
Winston D Byblow

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1603803/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The <scp>ENIGMA</scp> Stroke Recovery Working Group: Big data neuroimaging to study brain–behavior relationships after stroke. Human Brain Mapping, 2022, 43, 129-148.	1.9	54
2	Fast Outcome Categorization of the Upper Limb After Stroke. Stroke, 2022, 53, 578-585.	1.0	3
3	OSARI, an Open-Source Anticipated Response Inhibition Task. Behavior Research Methods, 2022, 54, 1530-1540.	2.3	5
4	Decoupling countermands nonselective response inhibition during selective stopping. Journal of Neurophysiology, 2022, 127, 188-203.	0.9	8
5	Investigating the structure-function relationship of the corticomotor system early after stroke using machine learning. NeuroImage: Clinical, 2022, 33, 102935.	1.4	1
6	Stopping Interference in Response Inhibition: Behavioral and Neural Signatures of Selective Stopping. Journal of Neuroscience, 2022, 42, 156-165.	1.7	17
7	The role of interhemispheric communication during complete and partial cancellation of bimanual responses. Journal of Neurophysiology, 2021, 125, 875-886.	0.9	15
8	The modulation of short and long-latency interhemispheric inhibition during bimanually coordinated movements. Experimental Brain Research, 2021, 239, 1507-1516.	0.7	5
9	Dopamine genetic risk score predicts impulse control behaviors in Parkinson's disease. Clinical Parkinsonism & Related Disorders, 2021, 5, 100113.	0.5	3
10	Special issue in honor of John C. Rothwell. Experimental Brain Research, 2020, 238, 1591-1592.	0.7	0
11	Neurochemical balance and inhibition at the subacute stage after stroke. Journal of Neurophysiology, 2020, 123, 1775-1790.	0.9	16
12	Unravelling the Modulation of Intracortical Inhibition During Motor Imagery: An Adaptive Threshold-Hunting Study. Neuroscience, 2020, 434, 102-110.	1.1	15
13	Neurophysiology of motor skill learning in chronic stroke. Clinical Neurophysiology, 2020, 131, 791-798.	0.7	10
14	Advances and challenges in stroke rehabilitation. Lancet Neurology, The, 2020, 19, 348-360.	4.9	402
15	Primary motor cortex function and motor skill acquisition: insights from threshold-hunting TMS. Experimental Brain Research, 2020, 238, 1745-1757.	0.7	10
16	Neurophysiological mechanisms underlying motor skill learning in young and older adults. Experimental Brain Research, 2019, 237, 2331-2344.	0.7	27
17	Between-hand coupling during response inhibition. Journal of Neurophysiology, 2019, 122, 1357-1366.	0.9	14
18	PREP2 Algorithm Predictions Are Correct at 2 Years Poststroke for Most Patients. Neurorehabilitation and Neural Repair, 2019, 33, 635-642.	1.4	35

#	Article	IF	CITATIONS
19	Prediction Tools for Stroke Rehabilitation. Stroke, 2019, 50, 3314-3322.	1.0	108
20	Letter by Byblow and Stinear Regarding Article "Taking Proportional Out of Stroke Recovery― Stroke, 2019, 50, e125.	1.0	1
21	The Influence of Primary Motor Cortex Inhibition on Upper Limb Impairment and Function in Chronic Stroke: A Multimodal Study. Neurorehabilitation and Neural Repair, 2019, 33, 130-140.	1.4	16
22	Somatosensory and transcranial direct current stimulation effects on manual dexterity and motor cortex function: A metaplasticity study. Brain Stimulation, 2019, 12, 938-947.	0.7	4
23	Effects of arm weight support on neuromuscular activation during reaching in chronic stroke patients. Experimental Brain Research, 2019, 237, 3391-3408.	0.7	13
24	Adaptive threshold hunting for the effects of transcranial direct current stimulation on primary motor cortex inhibition. Experimental Brain Research, 2018, 236, 1651-1663.	0.7	5
25	Revisiting interhemispheric imbalance in chronic stroke: A tDCS study. Clinical Neurophysiology, 2018, 129, 42-50.	0.7	50
