## Luciano Colombo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/160399/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                             | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Thermal conduction and rectification phenomena in nanoporous silicon membranes. Physical Chemistry Chemical Physics, 2022, 24, 13625-13632.                                                         | 2.8  | 3         |
| 2  | Room temperature second sound in cumulene. Physical Chemistry Chemical Physics, 2021, 23, 15275-15281.                                                                                              | 2.8  | 3         |
| 3  | Intrinsic thermoelectric figure of merit of bulk compositional SiGe alloys: A first-principles study.<br>Physical Review Materials, 2021, 5, .                                                      | 2.4  | 9         |
| 4  | Observation of second sound in a rapidly varying temperature field in Ge. Science Advances, 2021, 7, .                                                                                              | 10.3 | 40        |
| 5  | Engineering the Thermal Conductivity of Doped SiGe by Mass Variance: A First-Principles Proof of<br>Concept. Frontiers in Mechanical Engineering, 2021, 7, .                                        | 1.8  | 2         |
| 6  | Thermal transport in amorphous graphene with varying structural quality. 2D Materials, 2021, 8, 015028.                                                                                             | 4.4  | 6         |
| 7  | Modeling charge transport in gold nanogranular films. Physical Review Materials, 2021, 5, .                                                                                                         | 2.4  | 2         |
| 8  | Impact of oxidation morphology on reduced graphene oxides upon thermal annealing. JPhys Materials, 2020, 3, 015011.                                                                                 | 4.2  | 14        |
| 9  | Impact of synthetic conditions on the anisotropic thermal conductivity of<br>poly(3,4-ethylenedioxythiophene) (PEDOT): A molecular dynamics investigation. Physical Review<br>Materials, 2020, 4, . | 2.4  | 13        |
| 10 | Modeling resistive switching in nanogranular metal films. Physical Review Research, 2020, 2, .                                                                                                      | 3.6  | 7         |
| 11 | Lattice Thermal Boundary Resistance. , 2020, , 845-863.                                                                                                                                             |      | Ο         |
| 12 | Non-ohmic behavior and resistive switching of Au cluster-assembled films beyond the percolation threshold. Nanoscale Advances, 2019, 1, 3119-3130.                                                  | 4.6  | 45        |
| 13 | Obituary for Professor Sandro Massidda. Journal of Physics Condensed Matter, 2019, 31, 270202.                                                                                                      | 1.8  | 1         |
| 14 | Energy Relaxation and Thermal Diffusion in Infrared Pump–Probe Spectroscopy of Hydrogen-Bonded<br>Liquids. Journal of Physical Chemistry Letters, 2019, 10, 3447-3452.                              | 4.6  | 10        |
| 15 | Strain engineering of ZnO thermal conductivity. Physical Review Materials, 2019, 3, .                                                                                                               | 2.4  | 13        |
| 16 | Calculating lattice thermal conductivity: a synopsis. Physica Scripta, 2018, 93, 043002.                                                                                                            | 2.5  | 40        |
| 17 | Understanding the Polymerization Process of Eumelanin by Computer Simulations. Journal of Physical Chemistry C, 2018, 122, 28368-28374.                                                             | 3.1  | 11        |
| 18 | Physical and Chemical Control of Interface Stability in Porous Si–Eumelanin Hybrids. Journal of Physical Chemistry C, 2018, 122, 28405-28415.                                                       | 3.1  | 14        |

| #  | Article                                                                                                                                                                                        | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Phonon Scattering in Silicon by Multiple Morphological Defects: A Multiscale Analysis. Journal of<br>Electronic Materials, 2018, 47, 5148-5157.                                                | 2.2 | 9         |
| 20 | Lattice Thermal Boundary Resistance. , 2018, , 1-19.                                                                                                                                           |     | 1         |
| 21 | The thermal boundary resistance at semiconductor interfaces: a critical appraisal of the Onsager<br><i>vs.</i> Kapitza formalisms. Physical Chemistry Chemical Physics, 2018, 20, 22623-22628. | 2.8 | 2         |
| 22 | Assessing the anomalous superdiffusive heat transport in a single one-dimensional PEDOT chain.<br>Physical Review Materials, 2018, 2, .                                                        | 2.4 | 17        |
| 23 | Evidence of thermal transport anisotropy in stable glasses of vapor deposited organic molecules.<br>Physical Review Materials, 2018, 2, .                                                      | 2.4 | 17        |
| 24 | Nature of microscopic heat carriers in nanoporous silicon. Physical Review Materials, 2018, 2, .                                                                                               | 2.4 | 4         |
| 25 | Simulating Energy Relaxation in Pump–Probe Vibrational Spectroscopy of Hydrogen-Bonded Liquids.<br>Journal of Chemical Theory and Computation, 2017, 13, 1284-1292.                            | 5.3 | 18        |
| 26 | Thermal boundary resistance from transient nanocalorimetry: A multiscale modeling approach.<br>Physical Review B, 2017, 95, .                                                                  | 3.2 | 20        |
| 27 | Electrical and Thermal Transport in Coplanar Polycrystalline Graphene–hBN Heterostructures. Nano<br>Letters, 2017, 17, 1660-1664.                                                              | 9.1 | 62        |
| 28 | Assessing the Performance of Eumelanin/Si Interface for Photovoltaic Applications. Journal of Physical Chemistry C, 2017, 121, 11576-11584.                                                    | 3.1 | 15        |
| 29 | Scaling properties of polycrystalline graphene: a review. 2D Materials, 2017, 4, 012002.                                                                                                       | 4.4 | 62        |
| 30 | Record Low Thermal Conductivity of Polycrystalline MoS <sub>2</sub> Films: Tuning the Thermal<br>Conductivity by Grain Orientation. ACS Applied Materials & Interfaces, 2017, 9, 37905-37911.  | 8.0 | 35        |
| 31 | Thermal Transport in Nanocrystalline Graphene: The Role of Grain Boundaries. Carbon<br>Nanostructures, 2017, , 1-17.                                                                           | 0.1 | 1         |
| 32 | Linking morphology to thermal conductivity in PEDOT: an atomistic investigation. Journal Physics D:<br>Applied Physics, 2017, 50, 494002.                                                      | 2.8 | 17        |
| 33 | Surface elastic properties in silicon nanoparticles. Europhysics Letters, 2017, 119, 66005.                                                                                                    | 2.0 | 4         |
| 34 | Deciphering Molecular Mechanisms of Interface Buildup and Stability in Porous Si/Eumelanin Hybrids.<br>International Journal of Molecular Sciences, 2017, 18, 1567.                            | 4.1 | 15        |
| 35 | Thermal and transport properties of pristine single-layer hexagonal boron nitride: A first principles investigation. Physical Review Materials, 2017, 1, .                                     | 2.4 | 11        |
| 36 | Thermal transport in porous Si nanowires from approach-to-equilibrium molecular dynamics calculations. Applied Physics Letters, 2016, 109, .                                                   | 3.3 | 24        |

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Predicting the thermal conductivity in a graphene nanoflake from its response to a thermal impulse.<br>Physical Review B, 2016, 94, .                                      | 3.2  | 2         |
| 38 | Effect of asymmetric concentration profile on thermal conductivity in Ge/SiGe superlattices. Applied Physics Letters, 2016, 108, 203102.                                   | 3.3  | 11        |
| 39 | Thermal boundary resistance in semiconductors by non-equilibrium thermodynamics. Advances in Physics: X, 2016, 1, 246-261.                                                 | 4.1  | 9         |
