Andreas Stadlbauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604079/publications.pdf

Version: 2024-02-01

46 papers

1,690 citations

304368 22 h-index 288905 40 g-index

47 all docs

47 docs citations

47 times ranked

2394 citing authors

#	Article	IF	CITATIONS
1	Gliomas: Histopathologic Evaluation of Changes in Directionality and Magnitude of Water Diffusion at Diffusion-Tensor MR Imaging. Radiology, 2006, 240, 803-810.	3.6	181
2	Preoperative Grading of Gliomas by Using Metabolite Quantification with High-Spatial-Resolution Proton MR Spectroscopic Imaging. Radiology, 2006, 238, 958-969.	3.6	168
3	Improved delineation of brain tumors: an automated method for segmentation based on pathologic changes of 1H-MRSI metabolites in gliomas. NeuroImage, 2004, 23, 454-461.	2.1	118
4	Diffusion tensor imaging and optimized fiber tracking in glioma patients: Histopathologic evaluation of tumor-invaded white matter structures. Neurolmage, 2007, 34, 949-956.	2.1	117
5	Metabolic Imaging of Cerebral Gliomas: Spatial Correlation of Changes in <i>O</i> -(2- ¹⁸ F-Fluoroethyl)-l-Tyrosine PET and Proton Magnetic Resonance Spectroscopic Imaging. Journal of Nuclear Medicine, 2008, 49, 721-729.	2.8	89
6	Age-related Degradation in the Central Nervous System: Assessment with Diffusion-Tensor Imaging and Quantitative Fiber Tracking. Radiology, 2008, 247, 179-188.	3.6	85
7	Integration of biochemical images of a tumor into frameless stereotaxy achieved using a magnetic resonance imaging/magnetic resonance spectroscopy hybrid data set. Journal of Neurosurgery, 2004, 101, 287-294.	0.9	63
8	MR Imaging–derived Oxygen Metabolism and Neovascularization Characterization for Grading and <i>IDH</i> Gene Mutation Detection of Gliomas. Radiology, 2017, 283, 799-809.	3.6	56
9	Individually Stabilized, Superparamagnetic Nanoparticles with Controlled Shell and Size Leading to Exceptional Stealth Properties and High Relaxivities. ACS Applied Materials & Samp; Interfaces, 2017, 9, 3343-3353.	4.0	53
10	Insight into the patterns of cerebrospinal fluid flow in the human ventricular system using MR velocity mapping. NeuroImage, 2010, 51, 42-52.	2.1	50
11	Proton Magnetic Resonance Spectroscopic Imaging in the Border Zone of Gliomas. Investigative Radiology, 2007, 42, 218-223.	3.5	46
12	Accelerated time-resolved three-dimensional MR velocity mapping of blood flow patterns in the aorta using SENSE and k-t BLAST. European Journal of Radiology, 2010, 75, e15-e21.	1.2	46
13	Diagnostic Accuracy of Neuroimaging to Delineate Diffuse Gliomas within the Brain: A Meta-Analysis. American Journal of Neuroradiology, 2017, 38, 1884-1891.	1.2	42
14	Detection of tumour invasion into the pyramidal tract in glioma patients with sensorimotor deficits by correlation of 18F-fluoroethyl-L-tyrosine PET and magnetic resonance diffusion tensor imaging. Acta Neurochirurgica, 2009, 151, 1061-1069.	0.9	41
15	Magnetic resonance imaging methodology. European Journal of Nuclear Medicine and Molecular Imaging, 2009, 36, 30-41.	3.3	40
16	Intratumoral heterogeneity of oxygen metabolism and neovascularization uncovers 2 survival-relevant subgroups of IDH1 wild-type glioblastoma. Neuro-Oncology, 2018, 20, 1536-1546.	0.6	39
17	Magnetic resonance imaging biomarkers for clinical routine assessment of microvascular architecture in glioma. Journal of Cerebral Blood Flow and Metabolism, 2017, 37, 632-643.	2.4	35
18	Quantification of serial changes in cerebral blood volume and metabolism in patients with recurrent glioblastoma undergoing antiangiogenic therapy. European Journal of Radiology, 2015, 84, 1128-1136.	1.2	33