26	Response inhibition activates distinct motor cortical inhibitory processes. Journal of Neurophysiology, 2018, 119, 877-886.	0.9	35
27	Conventional or threshold-hunting TMS? A tale of two SICIs. Brain Stimulation, 2018, 11, 1296-1305.	0.7	22
28	Fatigue Influences the Recruitment, but Not Structure, of Muscle Synergies. Frontiers in Human Neuroscience, 2018, 12, 217.	1.0	33
29	Adaptive threshold hunting reveals differences in interhemispheric inhibition between young and older adults. European Journal of Neuroscience, 2018, 48, 2247-2258.	1.2	9
30	Implementing biomarkers to predict motor recovery after stroke. NeuroRehabilitation, 2018, 43, 41-50.	0.5	30
31	Proportional Motor Recovery After Stroke. Stroke, 2017, 48, 795-798.	1.0	109
32	Predicting Recovery Potential for Individual Stroke Patients Increases Rehabilitation Efficiency. Stroke, 2017, 48, 1011-1019.	1.0	146
33	GABA and primary motor cortex inhibition in young and older adults: a multimodal reliability study. Journal of Neurophysiology, 2017, 118, 425-433.	0.9	62
34	Proportional Recovery From Lower Limb Motor Impairment After Stroke. Stroke, 2017, 48, 1400-1403.	1.0	85
35	PREP2: A biomarkerâ€based algorithm for predicting upper limb function after stroke. Annals of Clinical and Translational Neurology, 2017, 4, 811-820.	1.7	233
36	It Is Difficult to Make Predictions, Especially About the Future. Stroke, 2017, 48, 3187-3188.	1.0	4

#	Article	IF	CITATIONS
37	Propriospinal cutaneous-induced EMG suppression is unaltered by anodal tDCS of healthy motor cortex. Clinical Neurophysiology, 2017, 128, 1608-1616.	0.7	1
38	Posture interacts with arm weight support to modulate corticomotor excitability to the upper limb. Experimental Brain Research, 2017, 235, 97-107.	0.7	4
39	The Role of TMS for Predicting Motor Recovery and Outcomes After Stroke. Translational Medicine Research, 2017, , 537-553.	0.0	2
40	An Activation Threshold Model for Response Inhibition. PLoS ONE, 2017, 12, e0169320.	1.1	27
41	Fluoxetine Does Not Enhance Visual Perceptual Learning and Triazolam Specifically Impairs Learning Transfer. Frontiers in Human Neuroscience, 2016, 10, 532.	1.0	11
42	Acute aerobic exercise modulates primary motor cortex inhibition. Experimental Brain Research, 2016, 234, 3669-3676.	0.7	55
43	Are ipsilateral motor evoked potentials subject to intracortical inhibition?. Journal of Neurophysiology, 2016, 115, 1735-1739.	0.9	7
44	Threshold tracking primary motor cortex inhibition: the influence of current direction. European Journal of Neuroscience, 2016, 44, 2614-2621.	1.2	38
45	What's the perfect dose for practice to make perfect?. Annals of Neurology, 2016, 80, 339-341.	2.8	4
46	Proactive modulation of long-interval intracortical inhibition during response inhibition. Journal of Neurophysiology, 2016, 116, 859-867.	0.9	33
47	Can motor imagery and hypnotic susceptibility explain Conversion Disorder with motor symptoms?. Neuropsychologia, 2016, 89, 287-298.	0.7	8
48	Neurophysiological and behavioural effects of dual-hemisphere transcranial direct current stimulation on the proximal upper limb. Experimental Brain Research, 2016, 234, 1419-1428.	0.7	6
49	Dopamine Gene Profiling to Predict Impulse Control and Effects of Dopamine Agonist Ropinirole. Journal of Cognitive Neuroscience, 2016, 28, 909-919.	1.1	29
50	Primed Physical Therapy Enhances Recovery of Upper Limb Function in Chronic Stroke Patients. Neurorehabilitation and Neural Repair, 2016, 30, 339-348.	1.4	59
51	Primed physiotherapy enhances recovery of upper limb function in chronic stroke patients. Brain Stimulation, 2015, 8, 362.	0.7	1