| 40 | Thermal conductivity of MoS <sub>2</sub> polycrystalline nanomembranes. 2D Materials, 2016, 3,<br>035016.                                                                  | 4.4  | 37        |
| 41 | Tuning the thermal conductivity of methylammonium lead halide by the molecular substructure.<br>Physical Chemistry Chemical Physics, 2016, 18, 24318-24324.                | 2.8  | 52        |
| 42 | Density functional theory calculations of the stress of oxidised (1 1 0) silicon surfaces. Metrologia, 2016, 53, 1339-1345.                                                | 1.2  | 11        |
| 43 | Thermal rectification in silicon by a graded distribution of defects. Journal of Applied Physics, 2016, 119, .                                                             | 2.5  | 30        |
| 44 | Heat transport through a solid–solid junction: the interface as an autonomous thermodynamic<br>system. Physical Chemistry Chemical Physics, 2016, 18, 13741-13745.         | 2.8  | 25        |
| 45 | Structural, Vibrational, and Thermal Properties of Nanocrystalline Graphene in Atomistic<br>Simulations. Journal of Physical Chemistry C, 2016, 120, 3026-3035.            | 3.1  | 15        |
| 46 | Thermal transport in nanocrystalline graphene investigated by approach-to-equilibrium molecular<br>dynamics simulations. Carbon, 2016, 96, 429-438.                        | 10.3 | 33        |
| 47 | Exploiting hydrogenation for thermal rectification in graphene nanoribbons. Physical Review B, 2015, 92, .                                                                 | 3.2  | 26        |
| 48 | Intrinsic thermal conductivity in monolayer graphene is ultimately upper limited: A direct estimation by atomistic simulations. Physical Review B, 2015, 91, .             | 3.2  | 59        |
| 49 | Thermal boundary resistance at Si/Ge interfaces determined by approach-to-equilibrium molecular dynamics simulations. Physical Review B, 2015, 91, .                       | 3.2  | 48        |
| 50 | SixGe1-x alloy as efficient phonon barrier in Ge/Si superlattices for thermoelectric applications.<br>European Physical Journal B, 2015, 88, 1.                            | 1.5  | 9         |
| 51 | Model for thermal conductivity in nanoporous silicon from atomistic simulations. Physical Review B, 2015, 91, .                                                            | 3.2  | 46        |
| 52 | Lattice strain at c-Si surfaces: a density functional theory calculation. Metrologia, 2015, 52, 214-221.                                                                   | 1.2  | 13        |
| 53 | Stretchable nanocomposite electrodes with tunable mechanical properties by supersonic cluster beam implantation in elastomers. Applied Physics Letters, 2015, 106, 121902. | 3.3  | 20        |
| 54 | Thermal Rectification by Design in Telescopic Si Nanowires. Nano Letters, 2015, 15, 8255-8259.                                                                             | 9.1  | 66        |

| # | ŧ  | Article                                                                                                                                                                                                                                                                                                | IF                                                        | CITATIONS                         |
|---|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------|
| 5 | 55 | Patterning of gold–polydimethylsiloxane (Au–PDMS) nanocomposites by supersonic cluster beam<br>implantation. Journal Physics D: Applied Physics, 2014, 47, 015301.                                                                                                                                     | 2.8                                                       | 34                                |
| 5 | 56 | Heat transport across a SiGe nanowire axial junction: Interface thermal resistance and thermal rectification. Physical Review B, 2014, 90, .                                                                                                                                                           | 3.2                                                       | 51                                |
| 5 | 57 | Atomistic study of the structural and electronic properties of a-Si:H/c-Si interfaces. Journal of Physics Condensed Matter, 2014, 26, 095001.                                                                                                                                                          | 1.8                                                       | 8                                 |
| 5 | 58 | Lattice Thermal Conductivity of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:msub><mml:mrow><mml:mi>Si</mml:mi></mml:mrow><mml:mrow><mml:r<br>Physical Review Letters, 2014, 112, 065901.</mml:r<br></mml:mrow></mml:msub></mml:mrow></mml:math> | n <b>n.8</b> 1 <td>າ<b>ຢ</b>ໝາກ&gt;<mm< td=""></mm<></td> | າ <b>ຢ</b> ໝາກ> <mm< td=""></mm<> |
| 5 | 59 | Effect of hydrogenation on graphene thermal transport. Carbon, 2014, 80, 167-173.                                                                                                                                                                                                                      | 10.3                                                      | 38                                |
| 6 | 50 | Effect of structural features on the thermal conductivity of SiGe-based materials. European Physical<br>Journal B, 2014, 87, 1.                                                                                                                                                                        | 1.5                                                       | 14                                |
| 6 | 51 | Calculating thermal conductivity in a transient conduction regime: theory and implementation.<br>European Physical Journal B, 2014, 87, 1.                                                                                                                                                             | 1.5                                                       | 69                                |
| 6 | 52 | Folds and Buckles at the Nanoscale: Experimental and Theoretical Investigation of the Bending Properties of Graphene Membranes. Topics in Current Chemistry, 2013, 348, 205-236.                                                                                                                       | 4.0                                                       | 1                                 |
| 6 | 53 | The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper. Science, 2013, 342, 720-723.                                                                                                                                                                                      | 12.6                                                      | 977                               |
| 6 | 54 | Two-state theory of single-molecule stretching experiments. Physical Review E, 2013, 87, .                                                                                                                                                                                                             | 2.1                                                       | 36                                |
| 6 | 55 | Response to "Comment on â€~Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensemblesâ€â€™ [J. Chem. Phys. 138, 157101 (2013)]. Journal of Chemical Physics, 2013, 1 157102.                                                                          | .380                                                      | 13                                |
| 6 | 56 | Neutral-cluster implantation in polymers by computer experiments. Journal of Applied Physics, 2013, 113, .                                                                                                                                                                                             | 2.5                                                       | 13                                |
| 6 | 57 | Monte Carlo simulations of single polymer force-extension relations. Journal of Physics: Conference<br>Series, 2012, 383, 012016.                                                                                                                                                                      | 0.4                                                       | 7                                 |
| 6 | 58 | Scaling of Al2O3 dielectric for graphene field-effect transistors. Applied Physics Letters, 2012, 100, .                                                                                                                                                                                               | 3.3                                                       | 105                               |