#	Article	IF	CITATIONS
19	Magnetic resonance velocity mapping of 3D cerebrospinal fluid flow dynamics in hydrocephalus: preliminary results. European Radiology, 2012, 22, 232-242.	2.3	32
20	Fiber Density Mapping of Gliomas: Histopathologic Evaluation of a Diffusion-Tensor Imaging Data Processing Method. Radiology, 2010, 257, 846-853.	3.6	31
21	Recurrence of glioblastoma is associated with elevated microvascular transit time heterogeneity and increased hypoxia. Journal of Cerebral Blood Flow and Metabolism, 2018, 38, 422-432.	2.4	30
22	Development of a Non-invasive Assessment of Hypoxia and Neovascularization with Magnetic Resonance Imaging in Benign and Malignant Breast Tumors: Initial Results. Molecular Imaging and Biology, 2019, 21, 758-770.	1.3	23
23	Tissue Hypoxia and Alterations in Microvascular Architecture Predict Glioblastoma Recurrence in Humans. Clinical Cancer Research, 2021, 27, 1641-1649.	3.2	21
24	Classification of Peritumoral Fiber Tract Alterations in Gliomas Using Metabolic and Structural Neuroimaging. Journal of Nuclear Medicine, 2011, 52, 1227-1234.	2.8	20
25	Physiologic MR imaging of the tumor microenvironment revealed switching of metabolic phenotype upon recurrence of glioblastoma in humans. Journal of Cerebral Blood Flow and Metabolism, 2020, 40, 528-538.	2.4	20
26	JunB is a key regulator of multiple myeloma bone marrow angiogenesis. Leukemia, 2021, 35, 3509-3525.	3.3	19
27	Reproducibility of MRI Dixon-Based Attenuation Correction in Combined PET/MR with Applications for Lean Body Mass Estimation. Journal of Nuclear Medicine, 2016, 57, 1096-1101.	2.8	18
28	Comparative fMRI and MEG localization of cortical sensorimotor function: Bimodal mapping supports motor area reorganization in glioma patients. PLoS ONE, 2019, 14, e0213371.	1.1	18
29	Magnetic resonance fiber density mapping of age-related white matter changes. European Journal of Radiology, 2012, 81, 4005-4012.	1.2	17
30	Vascular Hysteresis Loops and Vascular Architecture Mapping in Patients with Glioblastoma treated with Antiangiogenic Therapy. Scientific Reports, 2017, 7, 8508.	1.6	17
31	Radiophysiomics: Brain Tumors Classification by Machine Learning and Physiological MRI Data. Cancers, 2022, 14, 2363.	1.7	17
32	Differences in Metabolism of Fiber Tract Alterations in Gliomas. Neurosurgery, 2012, 71, 454-463.	0.6	16
33	Vascular architecture mapping for early detection of glioblastoma recurrence. Neurosurgical Focus, 2019, 47, E14.	1.0	16
34	Predicting Glioblastoma Response to Bevacizumab Through MRI Biomarkers of the Tumor Microenvironment. Molecular Imaging and Biology, 2019, 21, 747-757.	1.3	11
35	Physiological MRI Biomarkers in the Differentiation Between Glioblastomas and Solitary Brain Metastases. Molecular Imaging and Biology, 2021, 23, 787-795.	1.3	10
36	Visualization of CSF Flow with Time-resolved 3D MR Velocity Mapping in Aqueductal Stenosis Before and After Endoscopic Third Ventriculostomy. Clinical Neuroradiology, 2018, 28, 69-74.	1.0	9

#	Article	IF	CITATIONS
37	Non-Invasive Assessment of Hypoxia and Neovascularization with MRI for Identification of Aggressive Breast Cancer. Cancers, 2020, 12, 2024.	1.7	9
38	Refined Functional Magnetic Resonance Imaging and Magnetoencephalography Mapping Reveals Reorganization in Language-Relevant Areas of Lesioned Brains. World Neurosurgery, 2020, 136, e41-e59.	0.7	7
39	The Diagnostic and Therapeutic Role of Leptin and Its Receptor ObR in Glioblastoma Multiforme. Cancers, 2020, 12, 3691.	1.7	6
40	Metabolic Tumor Microenvironment Characterization of Contrast Enhancing Brain Tumors Using Physiologic MRI. Metabolites, 2021, 11, 668.	1.3	5
41	Intraoperative Magnetic Resonance Imaging of Cerebral Oxygen Metabolism During Resection of Brain Lesions. World Neurosurgery, 2017, 100, 388-394.	0.7	4
42	Association between tissue hypoxia, perfusion restrictions, and microvascular architecture alterations with lesion-induced impairment of neurovascular coupling. Journal of Cerebral Blood Flow and Metabolism, 2022, 42, 526-539.	2.4	4
43	Treatment with Cyclic AMP Activators Reduces Glioblastoma Growth and Invasion as Assessed by Two-Photon Microscopy. Cells, 2021, 10, 556.	1.8	3
44	Hypoxia and Microvascular Alterations Are Early Predictors of IDH-Mutated Anaplastic Glioma Recurrence. Cancers, 2021, 13, 1797.	1.7	2
45	Physiological MRI of microvascular architecture, neovascularization activity, and oxygen metabolism facilitate early recurrence detection in patients with IDH-mutant WHO grade 3 glioma. Neuroradiology, 2022, 64, 265-277.	1.1	2
46	Advanced MRI in neuro-oncology: can we proceed without inclusion of energy metabolism?. Oncotarget, 2019, 10, 3994-3995.	0.8	0