Ju-Tao Guo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/160321/publications.pdf

Version: 2024-02-01

44069 56724 7,192 89 48 83 citations h-index g-index papers 92 92 92 6810 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of Alpha Interferon on the Hepatitis C Virus Replicon. Journal of Virology, 2001, 75, 8516-8523.	3.4	437
2	Identification of Five Interferon-Induced Cellular Proteins That Inhibit West Nile Virus and Dengue Virus Infections. Journal of Virology, 2010, 84, 8332-8341.	3.4	292
3	Present and future therapies of hepatitis B: From discovery to cure. Hepatology, 2015, 62, 1893-1908.	7.3	269
4	Characterization of the Intracellular Deproteinized Relaxed Circular DNA of Hepatitis B Virus: an Intermediate of Covalently Closed Circular DNA Formation. Journal of Virology, 2007, 81, 12472-12484.	3.4	267
5	Interferon-Induced Cell Membrane Proteins, IFITM3 and Tetherin, Inhibit Vesicular Stomatitis Virus Infection via Distinct Mechanisms. Journal of Virology, 2010, 84, 12646-12657.	3.4	263
6	Identification of Three Interferon-Inducible Cellular Enzymes That Inhibit the Replication of Hepatitis C Virus. Journal of Virology, 2008, 82, 1665-1678.	3.4	255
7	Inhibition of Hepatitis B Virus Replication by the Host Zinc Finger Antiviral Protein. PLoS Pathogens, 2013, 9, e1003494.	4.7	204
8	Replication of Hepatitis C Virus Subgenomes in Nonhepatic Epithelial and Mouse Hepatoma Cells. Journal of Virology, 2003, 77, 9204-9210.	3.4	199
9	Identification of Disubstituted Sulfonamide Compounds as Specific Inhibitors of Hepatitis B Virus Covalently Closed Circular DNA Formation. Antimicrobial Agents and Chemotherapy, 2012, 56, 4277-4288.	3.2	194
10	Apoptosis and Regeneration of Hepatocytes during Recovery from Transient Hepadnavirus Infections. Journal of Virology, 2000, 74, 1495-1505.	3.4	168
11	Interferon induction of IFITM proteins promotes infection by human coronavirus OC43. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6756-6761.	7.1	161
12	Sulfamoylbenzamide Derivatives Inhibit the Assembly of Hepatitis B Virus Nucleocapsids. Journal of Virology, 2013, 87, 6931-6942.	3.4	154
13	DNA Polymerase \hat{I}° Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus. PLoS Pathogens, 2016, 12, e1005893.	4.7	152
14	Molecular Virology of Hepatitis B Virus for Clinicians. Clinics in Liver Disease, 2007, 11, 685-706.	2.1	151
15	Broad and Differential Animal Angiotensin-Converting Enzyme 2 Receptor Usage by SARS-CoV-2. Journal of Virology, 2020, 94, .	3.4	139
16	Alpha-Interferon Suppresses Hepadnavirus Transcription by Altering Epigenetic Modification of cccDNA Minichromosomes. PLoS Pathogens, 2013, 9, e1003613.	4.7	135
17	IFITM Genes, Variants, and Their Roles in the Control and Pathogenesis of Viral Infections. Frontiers in Microbiology, 2018, 9, 3228.	3.5	129
18	Regulation of Hepatitis B Virus Replication by the Phosphatidylinositol 3-Kinase-Akt Signal Transduction Pathway. Journal of Virology, 2007, 81, 10072-10080.	3.4	124

#	Article	IF	CITATIONS
19	Metabolism and function of hepatitis B virus cccDNA: Implications for the development of cccDNA-targeting antiviral therapeutics. Antiviral Research, 2015, 122, 91-100.	4.1	122
20	Interferons Accelerate Decay of Replication-Competent Nucleocapsids of Hepatitis B Virus. Journal of Virology, 2010, 84, 9332-9340.	3.4	114
21	Production and Function of the Cytoplasmic Deproteinized Relaxed Circular DNA of Hepadnaviruses. Journal of Virology, 2010, 84, 387-396.	3.4	113
22	Chronic hepatitis B: What should be the goal for new therapies?. Antiviral Research, 2013, 98, 27-34.	4.1	112
23	Activation of Pattern Recognition Receptor-Mediated Innate Immunity Inhibits the Replication of Hepatitis B Virus in Human Hepatocyte-Derived Cells. Journal of Virology, 2009, 83, 847-858.	3.4	108