| 6 | 59 | Theory and Monte Carlo simulations for the stretching of flexible and semiflexible single polymer chains under external fields. Journal of Chemical Physics, 2012, 137, 244907.                                                                                                                        | 3.0                                                       | 39                                |
| 7 | 70 | Atomistic Investigation of the Solid–Liquid Interface between the Crystalline Zinc Oxide Surface and the Liquid Tetrahydrofuran Solvent. Journal of Physical Chemistry C, 2012, 116, 12644-12648.                                                                                                      | 3.1                                                       | 10                                |
| 7 | /1 | A roadmap for graphene. Nature, 2012, 490, 192-200.                                                                                                                                                                                                                                                    | 27.8                                                      | 8,011                             |
| 7 | /2 | Optoelectronic properties of (ZnO)60 isomers. Physical Chemistry Chemical Physics, 2012, 14, 14293.                                                                                                                                                                                                    | 2.8                                                       | 14                                |

| #  | Article                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Elastic fields and moduli in defected graphene. Journal of Physics Condensed Matter, 2012, 24, 104020.                                                                     | 1.8  | 44        |
| 74 | Elasticity of flexible and semiflexible polymers with extensible bonds in the Gibbs and Helmholtz ensembles. Journal of Chemical Physics, 2012, 136, 154906.               | 3.0  | 52        |
| 75 | Folded Graphene Membranes: Mapping Curvature at the Nanoscale. Nano Letters, 2012, 12, 5207-5212.                                                                          | 9.1  | 55        |
| 76 | Effect of hydrogen coverage on the Young's modulus of graphene. Physical Review B, 2012, 85, .                                                                             | 3.2  | 76        |
| 77 | Electronic Properties of Hybrid Zinc Oxide–Oligothiophene Nanostructures. Journal of Physical<br>Chemistry C, 2012, 116, 8174-8180.                                        | 3.1  | 13        |
| 78 | Poly(3-hexylthiophene) Adhesion on Zinc Oxide Nanoneedles. Journal of Physical Chemistry C, 2011, 115, 16833-16837.                                                        | 3.1  | 20        |
| 79 | Adhesion and Diffusion of Zinc-Phthalocyanines on the ZnO (101Ì0) Surface. Journal of Physical Chemistry C, 2011, 115, 18208-18212.                                        | 3.1  | 8         |
| 80 | Self-Assembling of Poly(3-hexylthiophene). Journal of Physical Chemistry C, 2011, 115, 576-581.                                                                            | 3.1  | 64        |
| 81 | Polymer Crystallinity and Transport Properties at the Poly(3-hexylthiophene)/Zinc Oxide Interface.<br>Journal of Physical Chemistry C, 2011, 115, 9651-9655.               | 3.1  | 30        |
| 82 | The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Applied Physics Letters, 2011, 99, .   | 3.3  | 829       |
| 83 | Self-Assembling of Zinc Phthalocyanines on ZnO (101ì0) Surface through Multiple Time Scales. ACS<br>Nano, 2011, 5, 9639-9647.                                              | 14.6 | 14        |
| 84 | Order-disorder phase change in embedded Si nanoparticles. Physical Review B, 2011, 83, .                                                                                   | 3.2  | 8         |
| 85 | Nonlinear elasticity in nanostructured materials. Reports on Progress in Physics, 2011, 74, 116501.                                                                        | 20.1 | 48        |
| 86 | Elucidating the atomistic mechanisms driving self-diffusion of amorphous Si during annealing.<br>Physical Review B, 2011, 83, .                                            | 3.2  | 16        |
| 87 | Elastic properties of multi-cracked composite materials. European Physical Journal B, 2010, 76, 261-269.                                                                   | 1.5  | 3         |
| 88 | Lattice model describing scale effects in nonlinear elasticity of nanoinhomogeneities. Physical Review<br>B, 2010, 81, .                                                   | 3.2  | 14        |
| 89 | First-principles study of the effect of pressure on the five zirconia polymorphs. I. Structural, vibrational, and thermoelastic properties. Physical Review B, 2010, 82, . | 3.2  | 30        |
| 90 | First-principles study of the effect of pressure on the five zirconia polymorphs. II. Static dielectric properties and Raman spectra. Physical Review B, 2010, 82, .       | 3.2  | 21        |

| #   | Article                                                                                                                                         | IF   | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Understanding the Helical Wrapping of Poly(3-hexylthiophene) on Carbon Nanotubes. Journal of<br>Physical Chemistry C, 2010, 114, 21109-21113.   | 3.1  | 55        |
| 92  | Gap opening in graphene by shear strain. Physical Review B, 2010, 81, .                                                                         | 3.2  | 310       |
| 93  | Atomistic Investigation of Poly(3-hexylthiophene) Adhesion on Nanostructured Titania. Journal of<br>Physical Chemistry C, 2010, 114, 3401-3406. | 3.1  | 32        |
| 94  | Elastic properties of hydrogenated graphene. Physical Review B, 2010, 82, .                                                                     | 3.2  | 476       |
| 95  | Quantum Confinement by an Order-Disorder Boundary in Nanocrystalline Silicon. Physical Review<br>Letters, 2010, 104, 176803.                    | 7.8  | 30        |
| 96  | Mechanisms of self-diffusion in stoichiometric and substoichiometric amorphous silicon dioxide.<br>Physical Review B, 2010, 81, .               | 3.2  | 13        |
| 97  | Interplay between bending and stretching in carbon nanoribbons. Physical Review B, 2010, 81, .                                                  | 3.2  | 28        |
| 98  | Calculation of the local optoelectronic properties of nanostructured silicon. Physical Review B, 2009, 79, .                                    | 3.2  | 4         |
| 99  | Electronic localization and optical absorption in embedded silicon nanograins. Applied Physics<br>Letters, 2009, 94, 053115.                    | 3.3  | 17        |
| 100 | Interface elasticity in nanostructured silicon. Physical Review B, 2009, 80, .                                                                  | 3.2  | 8         |
| 101 | Nonlinear elasticity of composite materials. European Physical Journal B, 2009, 68, 89-101.                                                     | 1.5  | 24        |
| 102 | Atomistic simulations of the sliding friction of graphene flakes. European Physical Journal B, 2009, 70, 449-459.                               | 1.5  | 102       |
| 103 | Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009, 324, 1312-1314.                                 | 12.6 | 10,000    |
| 104 | Nonlinear Elasticity of Monolayer Graphene. Physical Review Letters, 2009, 102, 235502.                                                         | 7.8  | 390       |
| 105 | First-principles study of the structural and elastic properties of zirconia. Physical Review B, 2009, 79, .                                     | 3.2  | 79        |
| 106 | Atomistic fracture: QFM vs. MD. Engineering Fracture Mechanics, 2008, 75, 1794-1803.                                                            | 4.3  | 20        |
| 107 | Effective permittivity of materials containing graded ellipsoidal inclusions. European Physical Journal B, 2008, 66, 29-35.                     | 1.5  | 20        |
| 108 | Nonlinear elastic Landau coefficients in heterogeneous materials. Europhysics Letters, 2008, 83, 66003.                                         | 2.0  | 15        |

| #   | Article                                                                                                                                                                                                                                                               | IF                                                                | CITATIONS         |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------|