52	Proportional upper limb recovery after stroke is predicated upon corticospinal tract integrity. Brain Stimulation, 2015, 8, 429-430.	0.7	2
53	Effects of anodal tDCS on corticomotor excitability during acute hypoxia. Brain Stimulation, 2015, 8, 363.	0.7	0
54	Partial weight support of the arm affects corticomotor selectivity of biceps brachii. Journal of NeuroEngineering and Rehabilitation, 2015, 12, 94.	2.4	10

#	Article	IF	CITATIONS
55	Proportional recovery after stroke depends on corticomotor integrity. Annals of Neurology, 2015, 78, 848-859.	2.8	308
56	Inhibition of the primary sensorimotor cortex by topical anesthesia of the forearm in patients with complex regional pain syndrome. Pain, 2015, 156, 2556-2561.	2.0	13
57	A Neuroanatomical Framework for Upper Limb Synergies after Stroke. Frontiers in Human Neuroscience, 2015, 9, 82.	1.0	70
58	MRI Guided Brain Stimulation without the Use of a Neuronavigation System. BioMed Research International, 2015, 2015, 1-8.	0.9	11
59	†l-wave' Recruitment Determines Response to tDCS in the Upper Limb, but Only So Far. Brain Stimulation, 2015, 8, 1124-1129.	0.7	33
60	Creatine Supplementation Enhances Corticomotor Excitability and Cognitive Performance during Oxygen Deprivation. Journal of Neuroscience, 2015, 35, 1773-1780.	1.7	84
61	Does Response Inhibition Have Pre- and Postdiagnostic Utility in Parkinson's Disease?. Journal of Motor Behavior, 2015, 47, 29-45.	0.5	12
62	"l-wave―recruitment predicts response to tDCS in the upper limb, but only so far. Brain Stimulation, 2015, 8, 357.	0.7	0
63	Primary Motor Cortex Excitability During Recovery After Stroke: Implications for Neuromodulation. Brain Stimulation, 2015, 8, 1183-1190.	0.7	90
64	Is the contralesional hemisphere a suitable target for noninvasive brain stimulation after stroke?. Brain Stimulation, 2015, 8, 335-336.	0.7	0
65	The Corticospinal Tract: A Biomarker to Categorize Upper Limb Functional Potential in Unilateral Cerebral Palsy. Frontiers in Pediatrics, 2015, 3, 112.	0.9	53
66	Transcranial Direct Current Stimulation Improves Ipsilateral Selective Muscle Activation in a Frequency Dependent Manner. PLoS ONE, 2015, 10, e0122434.	1.1	13
67	Predicting and accelerating motor recovery after stroke. Current Opinion in Neurology, 2014, 27, 624-630.	1.8	72
68	Upper Limb Function and Cortical Organization in Youth with Unilateral Cerebral Palsy. Frontiers in Neurology, 2014, 5, 117.	1.1	46
69	Bilateral Priming Before Wii-based Movement Therapy Enhances Upper Limb Rehabilitation and Its Retention After Stroke. Neurorehabilitation and Neural Repair, 2014, 28, 828-838.	1.4	18
70	Primary motor cortex disinhibition during motor skill learning. Journal of Neurophysiology, 2014, 112, 156-164.	0.9	55
71	An update on predicting motor recovery after stroke. Annals of Physical and Rehabilitation Medicine, 2014, 57, 489-498.	1.1	51
72	A template-based procedure for determining white matter integrity in the internal capsule early after stroke. NeuroImage: Clinical, 2014, 4, 695-700.	1.4	11

5

#	Article	IF	CITATIONS
73	Bilateral Priming Accelerates Recovery of Upper Limb Function After Stroke. Stroke, 2014, 45, 205-210.	1.0	74
74	Priming sensorimotor cortex to enhance task-specific training after subcortical stroke. Clinical Neurophysiology, 2014, 125, 1451-1458.	0.7	31
75	Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception. Appetite, 2014, 80, 212-219.	1.8	79
76	A dissociation between propriospinal facilitation and inhibition after bilateral transcranial direct current stimulation. Journal of Neurophysiology, 2014, 111, 2187-2195.	0.9	12
77	The fall and rise of corticomotor excitability with cancellation and reinitiation of prepared action. Journal of Neurophysiology, 2014, 112, 2707-2717.	0.9	54
