
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1604006/publications.pdf Version: 2024-02-01

HEIDI IO NEWBERC

#	Article	IF	CITATIONS
1	The Sloan Digital Sky Survey: Technical Summary. Astronomical Journal, 2000, 120, 1579-1587.	4.7	8,099
2	THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY. Astrophysical Journal, Supplement Series, 2009, 182, 543-558.	7.7	4,201
3	The Sixth Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, Supplement Series, 2008, 175, 297-313.	7.7	1,202
4	The Second Data Release of the Sloan Digital Sky Survey. Astronomical Journal, 2004, 128, 502-512.	4.7	953
5	SEGUE: A SPECTROSCOPIC SURVEY OF 240,000 STARS WITH <i>g</i> = 14-20. Astronomical Journal, 2009, 137, 4377-4399.	4.7	905
6	The Ghost of Sagittarius and Lumps in the Halo of the Milky Way. Astrophysical Journal, 2002, 569, 245-274.	4.5	633
7	The first data release (DR1) of the LAMOST regular survey. Research in Astronomy and Astrophysics, 2015, 15, 1095-1124.	1.7	565
8	LAMOST Experiment for Galactic Understanding and Exploration (LEGUE) — The survey's science plan. Research in Astronomy and Astrophysics, 2012, 12, 735-754.	1.7	404
9	A Lowâ€Latitude Halo Stream around the Milky Way. Astrophysical Journal, 2003, 588, 824-841.	4.5	347
10	A Spectroscopic Study of the Ancient Milky Way: F―and Gâ€Type Stars in the Third Data Release of the Sloan Digital Sky Survey. Astrophysical Journal, 2006, 636, 804-820.	4.5	314
11	Identification of Aâ€colored Stars and Structure in the Halo of the Milky Way from Sloan Digital Sky Survey Commissioning Data. Astrophysical Journal, 2000, 540, 825-841.	4.5	308
12	RINGS AND RADIAL WAVES IN THE DISK OF THE MILKY WAY. Astrophysical Journal, 2015, 801, 105.	4.5	188
13	The Discovery of a Field Methane Dwarf from Sloan Digital Sky Survey Commissioning Data. Astrophysical Journal, 1999, 522, L61-L64.	4.5	176
14	Sagittarius Tidal Debris 90 Kiloparsecs from the Galactic Center. Astrophysical Journal, 2003, 596, L191-L194.	4.5	162
15	SUBSTRUCTURE IN BULK VELOCITIES OF MILKY WAY DISK STARS. Astrophysical Journal Letters, 2013, 777, L5.	8.3	122
16	DISCOVERY OF A NEW, POLAR-ORBITING DEBRIS STREAM IN THE MILKY WAY STELLAR HALO. Astrophysical Journal, 2009, 700, L61-L64.	4.5	117
17	THE ORBIT OF THE ORPHAN STREAM. Astrophysical Journal, 2010, 711, 32-49.	4.5	113
18	Detectability of weakly interacting massive particles in the Sagittarius dwarf tidal stream. Physical Review D, 2005, 71, .	4.7	108

#	Article	IF	CITATIONS
19	TRACING SAGITTARIUS STRUCTURE WITH SDSS AND SEGUE IMAGING AND SPECTROSCOPY. Astrophysical Journal, 2009, 700, 1282-1298.	4.5	102
20	The Overdensity in Virgo, Sagittarius Debris, and the Asymmetric Spheroid. Astrophysical Journal, 2007, 668, 221-235.	4.5	97
21	THE K GIANT STARS FROM THE LAMOST SURVEY DATA. I. IDENTIFICATION, METALLICITY, AND DISTANCE. Astrophysical Journal, 2014, 790, 110.	4.5	76
22	AN ORBIT FIT FOR THE GRILLMAIR DIONATOS COLD STELLAR STREAM. Astrophysical Journal, 2009, 697, 207-223.	4.5	60
23	THE FIRST HYPERVELOCITY STAR FROM THE LAMOST SURVEY. Astrophysical Journal Letters, 2014, 785, L23.	8.3	55
24	Mapping the Milky Way with LAMOST I: method and overview. Research in Astronomy and Astrophysics, 2017, 17, 096.	1.7	37
25	ESTIMATION OF DISTANCES TO STARS WITH STELLAR PARAMETERS FROM LAMOST. Astronomical Journal, 2015, 150, 4.	4.7	36
26	SELECTING M GIANTS WITH INFRARED PHOTOMETRY: DISTANCES, METALLICITIES, AND THE SAGITTARIUS STREAM. Astrophysical Journal, 2016, 823, 59.	4.5	30
27	The Milky Way's Shell Structure Reveals the Time of a Radial Collision. Astrophysical Journal, 2020, 902, 119.	4.5	27
28	Exploring the Perturbed Milky Way Disk and the Substructures of the Outer Disk. Astrophysical Journal, 2020, 905, 6.	4.5	26
29	Maximum Likelihood Fitting of Tidal Streams with Application to the Sagittarius Dwarf Tidal Tails. Astrophysical Journal, 2008, 683, 750-766.	4.5	25
30	The Milky Way's stellar halo - lumpy or triaxial?. Journal of Physics: Conference Series, 2006, 47, 195-204.	0.4	24
31	The Stellar Metallicity Distribution of the Galactic Halo Based on SCUSS and SDSS Data. Astrophysical Journal, 2017, 841, 59.	4.5	21
32	New Nearby Hypervelocity Stars and Their Spatial Distribution from Gaia DR2. Astrophysical Journal, Supplement Series, 2019, 244, 4.	7.7	20
33	The Virgo Overdensity Explained. Astrophysical Journal, 2019, 886, 76.	4.5	20
34	The High-velocity Stars in the Local Stellar Halo from Gaia and LAMOST. Astrophysical Journal, 2018, 863, 87.	4.5	19
35	A SPATIAL CHARACTERIZATION OF THE SAGITTARIUS DWARF GALAXY TIDAL TAILS. Astronomical Journal, 2013, 145, 163.	4.7	16
36	The Substructures in the Local Stellar Halo from Gaia and LAMOST. Astrophysical Journal, 2019, 874, 74.	4.5	16

