
Wenzhong Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1603893/publications.pdf Version: 2024-02-01

WENZHONG TANG

#	Article	IF	CITATIONS
1	Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal. Chemosphere, 2022, 286, 131564.	8.2	75
2	Twenty years of China's water pollution control: Experiences and challenges. Chemosphere, 2022, 295, 133875.	8.2	137
3	Metal(loid) flux change in Dongting Lake due to the operation of Three Gorges Dam, China. Environmental Pollution, 2022, 306, 119342.	7.5	6
4	A Comparison Study of the Nutrient Fluxes in a Newly Impounded Riverine Lake (Longjing Lake): Model Calculation and Sediment Incubation. Water (Switzerland), 2022, 14, 2015.	2.7	0
5	Spatial Distributions, Sources and Risks of Polycyclic Aromatic Hydrocarbons in Sediments from Ziya River System, Northern China. Bulletin of Environmental Contamination and Toxicology, 2021, 106, 183-189.	2.7	3
6	Spatial and temporal distribution of Mo in the overlying water of a reservoir downstream from mining area. Journal of Environmental Sciences, 2021, 102, 256-262.	6.1	5
7	Molybdenum contamination dispersion from mining site to a reservoir. Ecotoxicology and Environmental Safety, 2021, 208, 111631.	6.0	19
8	A review on China's constructed wetlands in recent three decades: Application and practice. Journal of Environmental Sciences, 2021, 104, 53-68.	6.1	37
9	Assessment of human health risk due to lead in urban park soils using inÂvitro methods. Chemosphere, 2021, 269, 128714.	8.2	12
10	Key strategies for the restoration of Dongting Lake in Middle Yangtze, China. Journal of Environmental Sciences, 2021, 100, 360-362.	6.1	7
11	Net anthropogenic nitrogen and phosphorus inputs in Pearl River Delta region (2008–2016). Journal of Environmental Management, 2021, 282, 111952.	7.8	20
12	Assessment methodology applied to arsenic pollution in lake sediments combining static and dynamic processes. Chemosphere, 2021, 277, 130260.	8.2	9
13	New insights into restoring microbial communities by side-stream supersaturated oxygenation to improve the resilience of rivers affected by combined sewer overflows. Science of the Total Environment, 2021, 782, 146903.	8.0	5
14	Mercury pollution of riverine sediments in a typical irrigation area in the Beijing–Tianjin–Hebei region. Environmental Science and Pollution Research, 2020, 27, 8732-8739.	5.3	3
15	Algal blooms in the middle and lower Han River: Characteristics, early warning and prevention. Science of the Total Environment, 2020, 706, 135293.	8.0	54
16	In situ, high-resolution measurement of labile phosphate in sediment porewater using the DET technique coupled with optimized imaging densitometry. Environmental Research, 2020, 191, 110107.	7.5	4
17	Evaluating heavy metal contamination of riverine sediment cores in different land-use areas. Frontiers of Environmental Science and Engineering, 2020, 14, 1.	6.0	13
18	Determining cadmium bioavailability in sediment profiles using diffusive gradients in thin films. Journal of Environmental Sciences, 2020, 91, 160-167.	6.1	11