| 109 | Interface structure and defects of silicon nanocrystals embedded into a-SiO2. Applied Physics Letters, 2008, 93, 153109.                                                                                                                                              | 3.3                                                               | 27                |
| 110 | Crystallization kinetics of mixed amorphous-crystalline nanosystems. Physical Review B, 2008, 78, .                                                                                                                                                                   | 3.2                                                               | 18                |
| 111 | Elastic properties of solids containing elliptic cracks. Physical Review B, 2008, 77, .                                                                                                                                                                               | 3.2                                                               | 8                 |
| 112 | Interfacial elastic properties betweena-Siandc-Si. Physical Review B, 2008, 78, .                                                                                                                                                                                     | 3.2                                                               | 9                 |
| 113 | Atomistic modeling of brittleness in covalent materials. Physical Review B, 2007, 76, .                                                                                                                                                                               | 3.2                                                               | 35                |
| 114 | Local elastic fields around cracks and their stress density of states. Physical Review B, 2007, 76, .                                                                                                                                                                 | 3.2                                                               | 8                 |
| 115 | Nonuniform Growth of Embedded Silicon Nanocrystals in an Amorphous Matrix. Physical Review<br>Letters, 2007, 99, 205501.                                                                                                                                              | 7.8                                                               | 19                |
| 116 | Effects of the Orientational Distribution of Cracks in Solids. Physical Review Letters, 2007, 98, 055503.                                                                                                                                                             | 7.8                                                               | 28                |
| 117 | Failure strength of brittle materials containing nanovoids. Physical Review B, 2007, 75, .                                                                                                                                                                            | 3.2                                                               | 13                |
| 118 | Efficient particle labeling in atomistic simulations. Journal of Chemical Physics, 2007, 126, 121102.                                                                                                                                                                 | 3.0                                                               | 35                |
| 119 | Growth of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"&gt;<mml:mrow><mml:mi>sp</mml:mi><mml:mtext>â^`</mml:mtext><mml:msup><mml:mi>spin a carbon plasma. Physical Review B, 2007, 76, .</mml:mi></mml:msup></mml:mrow></mml:math> | וm <mark>8n₂</mark> i> <n< td=""><td>າm<b>ຢ</b>າກn&gt;2</td></n<> | າm <b>ຢ</b> າກn>2 |
| 120 | Effects of the orientational distribution of cracks in isotropic solids. Engineering Fracture Mechanics, 2007, 74, 1983-2003.                                                                                                                                         | 4.3                                                               | 14                |
| 121 | Depth resolved study of impurity sites in low energy ion implanted As in Si. Journal of Applied Physics, 2007, 102, 043524.                                                                                                                                           | 2.5                                                               | 15                |
| 122 | Atomic scale simulations of vapor cooled carbon clusters. Applied Physics A: Materials Science and Processing, 2007, 86, 275-281.                                                                                                                                     | 2.3                                                               | 18                |
| 123 | Nanocrystalline silicon films as multifunctional material for optoelectronic and photovoltaic<br>applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology,<br>2006, 134, 118-124.                                             | 3.5                                                               | 32                |
| 124 | Defect-induced homogeneous amorphization of silicon: the role of defect structure and population.<br>Journal of Physics Condensed Matter, 2006, 18, 2077-2088.                                                                                                        | 1.8                                                               | 6                 |
| 125 | Role of lattice discreteness on brittle fracture: Atomistic simulations versus analytical models.<br>Physical Review B, 2006, 73, .                                                                                                                                   | 3.2                                                               | 45                |
| 126 | Atomistic simulation of ion channeling in heavily doped Si:As. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 112-117.                                                                                                                               | 1.4                                                               | 8                 |

| #   | Article                                                                                                                                                                                                             | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Channeling characterization of defects in silicon: an atomistic approach. Nuclear Instruments & Methods in Physics Research B, 2005, 230, 185-192.                                                                  | 1.4 | 15        |
| 128 | Investigation of heavily damaged ion implanted Si by atomistic simulation of Rutherford<br>backscattering channeling spectra. Nuclear Instruments & Methods in Physics Research B, 2005, 230,<br>613-618.           | 1.4 | 6         |
| 129 | Crack-tip stress shielding by a hard fiber in $\hat{l}^2$ -SiC: an atomistic study. Computer Physics Communications, 2005, 169, 40-43.                                                                              | 7.5 | О         |
| 130 | Computational Materials Science application programming interface (CMSapi): a tool for developing applications for atomistic simulations. Computer Physics Communications, 2005, 169, 462-466.                      | 7.5 | 9         |
| 131 | Classical versus ab initio structural relaxation: electronic excitations and optical properties of Ge<br>nanocrystals embedded in an SiC matrix. Journal of Physics Condensed Matter, 2005, 17, 643-651.            | 1.8 | 1         |
| 132 | Atomic Scale Origin of Crack Resistance in Brittle Fracture. Physical Review Letters, 2005, 95, 115501.                                                                                                             | 7.8 | 83        |
| 133 | Interaction of doping impurities with the 30° partial dislocations in SiC: Anab initioinvestigation.<br>Physical Review B, 2005, 72, .                                                                              | 3.2 | 16        |
| 134 | Ab initiostructures ofAsmVcomplexes and the simulation of Rutherford backscattering channeling spectra in heavily As-doped crystalline silicon. Physical Review B, 2005, 72, .                                      | 3.2 | 12        |
| 135 | Diffusion of small self-interstitial clusters in silicon: Temperature-accelerated tight-binding molecular dynamics simulations. Physical Review B, 2005, 71, .                                                      | 3.2 | 29        |
| 136 | Structural, electronic, and energetic properties of small self-interstitial clusters in GaAs by tight-binding molecular dynamics. Physical Review B, 2005, 71, .                                                    | 3.2 | 10        |
