Sherif El-Badawy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604034/publications.pdf

Version: 2024-02-01

62 1,337 20 33 papers citations h-index g-index

62 62 62 62 855

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	International Roughness Index prediction model for flexible pavements. International Journal of Pavement Engineering, 2020, 21, 88-99.	4.4	105
2	Evaluation of Asphalt Binders Modified with Nanoclay and Nanosilica. Procedia Engineering, 2016, 143, 1260-1267.	1.2	97
3	Investigation of waste oils as rejuvenators of aged bitumen for sustainable pavement. Construction and Building Materials, 2019, 220, 228-237.	7.2	77
4	Laboratory evaluation of asphalt binder modified with carbon nanotubes for Egyptian climate. Construction and Building Materials, 2016, 121, 361-372.	7.2	76
5	A simplified pavement condition index regression model for pavement evaluation. International Journal of Pavement Engineering, 2021, 22, 643-652.	4.4	64
6	Resilient Behavior of Sodium Alginate–Treated Cohesive Soils for Pavement Applications. Journal of Materials in Civil Engineering, 2019, 31, .	2.9	57
7	Performance of MEPDG Dynamic Modulus Predictive Models for Asphalt Concrete Mixtures: Local Calibration for Idaho. Journal of Materials in Civil Engineering, 2012, 24, 1412-1421.	2.9	55
8	Performance Evaluation of Construction and Demolition Waste Materials for Pavement Construction in Egypt. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	53
9	Evaluation of Witczak E* predictive models for the implementation of AASHTOWare-Pavement ME Design in the Kingdom of Saudi Arabia. Construction and Building Materials, 2014, 64, 360-369.	7.2	51
10	Rheological properties and aging performance of sulfur extended asphalt modified with recycled polyethylene waste. Construction and Building Materials, 2021, 273, 121771.	7.2	47
11	Comparing Artificial Neural Networks with Regression Models for Hot-Mix Asphalt Dynamic Modulus Prediction. Journal of Materials in Civil Engineering, 2018, 30, .	2.9	37
12	Laboratory characterization of reclaimed asphalt pavement for road construction in Egypt. Canadian Journal of Civil Engineering, 2017, 44, 417-425.	1.3	28
13	Waste materials and by-products as mineral fillers in asphalt mixtures. Innovative Infrastructure Solutions, 2019, 4, 1.	2.2	26
14	International Roughness Index Prediction for Rigid Pavements: An Artificial Neural Network Application. Advanced Materials Research, 0, 723, 854-860.	0.3	25
15	Predicting resilient modulus of recycled concrete and clay masonry blends for pavement applications using soft computing techniques. Frontiers of Structural and Civil Engineering, 2019, 13, 1379-1392.	2.9	25
16	Performance characteristics of asphalt mixtures with industrial waste/by-product materials as mineral fillers under static and cyclic loading. Road Materials and Pavement Design, 2022, 23, 335-357.	4.0	25
17	Evaluation of reclaimed asphalt pavement as base/subbase material in Egypt. Transportation Geotechnics, 2021, 26, 100414.	4.5	25
18	Development and Impact of the Egyptian Climatic Conditions on Flexible Pavement Performance. American Journal of Civil Engineering and Architecture, 2014, 2, 115-121.	0.2	25

#	Article	IF	CITATIONS
19	Simplified Closed-Form Procedure for Network-Level Determination of Pavement Layer Moduli from Falling Weight Deflectometer Data. Journal of Transportation Engineering Part B: Pavements, 2018, 144, 04018052.	1.5	23
20	Predicted performance of hot mix asphalt modified with nano-montmorillonite and nano-silicon dioxide based on Egyptian conditions. International Journal of Pavement Engineering, 2020, 21, 642-652.	4.4	23
21	A hybrid wavelet-optimally-pruned extreme learning machine model for the estimation of international roughness index of rigid pavements. International Journal of Pavement Engineering, 2022, 23, 862-876.	4.4	23
22	Evaluation of recycled concrete aggregate in asphalt mixes. Innovative Infrastructure Solutions, 2018, 3, 1.	2.2	22
23	Methodology to Predict Alligator Fatigue Cracking Distress Based on Asphalt Concrete Dynamic Modulus. Transportation Research Record, 2009, 2095, 115-124.	1.9	21
24	Using Blends of Construction & Demolition Waste Materials and Recycled Clay Masonry Brick in Pavement. Procedia Engineering, 2016, 143, 1317-1324.	1.2	21
25	Regression and Neural Network Models for California Bearing Ratio Prediction of Typical Granular Materials in Egypt. Arabian Journal for Science and Engineering, 2019, 44, 8691-8705.	3.0	21
26	Evaluation of asphalt mixtures modified with polymer and wax. Innovative Infrastructure Solutions, 2019, 4, 1.	2.2	20
27	A new approach for developing resilient modulus master surface to characterize granular pavement materials and subgrade soils. Construction and Building Materials, 2019, 194, 372-385.	7.2	20
28	Modeling and performance evaluation of asphalt mixtures and aggregate bases containing steel slag. Construction and Building Materials, 2020, 248, 118710.	7.2	20
29	Performance evaluation of steel slag high performance concrete for sustainable pavements. International Journal of Pavement Engineering, 2022, 23, 3819-3837.	4.4	17
30	Advanced characterization of unbound granular materials for pavement structural design in Egypt. International Journal of Pavement Engineering, 2022, 23, 476-488.	4.4	16
31	Effect of geogrid reinforcement on flexible pavements. Innovative Infrastructure Solutions, 2017, 2, 1.	2.2	14
32	Multi-input performance prediction models for flexible pavements using LTPP database. Innovative Infrastructure Solutions, 2020, 5, 1 .	2.2	13
33	Comparison of AASHTO 1993 and MEPDG considering the Egyptian climatic conditions. Innovative Infrastructure Solutions, 2017, 2, 1.	2.2	11
34	Structural number prediction for flexible pavements using the long term pavement performance data. International Journal of Pavement Engineering, 2020, 21, 841-855.	4.4	11
35	Effect of reclaimed asphalt pavement in granular base layers on predicted pavement performance in Egypt. Innovative Infrastructure Solutions, 2020, 5, 1.	2.2	11
36	Comparison of Idaho Pavement Design Procedure with AASHTO 1993 and MEPDG Methods., 2011,,.		10

