and local hydrology of a created riparian wetland system. Wetlands, 1999, 19, 182-193.	0.7	18
110	Ecological restoration design of a stream on a college campus in central Ohio. Ecological Engineering, 2009, 35, 329-340.	1.6	18
111	The Carbon Balance of Two Riverine Wetlands Fifteen Years After Their Creation. Wetlands, 2013, 33, 989-999.	0.7	18
112	How effective are created or restored freshwater wetlands for nitrogen and phosphorus removal? A systematic review protocol. Environmental Evidence, 2013, 2, .	1.1	18
113	Methane emissions from five wetland plant communities with different hydroperiods in the Big Cypress Swamp region of Florida Everglades. Ecohydrology and Hydrobiology, 2014, 14, 253-266.	1.0	18
114	Hurricane and seasonal effects on hydrology and water quality of a subtropical urban stormwater wetland. Ecological Engineering, 2018, 120, 134-145.	1.6	18
115	Nutrient concentrations in tidal creeks as indicators of the water quality role of mangrove wetlands in Southwest Florida. Ecological Indicators, 2017, 80, 316-326.	2.6	18
116	Factors affecting mosquito populations in created wetlands in urban landscapes. Urban Ecosystems, 2012, 15, 499-511.	1.1	17
117	Methane emissions from created and restored freshwater and brackish marshes in southwest Florida, USA. Ecological Engineering, 2016, 91, 529-536.	1.6	17
118	Productivity-Hydrology-Nutrient Models of Forested Wetlands. Developments in Environmental Modelling, 1988, , 115-132.	0.3	16
119	Effect of Hydrologic Restoration and <i>Lonicera maackii </i> Removal on Herbaceous Understory Vegetation in a Bottomland Hardwood Forest. Restoration Ecology, 2008, 16, 453-463.	1.4	16
120	Eutrophication effects on CH4 and CO2 fluxes in a highly urbanized tropical reservoir (Southeast,) Tj ETQq0 0 0	rgBT_/Over	lock 10 Tf 50
121	Tree Basal Growth Response to Flooding in a Bottomland Hardwood Forest in Central Ohio ¹ . Journal of the American Water Resources Association, 2008, 44, 1512-1520.	1.0	15
122	Seasonal methanotrophy across a hydrological gradient in a freshwater wetland. Ecological Engineering, 2014, 72, 116-124.	1.6	15
123	Ecological and hydrological responses to changing environmental conditions in China's river basins. Ecological Engineering, 2015, 76, 1-6.	1.6	15
124	Estimating the Importance of Aquatic Primary Productivity for Phosphorus Retention in Florida Everglades Mesocosms. Wetlands, 2015, 35, 357-368.	0.7	15
125	A review of technologies for closing the P loop in agriculture runoff: Contributing to the transition towards a circular economy. Ecological Engineering, 2022, 177, 106571.	1.6	15
126	Ecosystem modeling of a multi-species integrated aquaculture pond in South China. Ecological Modelling, 1994, 72, 41-73.	1.2	14

#	Article	IF	CITATIONS
127	Design of real-time and long-term hydrologic and water quality wetland monitoring stations in South Florida, USA. Ecological Engineering, 2017, 108, 446-455.	1.6	14
128	Metabolism and methane flux of dominant macrophyte communities in created riverine wetlands using open system flow through chambers. Ecological Engineering, 2014, 72, 67-73.	1.6	13
129	Predicting river aquatic productivity and dissolved oxygen before and after dam removal. Ecological Engineering, 2014, 72, 125-137.	1.6	13
130	Is peat accumulation in mangrove swamps influenced by the "enzymic latch―mechanism?. Wetlands Ecology and Management, 2016, 24, 641-650.	0.7	13
131	Patterns of Short-Term Sedimentation in a Freshwater Created Marsh. Journal of Environmental Quality, 2003, 32, 325.	1.0	13
132	Effect of Pulsing on Macrophyte Productivity and Nutrient Uptake: A Wetland Mesocosm Experiment. American Midland Naturalist, 2005, 154, 305-319.	0.2	12
133	Influence of hydrologic conditions on nutrient retention, and soil and plant development in a former central Ohio swamp: A wetlaculture mesocosm experiment. Ecological Engineering, 2020, 157, 105969.	1.6	11