78	Partial weight support differentially affects corticomotor excitability across muscles of the upper limb. Physiological Reports, 2014, 2, e12183.	0.7	14
79	Transcranial Direct Current Stimulation Enhances Recovery of Stereopsis in Adults With Amblyopia. Neurotherapeutics, 2013, 10, 831-839.	2.1	86
80	Rehabilitation is Initiated Early After Stroke, but Most Motor Rehabilitation Trials Are Not. Stroke, 2013, 44, 2039-2045.	1.0	95
81	A neurophysiological basis for the coordination between hand and foot movement. Journal of Neurophysiology, 2013, 110, 1039-1046.	0.9	11
82	Letter by Stinear and Byblow Regarding Article, "Patient-Reported Measures Provide Unique Insights Into Motor Function After Stroke― Stroke, 2013, 44, e79.	1.0	2
83	Anodal Transcranial Direct Current Stimulation Transiently Improves Contrast Sensitivity and Normalizes Visual Cortex Activation in Individuals With Amblyopia. Neurorehabilitation and Neural Repair, 2013, 27, 760-769.	1.4	86
84	Cutaneous anesthesia of the forearm enhances sensorimotor function of the hand. Journal of Neurophysiology, 2013, 109, 1091-1096.	0.9	18
85	Ipsilateral Motor Pathways after Stroke: Implications for Non-Invasive Brain Stimulation. Frontiers in Human Neuroscience, 2013, 7, 184.	1.0	108
86	Uncoupling response inhibition. Journal of Neurophysiology, 2012, 108, 1492-1500.	0.9	29
87	Contralesional Hemisphere Control of the Proximal Paretic Upper Limb following Stroke. Cerebral Cortex, 2012, 22, 2662-2671.	1.6	198
88	Contralesional Motor Cortex Activation Depends on Ipsilesional Corticospinal Tract Integrity in Well-Recovered Subcortical Stroke Patients. Neurorehabilitation and Neural Repair, 2012, 26, 594-603.	1.4	83
89	The PREP algorithm predicts potential for upper limb recovery after stroke. Brain, 2012, 135, 2527-2535.	3.7	446
90	Anodal Transcranial Direct Current Stimulation Reduces Psychophysically Measured Surround Suppression in the Human Visual Cortex. PLoS ONE, 2012, 7, e36220.	1.1	48

#	Article	IF	CITATIONS
91	The modulation of motor cortex excitability during motor imagery depends on imagery quality. European Journal of Neuroscience, 2012, 35, 323-331.	1.2	100
92	Mirror Symmetric Bimanual Movement Priming Can Increase Corticomotor Excitability and Enhance Motor Learning. PLoS ONE, 2012, 7, e33882.	1.1	63
93	Task-Dependent Interaction between Parietal and Contralateral Primary Motor Cortex during Explicit versus Implicit Motor Imagery. PLoS ONE, 2012, 7, e37850.	1.1	39
94	Promoting use-dependent plasticity with externally-paced training. Clinical Neurophysiology, 2011, 122, 2462-2468.	0.7	43
95	Cathodal transcranial direct current stimulation of the primary motor cortex improves selective muscle activation in the ipsilateral arm. Journal of Neurophysiology, 2011, 105, 2937-2942.	0.9	37
96	Cathodal transcranial direct current stimulation suppresses ipsilateral projections to presumed propriospinal neurons of the proximal upper limb. Journal of Neurophysiology, 2011, 105, 2582-2589.	0.9	37
97	Bilateral parietal cortex function during motor imagery. Experimental Brain Research, 2010, 201, 499-508.	0.7	35
98	Carbohydrate in the mouth immediately facilitates motor output. Brain Research, 2010, 1350, 151-158.	1.1	122
99	Task-Dependent Modulation of Inputs to Proximal Upper Limb Following Transcranial Direct Current Stimulation of Primary Motor Cortex. Journal of Neurophysiology, 2010, 103, 2382-2389.	0.9	41
100	Combining Theta Burst Stimulation With Training After Subcortical Stroke. Stroke, 2010, 41, 1568-1572.	1.0	159
101	Theta Burst Stimulation of Human Primary Motor Cortex Degrades Selective Muscle Activation in the Ipsilateral Arm. Journal of Neurophysiology, 2010, 104, 2594-2602.	0.9	29