24	A Southern Blot Assay for Detection of Hepatitis B Virus Covalently Closed Circular DNA from Cell Cultures. Methods in Molecular Biology, 2013, 1030, 151-161.	0.9	107
25	Interferon-inducible ribonuclease ISG20 inhibits hepatitis B virus replication through directly binding to the epsilon stem-loop structure of viral RNA. PLoS Pathogens, 2017, 13, e1006296.	4.7	107
26	Indoleamine 2,3-Dioxygenase Mediates the Antiviral Effect of Gamma Interferon against Hepatitis B Virus in Human Hepatocyte-Derived Cells. Journal of Virology, 2011, 85, 1048-1057.	3.4	106
27	HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways. PLoS Pathogens, 2017, 13, e1006658.	4.7	105
28	Hepatitis D Virus Infection of Mice Expressing Human Sodium Taurocholate Co-transporting Polypeptide. PLoS Pathogens, 2015, 11, e1004840.	4.7	99
29	Antiviral therapies targeting host ER alpha-glucosidases: Current status and future directions. Antiviral Research, 2013, 99, 251-260.	4.1	98
30	Identification of Residues Controlling Restriction versus Enhancing Activities of IFITM Proteins on Entry of Human Coronaviruses. Journal of Virology, 2018, 92, .	3.4	97
31	STING Agonists Induce an Innate Antiviral Immune Response against Hepatitis B Virus. Antimicrobial Agents and Chemotherapy, 2015, 59, 1273-1281.	3.2	93
32	A Substituted Tetrahydro-Tetrazolo-Pyrimidine Is a Specific and Novel Inhibitor of Hepatitis B Virus Surface Antigen Secretion. Antimicrobial Agents and Chemotherapy, 2007, 51, 4427-4437.	3.2	88
33	Hepatitis B virus e antigen production is dependent upon covalently closed circular (ccc) DNA in HepAD38 cell cultures and may serve as a cccDNA surrogate in antiviral screening assays. Antiviral Research, 2006, 72, 116-124.	4.1	86
34	The Interferon-Inducible Protein Tetherin Inhibits Hepatitis B Virus Virion Secretion. Journal of Virology, 2015, 89, 9200-9212.	3.4	84
35	Novel Imino Sugar Derivatives Demonstrate Potent Antiviral Activity against Flaviviruses. Antimicrobial Agents and Chemotherapy, 2009, 53, 1501-1508.	3.2	74
36	LY6E Restricts Entry of Human Coronaviruses, Including Currently Pandemic SARS-CoV-2. Journal of Virology, 2020, 94, .	3.4	73

#	Article	IF	CITATIONS
37	Small molecule inhibitors of ER \hat{l}_{\pm} -glucosidases are active against multiple hemorrhagic fever viruses. Antiviral Research, 2013, 98, 432-440.	4.1	72
38	A research agenda for curing chronic hepatitis B virus infection. Hepatology, 2018, 67, 1127-1131.	7.3	70
39	Conditional Replication of Duck Hepatitis B Virus in Hepatoma Cells. Journal of Virology, 2003, 77, 1885-1893.	3.4	68
40	Inhibition of Endoplasmic Reticulum-Resident Glucosidases Impairs Severe Acute Respiratory Syndrome Coronavirus and Human Coronavirus NL63 Spike Protein-Mediated Entry by Altering the Glycan Processing of Angiotensin I-Converting Enzyme 2. Antimicrobial Agents and Chemotherapy, 2015, 59, 206-216.	3.2	63
41	Targeting the multifunctional HBV core protein as a potential cure for chronic hepatitis B. Antiviral Research, 2020, 182, 104917.	4.1	62
42	Activation of Stimulator of Interferon Genes in Hepatocytes Suppresses the Replication of Hepatitis B Virus. Antimicrobial Agents and Chemotherapy, 2017, 61 , .	3.2	60
43	DNA Polymerase alpha is essential for intracellular amplification of hepatitis B virus covalently closed circular DNA. PLoS Pathogens, 2019, 15, e1007742.	4.7	59
44	The innate immune response to hepatitis B virus infection: Implications for pathogenesis and therapy. Antiviral Research, 2012, 96, 405-413.	4.1	58
45	A cell-based high throughput screening assay for the discovery of cGAS-STING pathway agonists. Antiviral Research, 2017, 147, 37-46.	4.1	55