#	Article	IF	CITATIONS
19	Analysis of biosorption and biotransformation mechanism of Pseudomonas chengduensis strain MBR under Cd(II) stress from genomic perspective. Ecotoxicology and Environmental Safety, 2020, 198, 110655.	6.0	21
20	Disinfection threatens aquatic ecosystems. Science, 2020, 368, 146-147.	12.6	84
21	Using biochar capping to reduce nitrogen release from sediments in eutrophic lakes. Science of the Total Environment, 2019, 646, 93-104.	8.0	60
22	Comprehensive analysis of nitrogen distributions and ammonia nitrogen release fluxes in the sediments of Baiyangdian Lake, China. Journal of Environmental Sciences, 2019, 76, 319-328.	6.1	52
23	Risk assessment for and microbial community changes in Farmland soil contaminated with heavy metals and metalloids. Ecotoxicology and Environmental Safety, 2019, 185, 109685.	6.0	47
24	Effects of the pyrolysis temperature on the biotoxicity of Phyllostachys pubescens biochar in the aquatic environment. Journal of Hazardous Materials, 2019, 376, 48-57.	12.4	30
25	In situ biochar capping is feasible to control ammonia nitrogen release from sediments evaluated by DGT. Chemical Engineering Journal, 2019, 374, 811-821.	12.7	33
26	Identifying sediment-associated toxicity in rivers affected by multiple pollutants from the contaminant bioavailability. Ecotoxicology and Environmental Safety, 2019, 171, 84-91.	6.0	25
27	Relationship of bioaccessibility and fractionation of cadmium in long-term spiked soils for health risk assessment based on four in vitro gastrointestinal simulation models. Science of the Total Environment, 2018, 631-632, 1582-1589.	8.0	31
28	Spatial distribution, fractionation, toxicity and risk assessment of surface sediments from the Baiyangdian Lake in northern China. Ecological Indicators, 2018, 90, 633-642.	6.3	47
29	Phosphorus transformations at the sediment–water interface in shallow freshwater ecosystems caused by decomposition of plant debris. Chemosphere, 2018, 201, 328-334.	8.2	29
30	Evaluating the diffusive gradients in thin films technique for the prediction of metal bioaccumulation in plants grown in river sediments. Journal of Hazardous Materials, 2018, 344, 360-368.	12.4	18
31	Assessment of potential bioavailability of heavy metals in the sediments of land-freshwater interfaces by diffusive gradients in thin films. Chemosphere, 2018, 191, 218-225.	8.2	25
32	Remediation effectiveness of Phyllostachys pubescens biochar in reducing the bioavailability and bioaccumulation of metals in sediments. Environmental Pollution, 2018, 242, 1768-1776.	7.5	49
33	Evidence for organic phosphorus activation and transformation at the sediment–water interface during plant debris decomposition. Science of the Total Environment, 2017, 583, 458-465.	8.0	48
34	Do NH 3 and chemical oxygen demand induce continuous release of phosphorus from sediment in heavily polluted rivers?. Ecological Engineering, 2017, 102, 24-30.	3.6	13
35	Heavy metal concentrations and speciation in riverine sediments and the risks posed in three urban belts in the Haihe Basin. Ecotoxicology and Environmental Safety, 2017, 139, 263-271.	6.0	82
36	Comparison of cadmium and lead sorption by Phyllostachys pubescens biochar produced under a low-oxygen pyrolysis atmosphere. Bioresource Technology, 2017, 238, 352-360.	9.6	117

Wenzhong Tang

#	Article	IF	CITATIONS
37	Phosphorus distribution and sorption-release characteristics of the soil from newly submerged areas in the Danjiangkou reservoir, China. Ecological Engineering, 2017, 99, 374-380.	3.6	11
38	A scheme to scientifically and accurately assess cadmium pollution of river sediments, through consideration of bioavailability when assessing ecological risk. Chemosphere, 2017, 185, 602-609.	8.2	12
39	Assessment of the sediment quality of freshwater ecosystems in eastern China based on spatial and temporal variation of nutrients. Environmental Science and Pollution Research, 2017, 24, 19412-19421.	5.3	12
40	Comprehensive analysis of mercury pollution in the surface riverine sediments in the Haihe Basin, China. Environmental Science and Pollution Research, 2017, 24, 20794-20802.	5.3	8
41	Overestimation of orthophosphate monoesters in lake sediment by solution 31P-NMR analysis. Environmental Science and Pollution Research, 2017, 24, 25469-25474.	5.3	7
42	Using Chironomus dilutus to identify toxicants and evaluate the ecotoxicity of sediments in the Haihe River Basin. Scientific Reports, 2017, 7, 1438.	3.3	10
43	Will heavy metals in the soils of newly submerged areas threaten the water quality of Danjiangkou Reservoir, China?. Ecotoxicology and Environmental Safety, 2017, 144, 380-386.	6.0	13
44	Basin-scale comprehensive assessment of cadmium pollution, risk, and toxicity in riverine sediments of the Haihe Basin in north China. Ecological Indicators, 2017, 81, 295-301.	6.3	23
45	Pollution, toxicity, and ecological risk of heavy metals in surface river sediments of a large basin undergoing rapid economic development. Environmental Toxicology and Chemistry, 2017, 36, 1149-1155.	4.3	16
46	Distributions, Early Diagenesis, and Spatial Characteristics of Amino Acids in Sediments of Multi-Polluted Rivers: A Case Study in the Haihe River Basin, China. International Journal of Environmental Research and Public Health, 2016, 13, 234.	2.6	1
47	Heavy metal in sediments of Ziya River in northern China: distribution, potential risks, and source apportionment. Environmental Science and Pollution Research, 2016, 23, 23511-23521.	5.3	8
48	Heavy metal speciation, risk, and bioavailability in the sediments of rivers with different pollution sources and intensity. Environmental Science and Pollution Research, 2016, 23, 23630-23637.	5.3	11
49	Aeolian input of phosphorus to a remote lake induced increase of primary production at the Tibetan Plateau. RSC Advances, 2016, 6, 96853-96860.	3.6	3
50	Concentrations, diffusive fluxes and toxicity of heavy metals in pore water of the Fuyang River, Haihe Basin. Ecotoxicology and Environmental Safety, 2016, 127, 80-86.	6.0	56
51	Heavy metals in estuarine surface sediments of the Hai River Basin, variation characteristics, chemical speciation and ecological risk. Environmental Science and Pollution Research, 2016, 23, 7869-7879.	5.3	28
52	Distributions, fluxes, and toxicities of heavy metals in sediment pore water from tributaries of the Ziya River system, northern China. Environmental Science and Pollution Research, 2016, 23, 5516-5526.	5.3	19
53	Effects of Nitrogen Pollution on Periphyton Distribution, Elemental Composition and Assemblage Shifts in River Ecosystems. Clean - Soil, Air, Water, 2015, 43, 1375-1380.	1.1	3
54	Accumulation and risk assessment of sedimentary trace metalsÂin response to industrialization fromÂthe tributaries of Fuyang River System. Environmental Earth Sciences, 2015, 73, 1975-1982.	2.7	12

