Guicai Qi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/1603010/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Copper Indium Sulfide Enables <scp>Li CO₂</scp> Batteries with Boosted Reaction Kinetics and Cycling Stability. Energy and Environmental Materials, 2023, 6, .	12.8	7
2	Artificial Solidâ€Electrolyte Interphase and Bambooâ€like Nâ€doped Carbon Nanotube Enabled Highly Rechargeable Kâ€CO ₂ Batteries. Advanced Functional Materials, 2022, 32, 2105029.	14.9	17
3	Artificial Solidâ€Electrolyte Interphase and Bambooâ€like Nâ€doped Carbon Nanotube Enabled Highly Rechargeable Kâ€CO ₂ Batteries (Adv. Funct. Mater. 2/2022). Advanced Functional Materials, 2022, 32, .	14.9	0
4	Binderâ€Free MoN Nanofibers Catalysts for Flexible 2â€Electron Oxalateâ€Based Liâ€CO ₂ Batteries with High Energy Efficiency. Advanced Functional Materials, 2022, 32, .	14.9	42
5	Vertically Aligned N-doped Carbon Nanotubes Arrays as Efficient Binder-free Catalysts for Flexible Li-CO2 Batteries. Energy Storage Materials, 2021, 35, 148-156.	18.0	50
6	Rechargeable LiCO ₂ Batteries with Graphdiyne as Efficient Metalâ€Free Cathode Catalysts. Advanced Functional Materials, 2021, 31, 2101423.	14.9	30
7	Solvothermally synthesized Li(Ni0.6Co0.2Mn0.2)xCd1-xO2 cathode materials with excellent electrochemical performance for lithium-ion batteries. Ionics, 2019, 25, 5655-5667.	2.4	8
8	Synthesis of mono-dispersed mesoporous Mn2O3 powders with micro-nanostructure for removing Congo red dye from aqueous solution. Advanced Powder Technology, 2019, 30, 930-939.	4.1	9
9	Ultrathin CeO2 coating for improved cycling and rate performance of Ni-rich layered LiNi0.7Co0.2Mn0.1O2 cathode materials. Ceramics International, 2019, 45, 144-152.	4.8	68
10	Study on Potassium Doped Modification of Li1.2Ni0.13Co0.13Mn0.54O2Materials Synthesized by Novel Method for Lithium Ion Battery. Journal of the Electrochemical Society, 2018, 165, A333-A338.	2.9	12
11	Investigation of the synergetic effects of LiBF4 and LiODFB as wide-temperature electrolyte salts in lithium-ion batteries. Ionics, 2018, 24, 2995-3004.	2.4	23