| 137 | Atomistic study of the dissolution of small boron interstitial clusters in c-Si. Applied Physics Letters, 2005, 87, 191912.                                                                                         | 3.3 | 24        |
| 138 | Fracture toughness of nanostructured silicon carbide. Applied Physics Letters, 2005, 87, 141912.                                                                                                                    | 3.3 | 17        |
| 139 | Leaving the fullerene road: presence and stability of sp chains in sp2carbon clusters and cluster-assembled solids. New Journal of Physics, 2005, 7, 81-81.                                                         | 2.9 | 37        |
| 140 | Neutral boron-interstitial clusters in crystalline silicon. Physical Review B, 2004, 69, .                                                                                                                          | 3.2 | 19        |
| 141 | Elastic moduli of nanostructured carbon films. Physical Review B, 2004, 70, .                                                                                                                                       | 3.2 | 7         |
| 142 | Classical versus ab initio structural relaxation: electronic excitations and optical properties of Ge<br>nanocrystals embedded in a SiC matrix. Materials Research Society Symposia Proceedings, 2004, 832,<br>313. | 0.1 | 0         |
| 143 | Energetics of native point defects in cubic silicon carbide. European Physical Journal B, 2004, 38, 437-444.                                                                                                        | 1.5 | 22        |
| 144 | Defect energetics of Î <sup>2</sup> -SiC using a new tight-binding molecular dynamics model. Journal of Nuclear Materials, 2004, 329-333, 1219-1222.                                                                | 2.7 | 18        |

| #   | Article                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 145 | Boron ripening during solid-phase epitaxy of amorphous silicon. Physical Review B, 2004, 69, .                                                                                                                                       | 3.2 | 67        |
| 146 | Interpretation of ion-channeling spectra in ion-implanted Si with models of structurally relaxed point defects and clusters. Physical Review B, 2004, 69, .                                                                          | 3.2 | 11        |
| 147 | Hydrogen Uptake in Cluster-Assembled Carbon Thin Films:Â Experiment and Computer Simulation.<br>Journal of Physical Chemistry B, 2004, 108, 5157-5160.                                                                               | 2.6 | 11        |
| 148 | Atomic-scale model ofcâ^'Si/a-Si:H interfaces. Physical Review B, 2004, 69, .                                                                                                                                                        | 3.2 | 17        |
| 149 | Atomistic study of the interaction between a microcrack and a hard inclusion inl²â~'SiC. Physical Review B, 2004, 70, .                                                                                                              | 3.2 | 26        |
| 150 | Boron ripening in amorphous silicon by large scale molecular dynamics simulations. Computational<br>Materials Science, 2004, 30, 143-149.                                                                                            | 3.0 | 2         |
| 151 | Combined atomistic and continuum methods to map electric properties of nanostructured carbon films. Computational Materials Science, 2004, 30, 150-154.                                                                              | 3.0 | 0         |
| 152 | Modeling of time-dependent damage in structural wall of inertial fusion reactors and new tight binding model for SiC. Fusion Engineering and Design, 2003, 69, 795-801.                                                              | 1.9 | 0         |
| 153 | Atomic scale computer aided design for novel semiconductor devices. Computational Materials Science, 2003, 27, 10-15.                                                                                                                | 3.0 | 6         |
| 154 | On the solid-phase epitaxy of the a-Si:B/c-Si interface. Europhysics Letters, 2003, 62, 862-868.                                                                                                                                     | 2.0 | 6         |
| 155 | Time-Dependent Neutronics in Structural Materials of Inertial Fusion Reactors and Simulation of Defect Accumulation in Pulsed Fe and SiC. Fusion Science and Technology, 2003, 43, 384-392.                                          | 1.1 | 3         |
| 156 | Atomistic Study of Boron Clustering in Silicon. Solid State Phenomena, 2002, 82-84, 163-170.                                                                                                                                         | 0.3 | 0         |
| 157 | Pressure-induced structural transformations in a medium-sized silicon nanocrystal by tight-binding molecular dynamics. Journal of Chemical Physics, 2002, 117, 11329-11335.                                                          | 3.0 | 34        |
| 158 | Self-interstitial trapping by carbon complexes in crystalline silicon. Physical Review B, 2002, 66, .                                                                                                                                | 3.2 | 45        |
| 159 | Insight into the materials choice for inertial fusion energy reactors considering radiation damage:<br>Neutron irradiation intensities and basic knowledge from multiscale modeling. Laser and Particle<br>Beams, 2002, 20, 627-631. | 1.0 | 1         |
| 160 | Nanofriction Behavior of Cluster-Assembled Carbon Films. Journal of Nanoscience and Nanotechnology, 2002, 2, 637-643.                                                                                                                | 0.9 | 5         |
| 161 | Microstructure evolution at a triple junction in polycrystalline silicon. Journal of Physics<br>Condensed Matter, 2002, 14, 13003-13008.                                                                                             | 1.8 | 7         |
| 162 | Tight-Binding Theory of Native Point Defects in Silicon. Annual Review of Materials Research, 2002, 32, 271-295.                                                                                                                     | 9.3 | 30        |

| #   | Article                                                                                                                                                         | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Microstructure evolution from the atomic scale up. Computational Materials Science, 2002, 24, 21-27.                                                            | 3.0 | 13        |
| 164 | Atomistic simulations and the requirements of process simulator for novel semiconductor devices.<br>Computational Materials Science, 2002, 24, 213-222.         | 3.0 | 2         |
| 165 | Atomic scale characterization of nanostructured a-C:H films. European Physical Journal B, 2002, 27, 335-340.                                                    | 1.5 | 3         |
| 166 | Nanofriction Behavior of Cluster-Assembled Carbon Films. Journal of Nanoscience and Nanotechnology, 2002, 2, 637-643.                                           | 0.9 | 1         |
| 167 | Atomic-scale characterization of boron diffusion in silicon. Physical Review B, 2001, 64, .                                                                     | 3.2 | 43        |
| 168 | A theoretical study of the smallest tetrahedral carbon schwarzites. Europhysics Letters, 2001, 53, 559-559.                                                     | 2.0 | 0         |
| 169 | Role of defects in the electronic properties of amorphous/crystalline Si interface. Physical Review B, 2001, 64, .                                              | 3.2 | 11        |
| 170 | Energetics and diffusivity of atomic boron in silicon by density-functional-based tight-binding simulations. Computational Materials Science, 2001, 22, 44-48.  | 3.0 | 10        |
| 171 | Simulation of atomic force microscopy of fractal nanostructured carbon films. Europhysics Letters, 2001, 54, 72-76.                                             | 2.0 | 11        |
| 172 | Multiscale Modeling of Radiation Damage of Metals and SIC in Inertial Fusion Reactors. Fusion Science and Technology, 2001, 39, 579-584.                        | 0.6 | 2         |
| 173 | Coupled atomistic-mesoscopic model of polycrystalline plasticity. Materials Research Society<br>Symposia Proceedings, 2001, 677, 761.                           | 0.1 | 0         |
| 174 | A multi-scale atomistic study of the interstitials agglomeration in crystalline Si. Nuclear Instruments<br>& Methods in Physics Research B, 2001, 178, 154-159. | 1.4 | 7         |