102	Conceptual Binding: Integrated Visual Cues Reduce Processing Costs in Bimanual Movements. Journal of Neurophysiology, 2009, 102, 302-311.	0.9	19
103	Normalizing Motor Cortex Representations in Focal Hand Dystonia. Cerebral Cortex, 2009, 19, 1968-1977.	1.6	74
104	Repetitive stimulation of premotor cortex affects primary motor cortex excitability and movement preparation. Brain Stimulation, 2009, 2, 152-162.	0.7	31
105	Primary motor cortex and movement prevention: Where Stop meets Go. Neuroscience and Biobehavioral Reviews, 2009, 33, 662-673.	2.9	154
106	115. Active-Passive bilateral therapy enhances the effects of upper limb therapy in chronic stroke. Journal of Clinical Neuroscience, 2009, 16, 465-466.	0.8	0
107	Stop and Go: The Neural Basis of Selective Movement Prevention. Journal of Cognitive Neuroscience, 2009, 21, 1193-1203.	1.1	93
108	Consensus: Motor cortex plasticity protocols. Brain Stimulation, 2008, 1, 164-182.	0.7	529

#	Article	IF	CITATIONS
109	Controversy: Noninvasive and invasive cortical stimulation show efficacy in treating stroke patients. Brain Stimulation, 2008, 1, 370-382.	0.7	131
110	Task-Dependent Modulation of Propriospinal Inputs to Human Shoulder. Journal of Neurophysiology, 2008, 100, 2109-2114.	0.9	26
111	Priming the motor system enhances the effects of upper limb therapy in chronic stroke. Brain, 2008, 131, 1381-1390.	3.7	219
112	Functional Connectivity Between Secondary and Primary Motor Areas Underlying Hand–Foot Coordination. Journal of Neurophysiology, 2007, 98, 414-422.	0.9	82
113	Selective Inhibition of Movement. Journal of Neurophysiology, 2007, 97, 2480-2489.	0.9	153
114	The effect of coordination mode on use-dependent plasticity. Clinical Neurophysiology, 2007, 118, 1759-1766.	0.7	15
115	Lateralization of motor imagery following stroke. Clinical Neurophysiology, 2007, 118, 1794-1801.	0.7	59
116	Ipsilateral corticospinal projections do not predict congenital mirror movements: A case report. Neuropsychologia, 2007, 45, 844-852.	0.7	25
117	Kinesthetic but not visual imagery assists in normalizing the CNV in Parkinson's disease. Clinical Neurophysiology, 2006, 117, 2308-2314.	0.7	22
118	Decreased desychronisation during self-paced movements in frequency bands involving sensorimotor integration and motor functioning in Parkinson's disease. Brain Research Bulletin, 2006, 71, 245-251.	1.4	14
119	Kinesthetic, but not visual, motor imagery modulates corticomotor excitability. Experimental Brain Research, 2006, 168, 157-164.	0.7	371
120	Modulation of short-latency intracortical inhibition in human primary motor cortex during synchronised versus syncopated finger movements. Experimental Brain Research, 2006, 168, 287-293.	0.7	22
121	Corticomotor excitability during a choice-hand reaction time task. Experimental Brain Research, 2006, 172, 230-245.	0.7	21
122	Lateralization of unimanual and bimanual motor imagery. Brain Research, 2006, 1095, 139-147.	1.1	71
123	Functional potential in chronic stroke patients depends on corticospinal tract integrity. Brain, 2006, 130, 170-180.	3.7	711
124	The Yips in Golf. Medicine and Science in Sports and Exercise, 2006, 38, 1980-1989.	0.2	40
125	Intracortical Inhibition During Volitional Inhibition of Prepared Action. Journal of Neurophysiology, 2006, 95, 3371-3383.	0.9	295
126	Amplitude of muscle stretch modulates corticomotor gain during passive movement. Brain Research, 2005, 1031, 109-117.	1.1	26

#	Article	IF	CITATIONS
127	Task-dependent modulation of silent period duration in focal hand dystonia. Movement Disorders, 2005, 20, 1143-1151.	2.2	26
128	Impaired Modulation of Intracortical Inhibition in Focal Hand Dystonia. Cerebral Cortex, 2004, 14, 555-561.	1.6	112