134	Estimating biogeochemical and biotic interactions between a stream channel and a created riparian wetland: A medium-scale physical model. Ecological Engineering, 2011, 37, 1035-1049.	1.6	10
135	Methane emissions from wetlands: An in situ side-by-side comparison of two static accumulation chamber designs. Ecological Engineering, 2014, 72, 95-102.	1.6	10
136	Methane emissions from freshwater cypress (Taxodium distichum) swamp soils with natural and impacted hydroperiods in Southwest Florida. Ecological Engineering, 2018, 114, 46-56.	1.6	10
137	Benefits of ecological engineering practices. Procedia Environmental Sciences, 2011, 9, 16-20.	1.3	9
138	Ecological engineering: From concepts to applications. Ecological Engineering, 2012, 45, 1-4.	1.6	8
139	Role of emergent and submerged vegetation and algal communities on nutrient retention and management in a subtropical urban stormwater treatment wetland. Wetlands Ecology and Management, 2021, 29, 245-264.	0.7	8
140	Wetlands and coal surface mining in Western Kentucky — A regional impact assessment. Wetlands, 1983, 3, 161-179.	0.7	7
141	Wetland Creation and Restoration. , 2013, , 367-383.		7
142	Human Health-Related Ecosystem Services of Avian-Dense Coastal Wetlands Adjacent to a Western Lake Erie Swimming Beach. EcoHealth, 2015, 12, 77-87.	0.9	7
143	Chemical Analysis of Soil and Leachate from Experimental Wetland Mesocosms Lined with Coal Combustion Products. Journal of Environmental Quality, 2001, 30, 1457-1463.	1.0	6
144	Nitrogen Dynamics in Two Created Riparian Wetlands over Space and Time. Journal of Hydrologic Engineering - ASCE, 2017, 22, .	0.8	5

#	Article	IF	CITATIONS
145	Estimating the Effects of a Hurricane on Carbon Storage in Mangrove Wetlands in Southwest Florida. Plants, 2021, 10, 1749.	1.6	5
146	An evaluation of corn production within a Wetlacultureâ,,¢ system at Buckeye Lake, Ohio. Ecological Engineering, 2021, 171, 106366.	1.6	5
147	Vegetation productivity of planted and unplanted created riverine wetlands in years 15–17. Ecological Engineering, 2017, 108, 425-434.	1.6	4
148	Phosphorus concentrations in a Florida Everglades water conservation area before and after El Niño events in the dry season. Ecological Engineering, 2017, 108, 391-395.	1.6	4
149	Estimating the Importance of Hydrologic Conditions on Nutrient Retention and Plant Richness in a Wetlaculture Mesocosm Experiment in a Former Lake Erie Basin Swamp. Water (Switzerland), 2021, 13, 2509.	1.2	4
150	Management Approaches to Address Water Quality and Habitat Loss Problems in Coastal Ecosystems and Their Watersheds: Ecotechnology and Ecological Engineering. Ocean Yearbook, 2009, 23, 389-402.	0.2	3
151	Design of Experimental Streams for Simulating Headwater Stream Restoration ¹ . Journal of the American Water Resources Association, 2010, 46, 957-971.	1.0	3
152	Biogeochemical aspects of ecosystem restoration and rehabilitation. Ecological Engineering, 2011, 37, 1003-1007.	1.6	3
153	Investigating sources and transformations of nitrogen using dual stable isotopes for Lake Okeechobee restoration in Florida. Ecological Engineering, 2020, 155, 105947.	1.6	3
154	Treatment of Hypolimnion Water on Mineral Aggregates as the Second Step of the Hypolimnetic Withdrawal Method Used for Lake Restoration. Minerals (Basel, Switzerland), 2021, 11, 98.	0.8	3
155	EcoSummit 2012 and Ecohydrology & Hydrobiology. Ecohydrology and Hydrobiology, 2013, 13, 1-2.	1.0	2
156	Restoring the Florida Everglades. Ecological Engineering: X, 2019, 142, 100009.	3.5	2
157	Toward Sustainability by Designing Networks of Technological-Ecological Systems. , 2009, , 167-183.		1
158	Denitrification in Constructed Wetlands for Wastewater Treatment and Created Riverine Wetlands. , 2018, , 1983-1990.		1
159	Above- and Below-Ground Carbon Storage of Hydrologically Altered Mangrove Wetlands in Puerto Rico after a Hurricane. Plants, 2021, 10, 1965.	1.6	0