| 175 | Triple Junctions in Polycrystalline Silicon: A Numerical Study Based upon Atomistic Simulations. Key<br>Engineering Materials, 2001, 221-222, 307-314.          | 0.4 | 1         |
| 176 | From Point to Extended Defects in Silicon: A Theoretical Study. Solid State Phenomena, 2001, 85-86, 177-202.                                                    | 0.3 | 2         |
| 177 | Self-Interstitial Kinetics and Transient Phenomena in Si Crystals. Solid State Phenomena, 2001, 82-84, 171-176.                                                 | 0.3 | 1         |
| 178 | Low-energy recoils in crystalline silicon: Quantum simulations. Physical Review B, 2001, 63, .                                                                  | 3.2 | 21        |
| 179 | Silicon self-diffusion constants by tight-binding molecular dynamics. Physical Review B, 2001, 64, .                                                            | 3.2 | 21        |
| 180 | Local lattice distortion inSi1â^'xâ^'yGexCyepitaxial layers from x-ray absorption fine structure. Physical Review B, 2001, 63, .                                | 3.2 | 11        |

| #   | Article                                                                                                                                                                           | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Interstitial Cluster Evolution and Transient Phenomena in Si-crystal. , 2001, , 120-123.                                                                                          |     | Ο         |
| 182 | Covalent Cluster-Assembled Carbon Solids. , 2001, , 89-126.                                                                                                                       |     | 4         |
| 183 | Identification of tetrahedrally coordinated atoms in supercooled liquid silicon. Materials Research<br>Society Symposia Proceedings, 2000, 638, 1.                                | 0.1 | 0         |
| 184 | Parallel tight-binding molecular dynamics simulations on symmetric multi-processing platforms.<br>Computer Physics Communications, 2000, 128, 108-117.                            | 7.5 | 16        |
| 185 | Molecular dynamics simulation of defect production in irradiated β-SiC. Journal of Nuclear Materials, 2000, 283-287, 794-798.                                                     | 2.7 | 18        |
| 186 | Triple junctions and elastic stability of polycrystalline silicon. Physical Review B, 2000, 63, .                                                                                 | 3.2 | 17        |
| 187 | Lattice-strain field induced by{311}self-interstitial defects in silicon. Physical Review B, 2000, 62, 1815-1820.                                                                 | 3.2 | 27        |
| 188 | Laser-induced melting of silicon: A tight-binding molecular dynamics simulation. Physical Review B, 2000, 61, 8233-8237.                                                          | 3.2 | 28        |
| 189 | Solid–liquid interface velocity and diffusivity in laser-melt amorphous silicon. Applied Physics<br>Letters, 2000, 77, 2337-2339.                                                 | 3.3 | 33        |
| 190 | Evolution of energetics and bonding of compact self-interstitial clusters in Si. Europhysics Letters, 2000, 50, 608-614.                                                          | 2.0 | 45        |
| 191 | On the electrical activity of sp 2 -bonded grain boundaries in nanocrystalline diamond. Europhysics<br>Letters, 1999, 46, 671-677.                                                | 2.0 | 62        |
| 192 | Growth of Nanostructured Carbon Films by Cluster Assembly. Physical Review Letters, 1999, 83, 776-779.                                                                            | 7.8 | 82        |
| 193 | Role of Extended Vacancy-Vacancy Interaction on the Ripening of Voids in Silicon. Physical Review<br>Letters, 1999, 82, 1720-1723.                                                | 7.8 | 45        |
| 194 | Native defects and their interactions in silicon. Physica B: Condensed Matter, 1999, 273-274, 458-462.                                                                            | 2.7 | 21        |
| 195 | A lattice kinetic Monte Carlo code for the description of vacancy diffusion and self-organization in Si. Nuclear Instruments & Methods in Physics Research B, 1999, 148, 262-267. | 1.4 | 29        |
| 196 | On the effect of quench rate on the structure of amorphous carbon. Computational Materials<br>Science, 1998, 10, 67-74.                                                           | 3.0 | 8         |
| 197 | A source code for tight-binding molecular dynamics simulations. Computational Materials Science, 1998, 12, 278-287.                                                               | 3.0 | 29        |
| 198 | On the Use of the Reverse Monte Carlo Technique to Generate Amorphous Carbon Structures.<br>International Journal of Modern Physics C, 1998, 09, 917-926.                         | 1.7 | 15        |

| #   | Article                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Formation and annihilation of a bond defect in silicon: Anab initioquantum-mechanical characterization. Physical Review B, 1998, 57, 170-177.                                           | 3.2 | 73        |
| 200 | Parallel tight-binding molecular dynamics code based on integration of HPF and optimized parallel libraries. Lecture Notes in Computer Science, 1998, , 104-111.                        | 1.3 | 0         |
| 201 | Structural and binding properties of vacancy clusters in silicon. Europhysics Letters, 1998, 43, 695-700.                                                                               | 2.0 | 65        |
| 202 | A theoretical study of the smallest tetrahedral carbon schwarzites. Europhysics Letters, 1998, 44, 525-530.                                                                             | 2.0 | 26        |
| 203 | Structure and chemical order of bulkSi1â <sup>~</sup> xCxamorphous alloys. Physical Review B, 1998, 58, 10357-10362.                                                                    | 3.2 | 34        |
| 204 | Interaction between a monovacancy and a vacancy cluster in silicon. Physical Review B, 1998, 57, 8767-8769.                                                                             | 3.2 | 33        |
| 205 | Correlation between atomic structure and localized gap states in silicon grain boundaries. Physical<br>Review B, 1998, 57, 6247-6250.                                                   | 3.2 | 38        |
| 206 | The Role of Cluster Size and Topology on the Ripening of Defect Aggregates in Crystalline Si. Materials<br>Research Society Symposia Proceedings, 1998, 538, 241.                       | 0.1 | 1         |
| 207 | Understanding Structure and Electronic Properties of Extended Self-Interstitial Defects in Silicon.<br>Materials Research Society Symposia Proceedings, 1998, 538, 353.                 | 0.1 | Ο         |
| 208 | Silicon Self-Interstitial Clusters. Materials Research Society Symposia Proceedings, 1998, 538, 413.                                                                                    | 0.1 | 1         |
| 209 | Modelling Point Defects Diffusion and Interaction in Silicon: The Tight-Binding Molecular Dynamics<br>Approach. Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1211-1214. | 0.9 | Ο         |
| 210 | Structural Disorder and Localized Gap States in Silicon Grain Boundaries from a Tight-Binding Model.<br>Materials Research Society Symposia Proceedings, 1997, 491, 513.                | 0.1 | 0         |
| 211 | Migration of Atomic and Molecular Hydrogen in SiO <sub>2</sub> : A Molecular Dynamics Study.<br>Zeitschrift Fur Elektrotechnik Und Elektrochemie, 1997, 101, 1229-1231.                 | 0.9 | 1         |
| 212 | Formation and Binding Energies of Vacancy Clusters in Silicon. Materials Research Society Symposia<br>Proceedings, 1997, 469, 205.                                                      | 0.1 | 2         |
| 213 | Large Scale Atomistic Simulations using the Tight Binding Approach. Materials Research Society<br>Symposia Proceedings, 1997, 491, 481.                                                 | 0.1 | 0         |
| 214 | Carbon Schwarzites: Properties and Growth Simulation from Fullerene Fragments. Materials<br>Research Society Symposia Proceedings, 1997, 491, 529.                                      | 0.1 | 0         |
| 215 | Prediction of newsp2andsp2/sp3hollow carbon crystals. Journal of Chemical Physics, 1997, 106, 2311-2316.                                                                                | 3.0 | 16        |
| 216 | Routes to carbon schwarzites from fullerene fragments. Europhysics Letters, 1997, 39, 269-274.                                                                                          | 2.0 | 29        |