129	Neurophysiological and behavioural adaptations to a bilateral training intervention in individuals following stroke. Clinical Rehabilitation, 2004, 18, 48-59.	1.0	67
130	Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb. Journal of Physiology, 2004, 560, 929-940.	1.3	130
131	Impaired modulation of corticospinal excitability following subthreshold rTMS in focal hand dystonia. Human Movement Science, 2004, 23, 527-538.	0.6	38
132	An interhemispheric asymmetry in motor cortex disinhibition during bimanual movement. Brain Research, 2004, 1022, 81-87.	1.1	33
133	Modulation of interhemispheric inhibition during passive movement of the upper limb reflects changes in motor cortical excitability. Experimental Brain Research, 2004, 156, 11-19.	0.7	6
134	Proposed cortical and sub-cortical contributions to the long-latency stretch reflex in the forearm. Experimental Brain Research, 2004, 156, 72-79.	0.7	56
135	Human corticospinal excitability during a precued reaction time paradigm. Experimental Brain Research, 2004, 156, 80-87.	0.7	21
136	Modulation of corticospinal excitability and intracortical inhibition during motor imagery is task-dependent. Experimental Brain Research, 2004, 157, 351-8.	0.7	81
137	Impaired inhibition of a pre-planned response in focal hand dystonia. Experimental Brain Research, 2004, 158, 207-12.	0.7	21
138	Elevated threshold for intracortical inhibition in focal hand dystonia. Movement Disorders, 2004, 19, 1312-1317.	2.2	68
139	Modulation of human cervical premotoneurons during bilateral voluntary contraction of upper-limb muscles. Muscle and Nerve, 2004, 29, 506-514.	1.0	24
140	Bimanual Coordination Dynamics in Poststroke Hemiparetics. Journal of Motor Behavior, 2004, 36, 174-188.	0.5	57
141	The effects of repetitive proprioceptive stimulation on corticomotor representation in intact and hemiplegic individuals. Clinical Neurophysiology, 2004, 115, 765-773.	0.7	35
142	Perception—Action Coupling during Bimanual Coordination: The Role of Visual Perception in the Coalition of Constraints That Govern Bimanual Action. Journal of Motor Behavior, 2004, 36, 394-398.	0.5	8
143	The Contribution of Cervical Propriospinal Premotoneurons in Recovering Hemiparetic Stroke Patients. Journal of Clinical Neurophysiology, 2004, 21, 426-434.	0.9	47
144	Rhythmic Bilateral Movement Training Modulates Corticomotor Excitability and Enhances Upper Limb Motricity Poststroke: A Pilot Study. Journal of Clinical Neurophysiology, 2004, 21, 124-131.	0.9	138

#	Article	IF	CITATIONS
145	The Modulation of Excitability in Corticospinal Pathways during Rhythmic Movement. , 2004, , 155-185.		2
146	Motor imagery of phasic thumb abduction temporally and spatially modulates corticospinal excitability. Clinical Neurophysiology, 2003, 114, 909-914.	0.7	100
147	Altered corticomotor representation in patients with Parkinson's disease. Movement Disorders, 2003, 18, 919-927.	2.2	17
148	Role of Intracortical Inhibition in Selective Hand Muscle Activation. Journal of Neurophysiology, 2003, 89, 2014-2020.	0.9	155
149	Effector-Specific Visual Information Influences Kinesthesis and Reaction Time Performance in Parkinson's Disease. Journal of Motor Behavior, 2003, 35, 99-107.	0.5	15
150	Altered sensorimotor integration in Parkinson's disease. Brain, 2002, 125, 2089-2099.	3.7	110
151	The acquisition of bimanual coordination is mediated by anisotropic coupling between the hands. Human Movement Science, 2002, 21, 699-721.	0.6	29
152	Modulations in corticomotor excitability during passive upper-limb movement: Is there a cortical influence?. Brain Research, 2002, 943, 263-275.	1.1	42