46	Identification of Interferon-Stimulated Gene Proteins That Inhibit Human Parainfluenza Virus Type 3. Journal of Virology, 2016, 90, 11145-11156.	3.4	53
47	Cellular DNA Topoisomerases Are Required for the Synthesis of Hepatitis B Virus Covalently Closed Circular DNA. Journal of Virology, 2019, 93, .	3.4	53
48	Hepatitis B Virus Core Protein Dephosphorylation Occurs during Pregenomic RNA Encapsidation. Journal of Virology, 2018, 92, .	3.4	52
49	Discovery and Mechanistic Study of a Novel Human-Stimulator-of-Interferon-Genes Agonist. ACS Infectious Diseases, 2019, 5, 1139-1149.	3.8	50
50	Characterization of the Host Factors Required for Hepadnavirus Covalently Closed Circular (ccc) DNA Formation. PLoS ONE, 2012, 7, e43270.	2.5	49
51	Hepatitis B Virus Covalently Closed Circular DNA Formation in Immortalized Mouse Hepatocytes Associated with Nucleocapsid Destabilization. Journal of Virology, 2015, 89, 9021-9028.	3.4	49
52	Preclinical Profile of AB-423, an Inhibitor of Hepatitis B Virus Pregenomic RNA Encapsidation. Antimicrobial Agents and Chemotherapy, 2018, 62, .	3.2	49
53	Therapeutic strategies for a functional cure of chronic hepatitis B virus infection. Acta Pharmaceutica Sinica B, 2014, 4, 248-257.	12.0	48
54	Bat SARS-Like WIV1 coronavirus uses the ACE2 of multiple animal species as receptor and evades IFITM3 restriction <i>via</i> TMPRSS2 activation of membrane fusion. Emerging Microbes and Infections, 2020, 9, 1567-1579.	6.5	48

#	Article	IF	Citations
55	Treatment of chronic hepatitis B with pattern recognition receptor agonists: Current status and potential for a cure. Antiviral Research, 2015, 121, 152-159.	4.1	45
56	The current status and future directions of hepatitis B antiviral drug discovery. Expert Opinion on Drug Discovery, 2017, 12, 5-15.	5.0	44
57	Virological Basis for the Cure of Chronic Hepatitis B. ACS Infectious Diseases, 2019, 5, 659-674.	3.8	43
58	Does a cdc2 Kinase-Like Recognition Motif on the Core Protein of Hepadnaviruses Regulate Assembly and Disintegration of Capsids?. Journal of Virology, 2001, 75, 2024-2028.	3.4	39
59	Discovery and Mechanistic Study of Benzamide Derivatives That Modulate Hepatitis B Virus Capsid Assembly. Journal of Virology, 2017, 91, .	3.4	39
60	Viral DNA-Dependent Induction of Innate Immune Response to Hepatitis B Virus in Immortalized Mouse Hepatocytes. Journal of Virology, 2016, 90, 486-496.	3.4	38
61	A Novel Benzodiazepine Compound Inhibits Yellow Fever Virus Infection by Specifically Targeting NS4B Protein. Journal of Virology, 2016, 90, 10774-10788.	3.4	37
62	Discovery of Novel Hepatitis B Virus Nucleocapsid Assembly Inhibitors. ACS Infectious Diseases, 2019, 5, 759-768.	3.8	34
63	Enhancing the antiviral potency of ER \hat{l} ±-glucosidase inhibitor IHVR-19029 against hemorrhagic fever viruses in vitro and in vivo. Antiviral Research, 2018, 150, 112-122.	4.1	26
64	GILT restricts the cellular entry mediated by the envelope glycoproteins of SARS-CoV, Ebola virus and Lassa fever virus. Emerging Microbes and Infections, 2019, 8, 1511-1523.	6.5	26
65	Protein phosphatase 1 catalyzes HBV core protein dephosphorylation and is co-packaged with viral pregenomic RNA into nucleocapsids. PLoS Pathogens, 2020, 16, e1008669.	4.7	26
66	Prospects for the Global Elimination of Hepatitis B. Annual Review of Virology, 2021, 8, 437-458.	6.7	26
67	Hepatitis B Virus Virions Produced Under Nucleos(t)ide Analogue Treatment Are Mainly Not Infectious Because of Irreversible DNA Chain Termination. Hepatology, 2020, 71, 463-476.	7.3	24
68	Characterization of novel hepadnaviral RNA species accumulated in hepatoma cells treated with viral DNA polymerase inhibitors. Antiviral Research, 2016, 131, 40-48.	4.1	22