| #   | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Migration of atomic hydrogen in crystalline and amorphous SiO2: a molecular dynamics study.<br>Journal of Non-Crystalline Solids, 1997, 216, 30-35.                                                                   | 3.1 | 10        |
| 218 | Structural properties of silica surface: a classical molecular dynamics study. Journal of Non-Crystalline Solids, 1997, 220, 164-168.                                                                                 | 3.1 | 21        |
| 219 | Intrinsic point defects in crystalline silicon: Tight-binding molecular dynamics studiesof<br>self-diffusion, interstitial-vacancy recombination, and formation volumes. Physical Review B, 1997, 55,<br>14279-14289. | 3.2 | 256       |
| 220 | A theoretical investigation on the chemical bonding of interstitial and vacancy defects in silicon<br>during their migration. Nuclear Instruments & Methods in Physics Research B, 1997, 127-128, 235-238.            | 1.4 | 2         |
| 221 | Hydrogen diffusion in crystalline SiO2. Chemical Physics Letters, 1997, 264, 435-440.                                                                                                                                 | 2.6 | 16        |
| 222 | Quantum Mechanical Simulations in Semiconductor Materials Science:. , 1997, , 79-85.                                                                                                                                  |     | 0         |
| 223 | Hydrogen bonding and migration in amorphous silicon. Europhysics Letters, 1996, 36, 295-300.                                                                                                                          | 2.0 | 18        |
| 224 | Hollow Diamonds from Fullerenes. Materials Science Forum, 1996, 232, 247-274.                                                                                                                                         | 0.3 | 24        |
| 225 | Elastic constants in defected and amorphous silicon by tight-binding molecular dynamics. , 1996, , 189-192.                                                                                                           |     | 1         |
| 226 | Bonding and diffusion in hydrogenated amorphous silicon by tight-binding molecular dynamics.<br>Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 36, 264-267.                | 3.5 | 0         |
| 227 | Elastic constants in defected and amorphous silicon by tight-binding molecular dynamics. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 37, 189-192.                    | 3.5 | 3         |
| 228 | A parallel implementation of tight-binding molecular dynamics. Materials Science and Engineering B:<br>Solid-State Materials for Advanced Technology, 1996, 37, 228-231.                                              | 3.5 | 5         |
| 229 | Calculation of elastic constants in defected and amorphous silicon by quantum simulations. Physical<br>Review B, 1996, 54, 11857-11860.                                                                               | 3.2 | 21        |
| 230 | TIGHT-BINDING MOLECULAR DYNAMICS. , 1996, , 147-183.                                                                                                                                                                  |     | 19        |
| 231 | Large Scale Simulations Using Tight Binding Molecular Dynamics. , 1996, , 495-510.                                                                                                                                    |     | 1         |
| 232 | Structure, energetics, clustering and migration of point-defects in silicon. Physica Scripta, 1996, T66, 207-211.                                                                                                     | 2.5 | 2         |
| 233 | Bonding and diffusion in hydrogenated amorphous silicon by tight-binding molecular dynamics. , 1996, , 264-267.                                                                                                       |     | 0         |
| 234 | Tight-Binding Molecular Dynamics Simulations on Point Defects Diffusion and Interactions in Crystalline Silicon. Materials Research Society Symposia Proceedings, 1995, 396, 33.                                      | 0.1 | 3         |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | A Parallel Implementation of Tight-Binding Molecular Dynamics Based on Reordering of Atoms and the<br>Lanczos Eigen-Solver. Materials Research Society Symposia Proceedings, 1995, 408, 107. | 0.1 | 1         |
| 236 | Hydrogen Diffusion in Quartz: A Molecular Dynamics Investigation. Materials Research Society<br>Symposia Proceedings, 1995, 408, 515.                                                        | 0.1 | 1         |
| 237 | Amorphization of fullerite crystals. Chemical Physics Letters, 1995, 238, 281-285.                                                                                                           | 2.6 | 9         |
| 238 | A first-principles derived parametrization for the adiabatic bond charge model. Solid State Communications, 1995, 96, 49-52.                                                                 | 1.9 | 8         |
| 239 | Phonon properties and Raman response of (113) GaAs/AlAs corrugated superlattices. Physical Review B, 1995, 51, 1647-1652.                                                                    | 3.2 | 17        |
| 240 | Electronic states in one-dimensional polymeric superlattices: A tight-binding approach. Physical<br>Review B, 1995, 51, 1624-1630.                                                           | 3.2 | 18        |
| 241 | Solidâ€ŧoâ€liquid phase change and fragmentation in C60. Journal of Chemical Physics, 1995, 102, 2151-2155.                                                                                  | 3.0 | 18        |
| 242 | Defect-Induced Amorphization in Silicon. Europhysics Letters, 1995, 29, 623-628.                                                                                                             | 2.0 | 22        |
| 243 | Hydrogen diffusion in crystalline silicon: A tight-binding molecular dynamics study. Phase<br>Transitions, 1994, 52, 137-149.                                                                | 1.3 | 5         |
| 244 | Tight-binding molecular dynamics in liquid III-V compounds. II. Simulations for GaAs and GaSb. Journal of Physics Condensed Matter, 1994, 6, 5255-5271.                                      | 1.8 | 13        |
| 245 | Confinement effects on the phonon spectrum of thin InAs/InP strained single quantum wells.<br>Semiconductor Science and Technology, 1994, 9, 256-262.                                        | 2.0 | 5         |
| 246 | Tight-binding molecular dynamics in liquid III-V compounds. I. Potential generation. Journal of Physics<br>Condensed Matter, 1994, 6, 5243-5254.                                             | 1.8 | 18        |
| 247 | Lattice dynamics and Raman response of (113) GaAs/AlAs superlattices. Physical Review B, 1994, 49, 10362-10372.                                                                              | 3.2 | 21        |
| 248 | Hydrogen Diffusion in Silicon from Tight-Binding Molecular Dynamics. Physical Review Letters, 1994,<br>73, 1636-1639.                                                                        | 7.8 | 72        |
| 249 | Study of vibrational properties of InGaAsP by farâ€infrared reflectivity. Journal of Applied Physics, 1994, 75, 3085-3088.                                                                   | 2.5 | 4         |
| 250 | Barrier height versus confinement efficiency for the optical phonons in GaAs/AlxGa1â^'xAs<br>heterostructures. Physical Review B, 1994, 50, 11684-11686.                                     | 3.2 | 3         |
| 251 | Structure and properties of amorphous gallium arsenide by tight-binding molecular dynamics.<br>Physical Review B, 1994, 50, 4371-4377.                                                       | 3.2 | 47        |
| 252 | Pre-fragmentation dynamics of C60. A molecular dynamics investigation. Chemical Physics Letters, 1994, 225, 191-195.                                                                         | 2.6 | 20        |

| #   | Article                                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Growth and structural characterization of thin Ge films by molecular dynamic simulation. Materials<br>Science and Engineering B: Solid-State Materials for Advanced Technology, 1994, 26, 61-65.                                                               | 3.5 | 0         |
| 254 | Efficient Linear Scaling Algorithm for Tight-Binding Molecular Dynamics. Physical Review Letters, 1994, 73, 122-125.                                                                                                                                           | 7.8 | 412       |