Wenzhong Tang

#	Article	IF	CITATIONS
55	Dynamics of heavy metals and phosphorus in the pore water of estuarine sediments following agricultural intensification in Chao Lake Valley. Environmental Science and Pollution Research, 2015, 22, 7948-7953.	5.3	8
56	Nitrogen mineralization and geochemical characteristics of amino acids in surface sediments of a typical polluted area in the Haihe River Basin, China. Environmental Science and Pollution Research, 2015, 22, 17975-17986.	5.3	25
57	Water resources: the prerequisite for ecological restoration of rivers in the Hai River Basin, northern China. Environmental Science and Pollution Research, 2015, 22, 1359-1365.	5.3	12
58	Past atmospheric trace metal deposition in a remote lake (Lake Ngoring) at the headwater areas of Yellow River, Tibetan Plateau. Environmental Earth Sciences, 2014, 72, 399-406.	2.7	11
59	Phosphorus-31 nuclear magnetic resonance assignments of biogenic phosphorus compounds in sediment of an artificial Fuyangxin River, China. Environmental Science and Pollution Research, 2014, 21, 3803-3812.	5.3	12
60	Accumulation and risk of heavy metals in relation to agricultural intensification in the river sediments of agricultural regions. Environmental Earth Sciences, 2014, 71, 3945-3951.	2.7	41
61	Heavy Metal Contamination in the Surface Sediments of Representative Limnetic Ecosystems in Eastern China. Scientific Reports, 2014, 4, 7152.	3.3	92
62	Heavy Metal Accumulation by Periphyton Is Related to Eutrophication in the Hai River Basin, Northern China. PLoS ONE, 2014, 9, e86458.	2.5	18
63	Heavy Metal Pollution Characteristics of Surface Sediments in Different Aquatic Ecosystems in Eastern China: A Comprehensive Understanding. PLoS ONE, 2014, 9, e108996.	2.5	25
64	Heavy metal contamination of overlying waters and bed sediments of Haihe Basin in China. Ecotoxicology and Environmental Safety, 2013, 98, 317-323.	6.0	73
65	Biological invasions induced phosphorus release from sediments in freshwater ecosystems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436, 873-880.	4.7	10
66	Nitrogen removal from polluted river water in a novel ditch–wetland–pond system. Ecological Engineering, 2013, 60, 135-139.	3.6	16
67	Assessment of Preparation Methods for Organic Phosphorus Analysis in Phosphorus-Polluted Fe/Al-Rich Haihe River Sediments Using Solution 31P-NMR. PLoS ONE, 2013, 8, e76525.	2.5	13
68	Heavy metal sources and associated risk in response to agricultural intensification in the estuarine sediments of Chaohu Lake Valley, East China. Journal of Hazardous Materials, 2010, 176, 945-951.	12.4	182
69	Phosphorus Buildup and Release Risk Associated with Agricultural Intensification in the Estuarine Sediments of Chaohu Lake Valley, Eastern China. Clean - Soil, Air, Water, 2010, 38, 336-343.	1.1	12