69	Imino sugar glucosidase inhibitors as broadly active anti-filovirus agents. Emerging Microbes and Infections, 2013, 2, 1-7.	6.5	21
70	Article Commentary: Viral Resistance of MOGS-CDG Patients Implies a Broad-Spectrum Strategy against Acute Virus Infections. Antiviral Therapy, 2015, 20, 257-259.	1.0	19
71	An interferon-beta promoter reporter assay for high throughput identification of compounds against multiple RNA viruses. Antiviral Research, 2014, 107, 56-65.	4.1	18
72	Interferon Alpha Induces Multiple Cellular Proteins That Coordinately Suppress Hepadnaviral Covalently Closed Circular DNA Transcription. Journal of Virology, 2020, 94, .	3.4	18

#	Article	IF	Citations
73	CpAMs induce assembly of HBV capsids with altered electrophoresis mobility: Implications for mechanism of inhibiting pgRNA packaging. Antiviral Research, 2018, 159, 1-12.	4.1	17
74	Hepatitis B virus nucleocapsid uncoating: biological consequences and regulation by cellular nucleases. Emerging Microbes and Infections, 2021, 10, 852-864.	6.5	16
75	Restoration of a functional antiviral immune response to chronic HBV infection by reducing viral antigen load: if not sufficient, is it necessary?. Emerging Microbes and Infections, 2021, 10, 1545-1554.	6.5	12
76	Have the Starting Lineup of Five for Hepatitis B Virus Covalently Closed Circular DNA Synthesis Been Identified?. Hepatology, 2020, 72, 1142-1144.	7.3	11
77	Design and synthesis of N-alkyldeoxynojirimycin derivatives with improved metabolic stability as inhibitors of BVDV and Tacaribe virus. Bioorganic and Medicinal Chemistry Letters, 2013, 23, 4258-4262.	2.2	10
78	Identification of hepatitis B virus core protein residues critical for capsid assembly, pgRNA encapsidation and resistance to capsid assembly modulators. Antiviral Research, 2021, 191, 105080.	4.1	10
79	Amino acid residues at core protein dimer-dimer interface modulate multiple steps of hepatitis B virus replication and HBeAg biogenesis. PLoS Pathogens, 2021, 17, e1010057.	4.7	10
80	A yellow fever virus NS4B inhibitor not only suppresses viral replication, but also enhances the virus activation of RIG-I-like receptor-mediated innate immune response. PLoS Pathogens, 2022, 18, e1010271.	4.7	9
81	Interferon Control of Human Coronavirus Infection and Viral Evasion: Mechanistic Insights and Implications for Antiviral Drug and Vaccine Development. Journal of Molecular Biology, 2022, 434, 167438.	4.2	7
82	Synthesis of 4-oxotetrahydropyrimidine-1(2H)-carboxamides derivatives as capsid assembly modulators of hepatitis B virus. Medicinal Chemistry Research, 2021, 30, 459-472.	2.4	6
83	Development of antibody-based assays for high throughput discovery and mechanistic study of antiviral agents against yellow fever virus. Antiviral Research, 2020, 182, 104907.	4.1	4
84	A Putative Amphipathic Alpha Helix in Hepatitis B Virus Small Envelope Protein Plays a Critical Role in the Morphogenesis of Subviral Particles. Journal of Virology, 2021, 95, .	3.4	4
85	The Covalently Closed Circular Form of Hepatitis B Virus Genome: Is There Now an End in "Site�. Gastroenterology, 2016, 150, 34-36.	1.3	3
86	4-Oxooctahydroquinoline-1(2H)-carboxamides as hepatitis B virus (HBV) capsid core protein assembly modulators. Bioorganic and Medicinal Chemistry Letters, 2022, 58, 128518.	2.2	3
87	Alpha interferon-induced antiviral response noncytolytically reduces replication defective adenovirus DNA in MDBK cells. Antiviral Research, 2007, 76, 232-240.	4.1	2
88	In Vitro Anti-hepatitis B Virus Activity of 2′,3′-Dideoxyguanosine. Virologica Sinica, 2018, 33, 538-544.	3.0	2
89	HBV Drug Resistance Development, Testing, and Prevention. Current Hepatitis Reports, 2010, 9, 223-230.	0.3	1