#	Article	IF	CITATIONS
37	The Local Stellar Halo is Not Dominated by a Single Radial Merger Event. Astrophysical Journal Letters, 2022, 932, L16.	8.3	15
38	F TURNOFF DISTRIBUTION IN THE GALACTIC HALO USING GLOBULAR CLUSTERS AS PROXIES. Astrophysical Journal, 2011, 743, 187.	4.5	14
39	Metallicity and Kinematics of the Galactic Halo from the LAMOST Sample Stars. Astrophysical Journal, 2018, 862, 163.	4.5	14
40	A Map of the Local Velocity Substructure in the Milky Way Disk. Astrophysical Journal, 2017, 847, 123.	4.5	13
41	Validating Evolutionary Algorithms on Volunteer Computing Grids. Lecture Notes in Computer Science, 2010, , 29-41.	1.3	12
42	The Origin of High-velocity Stars from Gaia and LAMOST. Astrophysical Journal Letters, 2018, 869, L31.	8.3	11
43	Robust Asynchronous Optimization for Volunteer Computing Grids. , 2009, , .		9
44	TESTING THE DARK MATTER CAUSTIC THEORY AGAINST OBSERVATIONS IN THE MILKY WAY. Astrophysical Journal, 2015, 811, 36.	4.5	9
45	60 Candidate High-velocity Stars Originating from the Sagittarius Dwarf Spheroidal Galaxy in Gaia EDR3. Astrophysical Journal Letters, 2022, 933, L13.	8.3	9
46	CHARACTERIZING THE SHARDS OF DISRUPTED MILKY WAY SATELLITES WITH LAMOST. Astrophysical Journal, 2016, 822, 16.	4.5	7
47	Distributed and Generic Maximum Likelihood Evaluation. , 2007, , .		6
48	Two Substructures in the nearby Stellar Halo Found in Gaia and RAVE. Astrophysical Journal, 2020, 895, 23.	4.5	6
49	A Tangle of Stellar Streams in the North Galactic Cap. Astrophysical Journal Letters, 2018, 867, L1.	8.3	5
50	Existence of the Metal-rich Stellar Halo and High-velocity Thick Disk in the Galaxy. Astrophysical Journal, 2020, 903, 131.	4.5	5
51	Fitting the Density Substructure of the Stellar Halo with MilkyWay@home. Astrophysical Journal, Supplement Series, 2018, 238, 17.	7.7	4
52	CENSUS OF BLUE STARS IN SDSS DR8. Astrophysical Journal, Supplement Series, 2014, 215, 24.	7.7	3
53	An orbit fit to likely Hermus Stream stars. Monthly Notices of the Royal Astronomical Society, 2018, 477, 2419-2430.	4.4	3
54	Mapping Milky Way Halo Substructure Using Stars in the Extended Blue Tail of the Horizontal Branch. Astrophysical Journal, 2021, 910, 102.	4.5	3

#	Article	IF	CITATIONS
55	Dynamically produced moving groups in interacting simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 2561-2574.	4.4	3
56	Evolving N-Body Simulations to Determine the Origin and Structure of the Milky Way Galaxy's Halo Using Volunteer Computing. , 2011, , .		2
57	MilkyWay@home: Harnessing volunteer computers to constrain dark matter in the Milky Way. Proceedings of the International Astronomical Union, 2013, 9, 98-104.	0.0	2
58	The Vertical Displacement of the Milky Way Disk. Proceedings of the International Astronomical Union, 2016, 11, 13-15.	0.0	2
59	Element Abundance Analysis of the Metal-rich Stellar Halo and High-velocity Thick Disk in the Galaxy. Astrophysical Journal, 2021, 915, 9.	4.5	2
60	Estimate of the Mass and Radial Profile of the Orphan–Chenab Stream's Dwarf-galaxy Progenitor Using MilkyWay@home. Astrophysical Journal, 2022, 926, 106.	4.5	2
61	Determining distances to stars statistically from photometry. Proceedings of the International Astronomical Union, 2012, 8, 74-81.	0.0	0
62	The merger debris of dwarf galaxies in the local stellar halo. Proceedings of the International Astronomical Union, 2018, 14, 38-41.	0.0	0
63	Streams and the Milky Way dark matter halo. Proceedings of the International Astronomical Union, 2019, 14, 75-82.	0.0	0