| 255 | Structure, Stability and Properties of Covalent C <sub>34</sub> , C <sub>20</sub> , and C <sub>22</sub><br>Crystals. Materials Research Society Symposia Proceedings, 1994, 359, 157.                                                                          | 0.1 | 2         |
| 256 | Structural and Electronic Properties of Damaged Fullerite Crystals. Materials Research Society<br>Symposia Proceedings, 1994, 359, 475.                                                                                                                        | 0.1 | 0         |
| 257 | Computer Simulation of Thermal Annealing Effects on Self Implanted Silicon. Materials Research<br>Society Symposia Proceedings, 1994, 373, 463.                                                                                                                | 0.1 | Ο         |
| 258 | Simulation of the Amorphous-Silicon Properties and Their Dependence on Sample Preparation.<br>Europhysics Letters, 1993, 22, 107-112.                                                                                                                          | 2.0 | 64        |
| 259 | Structural Properties of Liquid and Amorphous GaAs by Tight-Binding Molecular Dynamics.<br>Europhysics Letters, 1993, 24, 659-664.                                                                                                                             | 2.0 | 30        |
| 260 | Structural and electronic properties of strained Si/GaAs heterostructures. Physical Review B, 1993, 48, 12047-12052.                                                                                                                                           | 3.2 | 19        |
| 261 | Band offsets engineering at semiconductor heterojunctions. , 1993, , .                                                                                                                                                                                         |     | 1         |
| 262 | Defect Induced Amortization in Silicon: A Tight Binding Molecular Dynamics Simulation. Materials<br>Research Society Symposia Proceedings, 1993, 316, 223.                                                                                                     | 0.1 | 1         |
| 263 | Preparation, Structure, And Electronic Properties Of Amorphous Gaas By Tight-Binding Molecular<br>Dynamics. Materials Research Society Symposia Proceedings, 1993, 321, 135.                                                                                   | 0.1 | 0         |
| 264 | Defect Induced Amortization in Silicon: A Tight Binding Molecular Dynamics Simulation. Materials<br>Research Society Symposia Proceedings, 1993, 321, 423.                                                                                                     | 0.1 | 2         |
| 265 | Influence of Interface Disorder on the Raman Response of {113}-Oriented Superlattices. Materials<br>Research Society Symposia Proceedings, 1993, 326, 199.                                                                                                     | 0.1 | 0         |
| 266 | Compositional Disorder in AlGaAs Superlattices: Bond Charge Model Calculations of Vibrational Features and Optical Spectra. , 1993, , 279-311.                                                                                                                 |     | 0         |
| 267 | Chemistry, interface features and strain: how do they affect the valence band offset at Si/Ge interfaces?. Physica Scripta, 1992, T45, 181-185.                                                                                                                | 2.5 | 0         |
| 268 | Disorder configurations from vibrational structure in Al <sub>x</sub> Ga <sub>1â^'x</sub> ,As systems.<br>The Philosophical Magazine: Physics of Condensed Matter B, Statistical Mechanics, Electronic, Optical<br>and Magnetic Properties, 1992, 65, 325-337. | 0.6 | 8         |
| 269 | Quantum Simulation of Amorphous Silicon: Preparation, Structure and Properties. Materials<br>Research Society Symposia Proceedings, 1992, 291, 61.                                                                                                             | 0.1 | 1         |
| 270 | Raman response of GaAs/AlAs superlattices with AlxGa1â^'xAs intralayers. Superlattices and Microstructures, 1992, 12, 523-525.                                                                                                                                 | 3.1 | 3         |

| #   | Article                                                                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Dynamical effects of biaxial strain in thin Cu/Ni(111) superlattices. Journal of Applied Physics, 1991, 70, 2079-2085.                                                                                                                         | 2.5 | 7         |
| 272 | Valence-band offsets at strained Si/Ge interfaces. Physical Review B, 1991, 44, 5572-5579.                                                                                                                                                     | 3.2 | 177       |
| 273 | Order-disorder interplay in Alï‡Ga1â^'ï‡As superlattices: Calculation of infrared and Raman spectra.<br>Superlattices and Microstructures, 1991, 10, 153-156.                                                                                  | 3.1 | 2         |
| 274 | Vibrational properties and infrared spectra ofAlxGa1â^'xAs systems. I. Average-t-matrix approximation versus supercell calculation for homogeneous alloys. Physical Review B, 1991, 43, 14447-14456.                                           | 3.2 | 19        |
| 275 | Vibrational properties and infrared spectra ofAlxGa1â^'xAs systems. II. Order and disorder features in superlattice configuration. Physical Review B, 1991, 43, 14457-14464.                                                                   | 3.2 | 14        |
| 276 | Geometric construction of large dynamical matrices: Applications to reconstructed surfaces, superlattices and mixed crystals. Superlattices and Microstructures, 1990, 7, 139-146.                                                             | 3.1 | 14        |
| 277 | Absolute deformation potentials in semiconductors. Physical Review B, 1990, 41, 12358-12361.                                                                                                                                                   | 3.2 | 49        |
| 278 | Lattice dynamics of homopolar/heteropolar semiconductor superlattices: Ge/GaAs and Ge/AlAs.<br>Surface Science, 1990, 234, 169-180.                                                                                                            | 1.9 | 3         |
| 279 | Interplanar force constants in GaAs and Ge: Bond-Charge-Model vs.ab-initiocalculations. Physica<br>Scripta, 1989, 40, 238-241.                                                                                                                 | 2.5 | 6         |
| 280 | A planar approach to the lattice dynamics of polar semiconductor superlattices. Surface Science, 1989, 221, 486-512.                                                                                                                           | 1.9 | 15        |
| 281 | Infrared characterization of silicon dioxide films obtained by chemical vapour deposition. Nuovo<br>Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics,<br>Biophysics, 1988, 10, 1487-1496. | 0.4 | 0         |
| 282 | Dispersive-linear-chain approach to the interpretation of surface phonons: Application to GaSe(001) andTaSe2(001). Physical Review B, 1988, 37, 3025-3036.                                                                                     | 3.2 | 12        |
| 283 | Surface phonons in Si(111) + H(1×1). Physical Review B, 1988, 38, 3305-3310.                                                                                                                                                                   | 3.2 | 68        |
| 284 | Phonon calculations in superperiodic structures: The surface Green-function matching approach.<br>Physical Review B, 1988, 38, 3172-3179.                                                                                                      | 3.2 | 20        |
| 285 | Surface phonon calculation for Si(111): H(1×1). Physica Scripta, 1988, 37, 768-772.                                                                                                                                                            | 2.5 | 45        |
| 286 | Electric-field effects on the infra-red absorption of H in a SiO2 film. Nuovo Cimento Della Societa<br>Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1986, 7,<br>87-97.                         | 0.4 | 1         |
| 287 | The Calculation of Free-Energiesin Semiconductors: Defects, Transitionsand Phase Diagrams. , 0, ,<br>115-140.                                                                                                                                  |     | 1         |