#	Article	lF	Citations
37	Using Artificial Neural Networks (ANNs) for Hot Mix Asphalt E* Predictions. , 2016, , .		10
38	Rheological and environmental evaluation of sulfur extended asphalt binders modified by high- and low-density polyethylene recycled waste. Construction and Building Materials, 2021, 307, 125008.	7.2	10
39	Network-Based Optimization System for Pavement Maintenance Using a Probabilistic Simulation-Based Genetic Algorithm Approach. Journal of Transportation Engineering Part B: Pavements, 2020, 146, .	1.5	9
40	Evaluation of the MEPDG Dynamic Modulus Prediction Models for Asphalt Concrete Mixtures. , $2011, \ldots$		8
41	Comparison of Master Sigmoidal Curve and Markov Chain Techniques for Pavement Performance Prediction. Arabian Journal for Science and Engineering, 2020, 45, 3973-3982.	3.0	8
42	Resilient modulus for unbound granular materials and subgrade soils in Egypt. MATEC Web of Conferences, 2017, 120, 06009.	0.2	7
43	A novel approach for resilient modulus prediction using extreme learning machine-equilibrium optimiser techniques. International Journal of Pavement Engineering, $0, 1-11$.	4.4	7
44	Comparison of Witczak NCHRP 1-40D & Hirsh dynamic modulus models based on different binder characterization methods: a case study. MATEC Web of Conferences, 2017, 120, 07003.	0.2	6
45	A Simplified Mechanistic-Empirical Flexible Pavement Design Method for Moderate to Hot Climate Regions. Sustainability, 2021, 13, 10760.	3.2	6
46	Recycled Materials and By-Products for Pavement Construction. , 2019, , 2177-2198.		5
47	A Comparative Study of Different Complex Shear Modulus Master Curve Techniques for Sulfur Extended Asphalt Modified with Recycled Polyethylene Waste. International Journal of Pavement Research and Technology, 2022, 15, 1023-1050.	2.6	4
48	Recycled Materials and By-Products for Pavement Construction. , 2018, , 1-22.		4
49	Application of Artificial Neural Networks for Hot Mix Asphalt Dynamic Modulus (E*) Prediction. Sustainable Civil Infrastructures, 2018, , 185-202.	0.2	4
50	A modified pavement condition rating index for flexible pavement evaluation in Egypt. Innovative Infrastructure Solutions, 2020, 5 , 1 .	2.2	4
51	Improvement of unbound granular pavement layers and subgrade with cement dust in Egypt. International Journal of Pavement Research and Technology, 2020, 13, 621-629.	2.6	4
52	Prediction of the Subgrade Resilient Modulus for the Implementation of the MEPDG in Idaho. , 2011, , .		3
53	Segmentation Effect on the Transferability of International Safety Performance Functions for Rural Roads in Egypt. Safety, 2020, 6, 43.	1.7	3
54	Development of a flexible pavement design catalogue based on mechanistic–empirical pavement design approach: Egyptian case study. Innovative Infrastructure Solutions, 2021, 6, 1.	2.2	3

#	Article	IF	CITATIONS
55	Time headway distributions for two-lane two-way roads: case study from Dakahliya Governorate, Egypt. Innovative Infrastructure Solutions, 2021, 6, 1.	2.2	3
56	Laboratory Evaluation of Green Concrete Mixes Containing High Percentages of Steel Slag Coarse Aggregate. Bulletin of the Faculty of Engineering Mansoura University, 2020, 40, 29-37.	0.0	3
57	Investigation of Waste Electrical Power Plant Oil as a Rejuvenating Agent for Reclaimed Asphalt Binders and Mixtures. Materials, 2022, 15, 4811.	2.9	3
58	Segmentation effect on developing safety performance functions for rural arterial roads in Egypt. Innovative Infrastructure Solutions, 2020, 5 , 1 .	2.2	2
59	Risk assessment of horizontal curves using reliability analysis based on Google traffic data. Innovative Infrastructure Solutions, 2021, 6, 1.	2.2	2
60	General Procedure for Pavement Maintenance/Rehabilitation Decisions Based on Structural and Functional Indices. Sustainable Civil Infrastructures, 2020, , 13-24.	0.2	2
61	Influence of Unbound Material Type and Input Level on Pavement Performance Using <i>Mechanistic–Empirical Pavement Design Guide</i> . Transportation Research Record, 2016, 2578, 21-28.	1.9	1
62	Phase angle master curves of sulfur-extended asphalt modified with recycled polyethylene waste. Innovative Infrastructure Solutions, 2021, 6, 1.	2.2	1