153	Bimanual coordination in Parkinson's disease: Deficits in movement frequency, amplitude, and pattern switching. Movement Disorders, 2002, 17, 20-29.	2.2	36
154	Disinhibition in the human motor cortex is enhanced by synchronous upper limb movements. Journal of Physiology, 2002, 543, 307-316.	1.3	96
155	A method to monitor corticomotor excitability during passive rhythmic movement of the upper limb. Brain Research Protocols, 2001, 8, 82-87.	1.7	7
156	Phase transitions and postural deviations during bimanual kinesthetic tracking. Experimental Brain Research, 2001, 137, 467-477.	0.7	20
157	Symmetric facilitation between motor cortices during contraction of ipsilateral hand muscles. Experimental Brain Research, 2001, 139, 101-105.	0.7	96
158	Phasic modulation of corticomotor excitability during passive movement of the upper limb: effects of movement frequency and muscle specificity. Brain Research, 2001, 900, 282-294.	1.1	91
159	Spontaneous and intentional dynamics of bimanual coordination in Parkinson's disease. Human Movement Science, 2000, 19, 223-249.	0.6	18
160	The subdominant hand increases the efficacy of voluntary alterations in bimanual coordination. Experimental Brain Research, 2000, 131, 366-374.	0.7	41
161	Neuromuscular-skeletal constraints upon the dynamics of unimanual and bimanual coordination. Experimental Brain Research, 2000, 131, 196-214.	0.7	93
162	Stride length regulation in Parkinson's disease: the use of extrinsic, visual cues. Brain, 2000, 123, 2077-2090.	3.7	264

#	Article	IF	CITATIONS
163	Changes in posture alter the attentional demands of voluntary movement. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 853-857.	1.2	40
164	The Timing of Intralimb Coordination. Journal of Motor Behavior, 1999, 31, 113-118.	0.5	11
165	Stabilisation of bimanual coordination through visual coupling. Human Movement Science, 1999, 18, 281-305.	0.6	31
166	The utilization of visual information in the control of rapid sequential aiming movements. Acta Psychologica, 1999, 103, 103-123.	0.7	31
167	Spontaneous and Intentional Pattern Switching in a Multisegmental Bimanual Coordination Task. Motor Control, 1999, 3, 372-393.	0.3	53
168	Performance asymmetries and coupling dynamics in the acquisition of multifrequency bimanual coordination. Psychological Research, 1998, 61, 56-70.	1.0	33
169	Bimanual Circle Drawing during Secondary Task Loading. Motor Control, 1998, 2, 106-113.	0.3	28
170	The contribution of inherent and incidental constraints to intentional switching between patterns of bimanual coordination. Human Movement Science, 1996, 15, 565-589.	0.6	37
171	Attention as a mediating variable in the dynamics of bimanual coordination. Human Movement Science, 1996, 15, 877-897.	0.6	48
172	Asymmetries in Coupling Dynamics of Perception and Action. Journal of Motor Behavior, 1995, 27, 123-137.	0.5	104
173	The Preparation of Aiming Movements. Brain and Cognition, 1995, 28, 133-154.	0.8	82
174	Expressions of asymmetries and anchoring in bimanual coordination. Human Movement Science, 1994, 13, 3-28.	0.6	215
175	Performance asymmetries in multifrequency coordination. Human Movement Science, 1994, 13, 147-174.	0.6	50
176	The Dynamical Substructure of Bimanual Coordination. , 1994, , 319-337.		32
177	Order effects and the weighting process in workload assessment. Applied Ergonomics, 1993, 24, 357-361.	1.7	17
178	Effects of redundancy in the comparison of speech and pictorial displays in the cockpit environment. Applied Ergonomics, 1990, 21, 121-128.	1.7	7
179	The Effect of Perceived Locomotor Constraints on Distance Estimation. Journal of Motor Behavior, 1990, 22, 347-360.	0.5	15
180	Effects of linguistic redundancy and coded voice warnings on system response time. Applied Ergonomics, 1989, 20, 105-108.	1.7	7